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Stanford Linear Accelerator Center, Stanford University, Stanford, California 

I Introduction 

Electromagnetism has long been an important tool in investigating the 

structure of matter. Whether one thinks of the experiments of Rutherford on 

alpha particle scattering which led to the discovery of the nucleus, the clas- 

sification of optical spectral lines and the discovery of discrete atomic energy 

levels, or the experiments of Stern and Gerlach and the quantization of spin, 

just to cite a few examples, many of the most important conceptual advances in 

physics during this century have involved experiments which used the electro- 

magnetic interaction as a probe. With the advent of high energy electron 

accelerators in the past few decades, the structure of the strongly interacting 

particles, the hadrons, is now also being examined in detail with an electro- 

magnetic probe through study of the interactions of high energy photon and 

electron beams with nucleons and nuclei. 

In these lectures we will discuss some of the knowledge and theoretical 

understanding that has been gained, and that we could hope to gain, from the 

study of photoproduction and electroproduction of hadrons. As we proceed we 

will emphasize in turn two different aspects of (real or virtual) photon-hadron 

reactions: (1) Photon-hadron collisions as just another kind of hadron-hadron 
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reaction, with cross sections smaller by roughly a factor of Q = e2/4r, l/137 

to be sure, but with all the essential features of hadron-hadron collisions and 

all the attendant successes and failures in our theoretical understanding. 

(2) Photon-hadron reactions, or more exactly, matrix elements of the 

electromagnetic current between hadron states, considered to lowest order 

in the electromagnetic coupling constant but to all orders in the strong interactions 

as a unique way of obtaining the algebraic properties of the electromagnetic 

current under commutation with other currents or operators, of probing hadron 

structure in general, and of searching for possible hadron substructure. The 

first of these aspects will be the central theme in the lectures on photoproduction, 

while the second aspect will be emphasized more in the later lectures on 

electroproduction. 

In the case of photoproduction, we shall see that the total cross section 

for hadron production and the various two body and quasi-two body final state 

processes generally behave very much as their hadronic analogs do. Thus 

the theoretical considerations involved are very much the same as in strong 

interactions, and we have chosen to concentrate on certain specific photon 

induced reactions as illustrative of the application of dispersions relations, 

finite energy sum rules, Regge poles and cuts, duality, etc. , which are used 

in the theoretical treatment of strong interactions processes. From a phenome- 

nological point of view, photoproduction processes offer the advantage that many 

photon induced two body or quasi-two body reactions are more systematically 

measured over large ranges of energy and momentum transfer in single ex- 

periments than their hadronic analogs, and, given existence of high energy 

polarized photon beams, the dependence on photon polarization of many photon 

induced reactions is accessible to measurement. These measurements have 
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revealed both interesting simplicities and complications which were almost 

totally unexpected from the differential cross section measurements alone, 

and which provide strong restrictions on theories of two body processes. 
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II The Electromagnetic Interaction 

A Classical and Quantum Electrodvnamics 

The development of classical electrodynamics is, perhaps, the greatest 

triumph of nineteenth century physics. As summarized in Maxwell’s equations, 

it provides a theory of the electromagnetic field and its interaction with stationary 

and moving charges, i. e. currents. It was quite logical that after the development 

of quantum mechanics, which involved the change of the classical position and 

momentum variables into operators with specified commutation relations, the 

same rules would be applied to the electromagnetic field ‘. With the application 

of the quantization rules C’second quantizationl’) the fields become operators with 

associated quanta, photons. The quantized electromagnetic field, together with 

the quantized electron (and positron) field and the Dirac theory of their electro- 

magnetic interaction forms the basic part of the theory of quantum electrodynamics. 

Its development may be traced in the original papers collected in reference 1. 

Quantum Electrodynamics, as extended into a systematic, perturbative 

calculational scheme with a renormalization procedure by Feynman, Tomonaga 

and Schwinger, is presently in magnificent agreement with experiment2. Par - 

titularly the recent calculation3 of the photon-photon scattering contributions 

to the sixth order contributions to the muon magnetic moment, and the re- 

calculation4 of the slope of the Dirac from factor of the electron in fourth order 

as it contributes to the Lamb shift, have resolved any remaining discrepancies 

between theory and experiment. Present precision experiments on atomic 

systems and high energy experiments with large momentum transfers indicate 

agreement with theory to an accuracy’, which, when expressed as a momentum 
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cut-off in the theory corresponds to several GeV, and when expressed as a 

distance corresponds to roughly 10-14cm. Moreover, the most recent tests 

of Coulomb’s law by the Cavendish method give5 

q = (2.7* 3.1) x lo-l6 

if the deviation of Coulomb’s law is of the form l/r2+‘, which corresponds to 

a limit on the photon rest mass, 

my< 1.6 x 10 -47 g, 

and is comparable to the limit’ 

my< 4x1o 
-48 

g9 

obtained from the agreement of the earth’s magnetic field with Ampere’s law 

out to distances of order 5 x 101’cm. As emphasized by Brodsky and Drell in 

2 
their review , the combination of classical and quantum electrodynamics thus 

works for lengths ranging over 25 orders of magnitude, an incredible domain 

spanning the subnuclear as well as cosmic. 

B The Electromagnetic Current of Hadrons 

In complete analogy to Quantum Electrodynamics, where the quantized 

electromagnetic field interacts with the electromagnetic current of the leptons, 
.leptons 
Jp 64 , the electromagnetic interaction of hadrons is also to be formulated 

in terms of the electromagnetic field interacting with a local vector current, 
hadrons 

J 
p (x) l 

To lowest order in the electromagnetic coupling, e, it is then 

matrix elements of this current, taken between the appropriate hadron states, 

which are measured in experiments involving the electromagnetic interactions 
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of hadrons. The corresponding charge operator of the hadrons is given by the 

7 
space integral over the charge density : 

Q = Q(t) = -ild’x J4(< t). 

The charge is of course conserved and independent of time, corresponding to 

a conserved current, 

(2) 

Conventionally the internal quantum numbers of the electromagnetic 

current are taken to be the same as those of the charge. These can be read 

off from the Gell-Mann - Nishijima formula*, 

Q=e(r,+$ (3) 

where e is the proton charge, I3 is the third component of isotopic spin, and Y 

is the hypercharge equal to the sum of B (baryon number) and S (strangeness), 

all of which are additively conserved quantities. Under isospin transformations 

in particular, from Eq. (3) the charge behaves as the sum of an isoscalar and 

an isovector, so that only 1 AI 1 5 1 transitions can be induced by the current 

if it has the same transformation properties as the charge. Since the G parity 

of s,uch a neutral, non-strange current is given by C (-1)’ and the conventional 

current has charge conjugation properties corresponding to C = -1, the isoscalar 

and isovector components of the electromagnetic current have G parity -1 and -tl, 

respectively. 

Although the simplest possibility certainly is to have the electromagnetic 

current possess the same transformation properties under internal symmetries 
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as the charge, this is not forced on us by general principles. In recent years 

two possibilities for components of the electromagnetic current have been 

discussed a great deal which do not reflect the simple intuitive idea of currents 

as moving charges: 

1. First is the possiblity that there is a component of the current 

with isospin 1=2. The lack of experimental evidence against this possibility 

was first pointed out by Grishin et al. 9 and by Dombey and Kabir 10 
-- , and has 

. . 
recently been stressed again by Sanda and Shawl’ who make the further claim 

that in fact experimental evidence for an I=2 component now exists from 

comparison of n+ and R- photoproduction in the region of the first resonance. 

Their claim is based on the observation that the total cross section 

difference, 

C u,-J(y n-n-p) - OT(Yp--n+n) 1 , (4) 

where k and q are the photon and pion center of mass momenta respectively, 

should be slowly varying with energy in the first resonance region if I I AI, ‘1, 

since an isospin g resonance then gives a contribution which would cancel in the 

cross section difference of Eq. (4). Since the available data 12 indicate that 

A varies rapidly as the energy is varied through the first resonance region, 

Sanda and Shaw took this as indicative of an I=2 component of the current. 

However, as pointed out by others 13,14 , this test for an I=2 component 

of the current is not unambiguous and relies on some additional knowledge of 

the non-resonant amplitudes, which Sanda and Shaw take from dispersion theory 

predictions. At present, in addition to the introduction of an isotensor term, 

-9- 



one still has the possibilities that: 

(a) The data for u T(y” -T-P), which come from photoproduction of 

7r- mesons from deuterium and have rather large errors, should be systematically 

renormalized to higher values (by - 20%). 

(b) The electric and magnetic dipole transitions of the neutron to the 

J= i pion-nucleon final state do not agree with the simple dispersion theory 

predictions, with the electric dipole amplitude in particular being strongly energy 

13 dependent . 

The question of the existence of an isotensor term should then still be regarded 

as unsettled. Further experiments, particularly 14 measurements of 

y n- Ton, are needed before the definite presence or absence of an I=2 component 

of the electromagnetic current is established on the basis of pion photoproduction 

experiments. 

2. Second, it was noted by Bernstein, Feinberg, and Lee13 following 

the discovery 16 of CP non-invariance in the decay of $ mesons that although 

invariance of electromagnetic interactions under parity (space reflections) was 

well established from nuclear physics experiments, the experimental evidence for 

C (charge conjugation) invariance was almost totally lacking at that time. Assuming 

CPT invariance, which follows from sacred principles of local field theory, then 

C non-invariance, together with parity invariance, implies CP and therefore T 

violation in electromagnetic interactions. The presence of such a violation may 

be invoked to explain the existence of CP violation in KL decay as well as its 

approximate magnitude. Such a failure of C invariance may be looked upon as due 
17 

to a mismatch between the charge conjugation and time reversal operators of the 

strong and electromagnetic interactions, so that if C is the charge conjugation 
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operator of strong interactions, 

C JpW 
-1 

* -JP(x). (5) 

Thus charge conjugation violation in electromagnetic interactions corresponds to 

the current 

ll- K&x) = 2 1 p J (x) + CJcl(x)C 
-1 1 

with the property 

CKr(x)C-1 = +Kp W 

not being identically zero. However the corresponding charge, 

Q,= -iI d3x K4(g t), 

(6) 

(7) 

(8) 

is still conserved, and all known hadrons must have QK=O since they are known 

to have total charges which change sign under the operator C. Even given the 

restriction that Q,=O, it is still possible to exhibit explicit Lagrangian models 
18 

utilizing higher spin fields which have Q,=O but Kp(x) f 0. 

Since the proposal of Bernstein et al. l5 -- , a rather large number of 

experiments have been performed looking for C and T invariance violation 

in electromagnetic processes. The results of these experiments can be very 

briefly summarized by the statement that there is presently no conclusive 

evidence for C or T violation. Particular examples of photoproduction and 

electroproduction experiments searching for such a violation include: 

- 11 - 



(a) Measurement of the up-down asymmetry in inelastic electron 

scattering with a polarized target, as suggested by Christ and Lee lg, The 

data2’ are consistent with zero asymmetry (i. e. , no T violation) within 

errors of a few percent, particularly in the region of the second and third 

pion-nucleon resonanaces where T violation due to an I=0 current K (0) should 
/J 

manifest itself. 

(b) A search for a failure of reciprocity (‘I’ violation) between 

Yd - np and np - yd. Experiment 21 indicates no failure to within errors of a 

few percent at energies where the first resonance is an important (virtual) 

intermediate state and T violation due to an I=1 current K (1) 
P 

should be present. 

(c) A search for a failure of reciprocity (T violation) between 

yn-n-p and r-p -yn. Recent radiative capture experiments 22 indicate a 

discrepancy of about two standard deviations with the 7~~ photoproduction 

measurements on deuterium near the first resonance, but not at higher energy. 

This has led Sanda and Shaw 23 to suggest a model where C violation is pro- 

duced only by a component of an isotensor current, K (2). Resolution of the 
P 

question of whether this failure of T invariance is only apparent, however, rests 

onthe yn-7r -p experiments and the related question of a possible isotensor 

current. Much better experiments on both photoproduction off deuterium and 

radiative capture are needed before any T violation is established in this 

particular process. 

Thus, although the evidence for the proposition that the electromagnetic 

current as well as the charge behave under internal symmetry transformations 

according to Eq. (3) is not compelling, there are no experiments conclusively 

showing the opposite. In the following we will assume this proposition to be true, 

keeping in mind the need for better experimental verification. 
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C Vector Meson Dominance 

The amplitude for the electromagnetic transition y + A-B between 

hadron states A and B is proportional to eP<B lJcll A> if l P is the 

polarization vector of the photon. The matrix element <B 1 JP ( A> may in 

general be decomposed into a sum of products of tensors which depend on the 

momenta and spins of the hadrons A and B times Lorentz invariant scalar amplitudes. 

If we consider dispersion relations in the photon’s four-momentum squared 

for such amplitudes, they may be dominated by low mass vector meson poles 24 , 

very much as dispersion relations for matrix elements of the divergence of 

the axial-vector current are dominated by the pion pole 25 . In other words, 

FAB (s2) is an invariant amplitude or form factor for the process y + A-B, 

with photon four-momentum q ~ = (P,-P~)~, then a dispersion relation for 

if 

FAB(q2) = $s” dM2 
ImFAB(M2) 
q2+M2 

3 (9) 

may be dominated, at least for small values of q2, by the vector meson poles which 

are closest to q2 = 0. To be specific, let us consider the isovector part of the 

electromagnetic current only, so that the rho meson is the lowest mass pole in 

the dispersion relation. Then, ignoring the width of the rho nneson 

m2 IinFABlM2) , 
q2 + ML 

(10) 
where (emi/fp) and g 

PAB 
are coupling constants defining the strength of the 

photon-rho and A-B-rho transitions at the rho pole. Rho meson dominance is 
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then just the statement that the integral in Eq. (10) is negligible, so that we 

obtain the basic result, 

In the particular case where A and B are the same single hadron, the 

quantities FAA(q 2 ) are usually called form factors, and one of them, say 

FL (s2) is the isovector charge form factor which for a hadron A (with non-zero 

isospin) may be chosen with a normalization such that 

FzA(0) = e. 

Combining this with Eq. (11) we obtain 

Q 
gpAA 

(12) 

(13) 

so that the rho meson is coupled to an arbitrary hadron A (with non-zero isospin) 

with an approximately universal strength, f , as long as we can neglect the 
P 

integral in Eq. (10) for q2 = 0. 

Up to this point we have closely followed the discussion of vector meson 

dominance by Gell-Mann and Zachariasen 
24 - 

, An alternate path with the same 

basic final results was taken by Sakurai 
26 in the context of a specific field theory 

with elementary vector mesons. This field theoretical path is clearly formulated 

in terms of a current-field identity 
27 
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c 

P,(X) 7 (14) 

where JF)( x is the isovector electromagnetic current and p,(x) is the field ) 

of the rho meson. Taking matrix elements of Eq. (14) between hadron states 

A and B yields 

<BIJF)~A> =(*) ( q2:m2)<BJJf’JA) 3 P5) 
P 

where J@) * Co) is the rho meson source current, ( o +mE)p,(x) = JP (x). If we now 

assumerhat (B IJ;) ] A> is slowly varying in q2, so that it has the value 

it takes on at the rho meson pole (q2 = -mE), then we recover the basic Eq. (11) 

and the discussion immediately following it. 

Both approaches to vector meson dominanace clearly require making 

assumptions. In the dispersion theory derivation, we must neglect the 

integral in Eq. (lo), while in the field theoretical derivation we must make a 

smoothness (or slow variation) assumption. The dispersion theoretic derivation 

makes it clear though that independent of whether special field theories with 

elementary fields are applicable (or even exist), approximate vector dominance, 

Eq. (11) , and universality, Eq. (13), simply follow from the dynamical 

assumption of the neglect of the continuum integral in Eq. (10). 

Conventionally, vector meson dominance has usually come to mean 

dominance by the rho meson for the isovector electromagnetic current, and by 

the omega and phi mesons for the isoscalar current. Since if we take matrix 
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elements of Eq. (14) between the vacuum and one rho meson state we obtain 

(16) 

where @ 
P 

(x) is the rho meson wave function, the coupling strength (em 

is directly measurable from rho meson decay into lepton pairs or electron- 

positron colliding beam experiments where the relevant Feynman amplitude is 

proportional to J *:epton%&, /s2) (0 1 Jv (0) ) p> with a resultant rho width for 

decay into lepton pairs r(p - efe-) = t$) (mp/fp2). Defining fw and f+ 

analogously to fp in Eq. (14), the Orsay experiments 28 give 

fp2/4n = 1.99 * 0.11 

fU2/q, = 14.0 f 2.8 (17) 

f+2/4r = 11.0 f 0.9 

which, within the vector dominance model, fix once and for all the ratio of 

strengths between hadron transitions involving photons and those involving 

the vector mesons p , w , and #I. 

Within this framework of p, w , and Cp dominance a number of 

experimentally testable relations between electromagnetic and hadronic 

processes have been derived. These have been reviewed in many places (see, 

in particular, the review of Sakurai 29 ) and we shall mention some of the specific 

tests in these lectures in discussing particular photoproduction reactions. In 

general, while the quantitive tests of vector meson dominance have sometimes 
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revealed discrepancies between the theoretical predictions and experimental 

results, at least qualitatively the model must be regarded as successful. 

Particularly for real photon (q2 = 0) processes, the corresponding vector meson 

processes show very much the same behavior as functions of energy and 

momentum transfer, and vector meson dominance has had a very useful role 

to play in making dynamical connections between photoproduction and purely 

hadronic reactions. 
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III General Features of the Photoproduction Cross Sections 

While the cross sections for specific photon intitiated processes like rho 

meson or pion photoproduction have been measured some time ago over a wide energy 

range, the first measurements of the total cross section for y + p -hadrons over 

a large energy range came quite recently. In large part this is because the cross 

section for hadron production by photons on protons is more than a hundred times 

smaller then that for electron-positron pair production (the Bethe-Heitler process), 

so that the quantity which one ordinarily determines in a transmission-type 

total cross section measurement is very largely made up of unwanted electromagnetic 

background. Fortunately the electron-positron pairs all appear in a very restricted 

kinematical region (a narrow forward cone) and can be appropriately eliminated 

from inclusion in the measurement. As a result, there now exist measurements 

of the total photoabsorption cross section on protons, u TY p (v ) , extending from 

threshold to photon energies, v , of almost 20 GeV from a combination of counter 30 , 

31 bubble chamber , and inelastic electron scattering 32 (extrapolated from the 

scattering region of space-like exchanged photons to the case of real light-like 

photons) experiments. 

Figure 1 shows a smoothed version of these measurements of flTyp(v) 

together with the total cross section for pi-zero meson-proton scattering (equal 

to the average of the pi-plus and pi-minus proton total cross sections by isotopic 

\spin conservation) divided by a convenient scale factor of 250. At low energies 

both total cross sections show the clear excitation of the same prominent states 

of the nucleon --- the first, second, third and fourth N* resonances. Except for 

the second resonance, the excitation of the main resonances in the photon and 
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pion cases are even roughly in proportion. As the energy of the photon increases 

into the multi-GeV region, the total cross section slowly decreases, much as 

the pion-nucleon total cross section does, and seems to be going toward a non- 

zero value at infinite energy of order 100 pb. The photon-neutron total cross 

section, extracted from measurements of the photon-deuteron total cross section 30 , 

is generally smaller then the photon-proton cross section at the same energy, but 

also appears to slowly decrease wtih increasing energy, and is consistent with 

approaching the same limit at infinite energy 30 . 

When one examines how specific hadron multiplicities make up the total cross 

section, there again emerges a picture remarkably similar to that for the purely 

hadronic case. Table 1 shows the composition of the photon-proton total cross 

section in terms of the individual topological cross sections 31 for various numbers 

of final charged hadrons at photon energies of 1.4, 2.8, 4.7 and 9.3 GeV. The charged 

hadron prongs enumerated in the table are those due to pions and nucleons, the 

strange particle production cross section being listed separately. With increasing 

photon energy, higher charged multiplicities become more important, with any 

particular charged multiplicity seeming to rise with increasing energy at first, to 

reach a maximum, and then slowly to fall-off (see u (3 prong) in 

Table 1). The mean charged multiplicity, < ncharged > shown in Table 1, is slowly 

rising as a result, being quite consistent 33 with a logarithmic increase with the 

photon energy, v . Strange particle production, on the other hand, is small and shows 

no increase at the higher energies. All these features, as well as others 33 of the final 

state, are very much as in the purely hadronic case, e.g. proton-proton collisions 34 , 

where they also known to persist to much higher energies. Whether these features 

of photon-nucleon collisions also extend to higher energies, and more importantly, 

whether they are the same for the space-like virtual photons involved in electron 

scattering, are among the very important questions to be answered experimentally 

in the near future. 
- 19 - 



Photon Energy u (GeV) 1.4 2.8 4.7 9.3 

Ml prow) 0.4 54.9 i 3.2 22.7 f 1.5 15.6 f 1.2 8.6 *1.4 

TABLE 1 Topological cross sections 

~(3 prong) 04 

o-(5 prong) dub) 

85.6 f 3.7 91.7 f 2.5 81.4 f 2.2 63.8 f 3.3 

0.2* 0.2 8.4 f 0.4 19.6 &to.6 33.6 & 2.5 

---- 0.05*0.03 0.84*0.08 7.3 -+ 0.8 

---- ---- ---- 0.6 rtO.l 

~(7 prong) W-3 

d9 prong) (h) 

cr(strange particles) @b) 4.4 i 0.9 8.1 50.5 8.5 l 0.5 8.2 zkO.8 

qp w-4 145 f 6 131 f 3 126 f 3 122 h 5 

<“charged>= -$f$?f 2.2 2.8 3.1 3.7 
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IV Photoproduction of Pions at Low Energy - Partial Wave Analysis 

At low energies photoproduction strongly reflects the formation of direct 

channel nucleon resonances, as can be seen from the total cross section in 

Figure 1. Single pion photoproduction in particular is dominated by the presence 

of direct channel resonances. With the accumulation of extensive and accurate 

data, particularly on photoproduction off protons, pion photoproduction is be- 

coming amenable to the same kinds of phase shift analysis which have been 

applied to pion-nucleon scattering, where a wealth of structure has been dis- 

covered. 

Such phase shift analyses are the only means available which allow one 

to obtain detailed information on the photon induced transitions between the nucleon 

and its excited states. This information is of interest in examining the con- 

sequences of various higher symmetry schemes which relate one such transition 

to another, in testing the validity of certain sum rules, and as a proving ground 

for various dynamical models of the nucleon and the nucleon resonances. Unfor- 

tunately, because of the spin of the photon, a detailed partial wave analysis of 

photoproduction is more complicated in general than the corresponding analysis 

for pion-nucleon elastic scattering. However, with the advent of good polarized 

photon beams this may not actually be such a disadvantage in the future, since, if 

available, the dependence of the cross section on the photon’s polarization gives 

one very useful additional information. Moreover, one has the advantage that 

pion-nucleon phase shift analyses already have established the quantum numbers 

of all the low mass nucleon resonances, so that one knows which partial waves 

are resonant and can consequently greatly constrain the possible solutions for 

- 21 - 



photoproduction to a quite limited domain. 

The process of pion photoproduction is shown schematically in Figure’2 

where the four-momenta (in the center-of-mass ) of the photon, initial nucleon, 

pion, and final nucleon are k = (cik), pl = Gl, iEl ), q = (ciw), and p2 = F29 iE2) 

respectively. The corresponding S-matrix’element for y + Nl-+n + N2 is: 

2 
MN 

4kE 1WE2 Tfi ’ 

with the center of mass scattering amplitude 

(18) 

(19) 

where W = k + El = o + E2 is the total center of mass energy. 

While it is convenient for some dynamical purposes such as writing dis- 

persion relations to decompose Tfi (and hence ffi ) into the invariant amplitudes 

given by Chew, Goldberger, Low and Nambu 35 , for the purpose of partial wave 

analysis it is useful to use helicity amplitudes. Quantizing the particles’ spins 

along their direction of motion, we can define helicity amplitudes 36 

fYh(W, 8,$) = f,,(W, ,g ) where we have chosen the xz plane as the scattering 

plane ($=O), z axis in the direction of the incident photon, 8 the scattering 

angle from the photon direction to that of the pion, and A = A -A 
Y 1’ 

and 

p=hn-h2=- 2 h are the net initial and final state helicities. Since Ay = * 1, Al = *i, 

and A2 = + $ , there are eight possible helicity amplitudes, but actually only 

four are independent because of parity conservation 36 : 

f -p , -,(w, 0) = -(-Pf I-1, ,(W, e) . 
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We choose these four to be (following Walker37): 

Hl = fl/2, 3/2 (wy6) = +f-I/2, -3/2(wy e, 

H2 = fl/2, l/2W3 0) = -f-l/2, -1/2w7 e, (21) 

H3 = f-I/2, 3/2(wp e, = -fl/2, -3/2(w’ e, 

H4 = f-l,2, l,2(w9 0) = +fI/2, -I/2(wy e, ’ 

In terms of these amplitudes the differential cross section (unpolarized) is 

simply 9 

d&z(+); 5 IHi12 (22) 

i=l 

The recoil nucleon polarization (along the $ x 2 or $ direction with our choice 

of axes), 

P= 
-% Im( H,H*,+H,Hz) 

, (23) 

the polarized target asymmetry (also with respect to the $ x G or G direction), 

A _ aup-odom = 
f Im(HlHz+H3Hz) 

> 
QP +c down 

(24) 
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and the asymmetry for photons polarized perpendicular and parallel to the 

production (x-z) plane, 

(25) 

also all take very simple forms in terms of helicity amplitudes, Hl . . . H4. 

Each of the helicity amplitudes f 
N 

(W, 8,+ ) has a standard expansion 36 
, 

fP ,(W,e , $I ) = 2 (Zj+l) fjh (W) djhP (e)ei(h-P)q (2f-9 , 
j=i 

in terms of partial wave amplitudes, f ’ (W) , 
PA 

of total angular momentum j, and 

the corresponding Wigner rotation functions, d& (0). 

Although the amplitudes f ’ ;A0 correspond to definite total angular 

momentum j , they contain both parities. Since we want to consider the con- 

tributions of single resonances of definite j and parity, it is useful to define 

combinations 37 of the amplitudes of given total j: 

A 
(j - l/2) 

+m=-- A ( fl/2,1/2Cw) + f5,2,1,2 @4 

A -PO=- 
tj + l/2) A ( f;,z,l,z(~ - fJll/z l/z(w)) , 
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B 
(j - l/2) 

+m = dx (‘:,2,3,2W + fil,2,3,2(\vj) t27) 

B 
(j + l/2) 

-O = -\/(,-G (i:,2,3,2o - fil,2, 3,2O) 

The A (B) amplitudes involve net helicity l/2(3/2) in the initial state, while the 

subscript notation on the A and B amplitudes in Eq. (27) is that of Chew et al. 35 : -- 

A f and B 
I Q 

f correspond to a state with final pion orbital angular momentum J?, 

definite parity P=(-1) Q+l , and total angular momentum j=m+i. They are directly 

related to the conventional electric and magnetic multiple transition amplitudes 35 , 

E *andM*by 37 

Q P 
E =A ,M =A 

o+ o+ 1- 1- 

and for P sl 

(28) 

MCe+l)- = (A(D+l)- -(f ) B(Q+l)-)/(Q+l)' 

The complications due to the photon spin are reflected here in that there are two 
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amplitudes (A and B or alternately E and M) for each total angular momentum 

and parity rather than just one as in pion-nucleon scattering. Putting the de- 

finition of the partial wave amplitudes of definite parity, Eq. (27), in the general 

expansion of Jacob and Wick, Eq. (26), we finally obtain (@=O) 

Hl=fl/2, 3/2 W, 6)=x (Zj+l) 

j 
p=iF~u-l,2)+~ - B(il,2)-44,2. l,2(e) 

H2=fl/2, l/2 (W, 6)=x (Zj+l)a 
(j+W) 

po-A 
(j-1/2) 

+W) d;,2, l/,(e) (29) 

j I. 

H4=f-l/2, l/2 (W, e)=x(zjcqm -A 

j tj+ W) 
jw-A 

(j-1/2) 
+m I. d:,2, -1,2(O) * 

Since all physical quantities, such as those in Eqs. (22) - (25), are related to 

products of the amplitudes Hl . . . H4 and Eq. (29) expresses these in terms of 

partial waves of given angular momentum and parity, this establishes the for- 

malism necessary in order to perform a partial wave analysis of pion photo- 

production. 
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There is one more slight complication to be dealt with: Since the 

photon couples to a current which has both an isoscalar and an isovector part, 

there are three independent isospin amplitudes for single pion photoproduction. 

Any amplitude A can be decomposed into amplitudes for an isoscalar transition 

to an I=; final state, A’; for an isovector transition to an I=+ l/2 final state, A , 

and for an isovector transitions to an I= 5 state A 3/2 . In terms of these, the 

amplitudes for the (four) possible single pion photoproduction reactions can be 

decomposed as: 

1 3 

A(yp -L a+n) = f ;A0 + %A? eA” 

1 3 - 
A(n-~-~‘p)= + ;A3 + +A” 

A(yn - r -p) = f 
;A” - + &A; 

3 (30) 

1 3 

A(yn-- 0 n) = - + .$-A’ , 

Using the above equations, a number of analyses of pion photoproduction 

have been made in recent years. Since the photoproduction data are generally 

not complete enough, all such analyses employ additional information taken from 

pion-nucleon scattering to restrict the solution(s). In particular, dispersion re- 

lations (often in the resonance dominance approximation) plus a knowledge of the 

elastic pion-nucleon phase shifts have been very usefully employed at low 

38 energies . At higher energies, where there is considerable inelasticity and 
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many more partial waves are important, it has been assumed that the only 

rapidly varying multipole amplitudes are those which contain the resonances dis- 

covered in pion-nucleon analyses. These partial waves are parametrized by 

Breit-Wigner forms with adjustable parameters, while the remaining amplitudes 

are assumed to be smooth, outside of contributions to them from the Born 

37 approximation terms . Using such a “generalized isobar” model 37,39 , con- 

siderable progress in untangling the multipole amplitudes in photoproduction 

has been made. 

The results of these analyses have been reviewed at some length by 

40 Walker . Some of the more interesting results on the electromagnetic 

coupling of the nucleon to the resonances are that 37,40* . (1) The first 

resonance41, P 33 (1236), is excited almost entirely through the magnetic dipole 

amplitude, Ml+, the electric quadrapole amplitude, El+, being very small 

(Al+ = -i Bl+ at resonance). (2) The second resonance, D13 (1518), is 

3 excited mostly through B2-, initialnet helicity 2, and not through the helicity 

1 -z amplitude, A2- (E2-/M,- = 3). In addition, from a comparison of data from 

both neutron and photon targets, the excitation is found to be mainly through the 

isovector component of the current and not the isoscalar. (3) There is some 

evidence for excitation of the Sll (1550) resonance, which must proceed through 

the Ao+ = Eo+ amplitude (clearer evidence for excitation of this resonance comes 

from eta meson photoproduction, yp -VP). (4) The third resonance, F15 

(1688), like the second, also is dominantly excited through the helicity 4 am- 

plitude B3-. However, it doesn’t seem to be excited in photoproduction off 

neutrons. This requires equal isoscalar and isovector contributions to B3-, so 

that they add in the proton case, while cancelling for the neutron. (5) The D15 

(1680) resonance is photoproduced very weakly. The amount of photoproduction 
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of Pll (1470) is not well determined, although probably not very large. 

Some of these experimental observations are very much in accord 

with theoretical expectations, or at least are in agreement with certain 

models, while others have not yet been explained in any simple manner. The 

size and magnetic dipole character of the transition to the P33 (1236), for 

example, was predicted quite accurately in the earliest applications of disper- 

sion theory to photoproduction 35 . The magnetic dipole nature and the 

approximate magnitude of the P33 transition, the vanishing of F15 (1688) 

formation with a neutron target, as well as the signs and rough magnitudes of 

many other transition amplitudes are predicted in a very simple quark model 37,42 . 

The smallness of the net helicity i amplitudes, however, seems to be a nu- 

merical accident due to particular coupling strengths 42 in the quark model, 

and was not predicted in advance by any theory. As we will see later, some 

of these features of the low energy resonance excitation are correlated through 

sum rules with the high energy behavior of pion photoproduction, and vice versa. 

This, while very interesting, does not “explain” the behavior of the resonance 

transition amplitudes, but only makes the mystery of the particular pattern of 

electromagnetic couplings chosen by nature that much greater. 
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V Compton Scattering 

A The Forward Compton Amplitudes 

In addition to obviously being a basic process involving the interaction 

of photons and hadrons, Compton scattering off nucleons has the distinction 

of also having served theoretically as the process for which dispersion relations 

were first proposed within the context of quantum field theory. While first 

written down and proved only for the amplitudes of forward Compton scattering 

by Gell-Mann, Goldberger, and Thirring 43 , dispersion relations were soon 

applied to forward pion-nucleon scattering, other forward amplitudes, various 

off-shell amplitudes, and to non-forward amplitudes 44 , all with great theoretical 

as well as experimental 45 success up to the present day. In the intervening 

fifteen years, the dispersion relations for forward Compton scattering were 

mostly neglected, perhaps because both the imaginary part of the forward 

Compton amplitudes, in the form of the total photoabsorption cross sections, 

and the real part of these amplitudes were almost totally unknown experimentally, 

so that there was no possibility of testing the dispersion relations or in- 

vestigating their further experimental or theoretical consequences. This 

situation has now been remedied in large part with recent measurements of 

both the total photoabsorption cross section and Compton scattering at high energy. 

In this section, we shall use the process of nucleon Compton scattering 

to illustrate the use of dispersion relations and the behavior of the real part of 

a forward amplitude when it is calculated from the imaginary part by means 

of a dispersion relation. This will hopefully both provide us with some insight 

into the behavior of forward amplitudes at low and high energies and allow us to 
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investigate some questions of theoretical interest concerning the asymptotic 

behavior of the real part of the amplitude at high energy. 

The process of interest is then r+N--flN, and if we specialize to 

the case of forward scattering, there is just one continuous variable on which 

the scattering depends. We may take this to be the total center-of-mass energy, 

W, or, since we will mostly work in the laboratory frame where the nucleon is 

at rest, we will use the photon laboratory energy v which is related to W by 

W”-M; 
V= 2MN ’ (31) 

Written out between the Pauli spinors of the intital and final nucleons, the 

scattering amplitude in the laboratory frame must be of the form 
43 

* 
f(v) = xf fI(v)T*2 

[ 
-r 1 + ig* i T*2 ’ ‘1 f2(v) Xi, 1 1 (32) 

where E I and e2 are the polarization vectors of the initial and final photons 

respectively. Averaging over nucleon spins, we are left with only fl(v ), the 

spin -averaged forward amplitude. While fI and f2 correspond respectively to 

parallel and perpendicular linear polarizations for the initial and final photons, 

they can also be related to the two independent circular polarization, i. e. helicity, 

amplitudes for forward Compton scattering. If the photon and nucleon spins are 

parallel (photon helicity = +l, nucleon helicity = -i , and net helicity in the 

photon direction = +i ) then the amplitude is 

fp’“) = fl(V )-f2(v) 9 (33) 
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while if the spins are anti-parallel )photon helicity = +l, nucleon helicity = +$ , 

and net helicity along the photon direction = +$ ) the amplitude is 

(34) 

The amplitudes fp and fa are simply related by the optical theorem to the total 

cross sections (T 
P 

and ,J a for photon + nucleon-hadrons (we work only to 

order e2 in the amplitude) when the photon spin is parallel or anti-parallel to 

the nucleon spin: 

Imfp(v) = * ap(v) 

Imfa(v) = & aa . 

Therefore, 

aa@ )+a (v) 
2 (TT@) 9 

(35) 

(36 a) 

where o T (v) is the spin averaged total cross section, and 

Imf2(v) = 4; 
u,w-cr @) 

2 . 

The component of the total cross sections due to single pion production is given 

in terms of the multipoles introduced in Section IV-by 

(36b) 
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so that 

+ 
(j-i)(j+‘)(j+“) 

42 2 (lB(*++ I+ 1 Tj+L)- I’)](38J 
2 

= 2rq k fi: [ Q(Q+l)2 IMJ+ I2 + @+l)2(1+2) 1 El+ I2 

a=0 

+(J+l)2(1+2) M I I 
2 

+ a(Q+e,2 
IE(Q+l)- I2 I 

, 
(Q+l: - 

where q and k are again the pion and photon center of mass momenta (v=Wk/MN). 

In the absence of both a circularly polarized beam and polarized nucleon 

target it is only aT(v) = [cT~(v)+v~(v)] /2 which is accessible to experimental 

measurement, although the single pion production component of oa and o P 

separately is constructable through Eq. (37). Similarly, in the absence of 

polarized targets and beams, it is only the spin averaged Compton scattering 

differential cross sections 

which is measured experimentally. 

However, if we knew only the imaginary parts of fI(v ) and f2(v ), we 

could calculate the corresponding real parts by means of dispersion relations. 

For, using the fact that fl(v) is even and f2(v) odd under crossing (v--v ), we 
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have the dispersion relations 43 

co 
V2 Re f i(v) = fI(0) + - 

J 

dvv2 Imfi(v’ ) 

7T v’2-v2 VT2 

and 

a2 

Ref2(v)=$ 
/ 

dv ’ 
v Au 2 

Imf2(v ‘) , 

(40) 

(41) 

where both principal value integrals start at v o = p+p2/ (2MN) = 150 MeV, the 

threshold for single pion photoproduction@ is the pion mass). The dispersion 

relation for fl(v) in’ Eq. (40) was written with a subtraction, since both the 

high energy behavior of ImfI(v) and the Thomson limit for Compton scattering 

off protons, fl(0) = -or/MN, indicate the impossibility of an unsubtracted dis- 

persion relation holding. In fact, we have the quite general low energy theorems 
46 

that state that as v - 0 

and 

fI(V) - -+- (42a) 
N 

-a@ 
2 

f2(V)/V -f;(O) = ,;;m) , 

N 
(42b) 

where Pan,, is the anomalous magnetic moment of the nucleon. Eq . (42b), 

together with the unsubtracted dispersion relation in Eq. (41), give rise to the 
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I 

Drell-Hearn-Gerasimov sum rule 47 for the anomalous magnetic moment squared: 

(43) 

The sum rule appears to be satisfied for a proton target when saturated with low 

48 mass resonances . This is completely non-trivial since there is no requirement 

that the integral on the right hand side even have the correct sign. The fact that 

it does reflects the strong dominance of the net helicity ; Cap) over helicity 

1 
ir 

(%) couplings of the nucleon resonances to the photon plus nucleon as noted in 

Section IV from the analysis of single pion photoproduction. 

While saturation of the Drell-Hearn-Gerasimov sum rule by a few low 

lying resonances contributions indicates that such an approximation is adequate 

for calculating f2 (v ) near v = 0 from the dispersion relation, the lack of real 

data for Imf2 (v ) = & 
[ 

ua (V ) - CJ (V ) /2 
P 1 prevents one from making any more 

extensive calculations of f2 (V ) at the present time. In the case of fI (v ), however, 

there is knowledge of ImfI (v ) = zx (T T (v) up to almost 20 GeV (see Figure 1) 

so we shall concentrate our attention on this amplitude for the proton. With 

the low energy theorem value for fI (0), the dispersion relation for fI(v) reads: m 
2 

RefI(v) = -5 + k 
/ 

dv12 Imfl(v I) 

N vf2+2 vr2 

vO 

(44) 

cc 
2 

= -e +27-y2 I 

dv12 
v,2-v2 +“) ’ 

vO 

- 35 - 



In order to carry out the integral in Eq. (44) we need in principle to 

know the total cross section to infinite energy. Obviously we must make some 

assumptions about the general behavior of total cross sections at high energy 

in order to extrapolate cT(v) for use in Eq. (44). The conventional assumption 

is that the high energy behavior of total cross sections is smooth, say a sum 

of powers of v . In particular this is the case in Regge pole theory where at high 

energies the imaginary part of the forward amplitude behaves as 

Imfl(v) =C (-$)vIyi(0) , (45) 
i 

so that 

UT(v)= ‘iv 
c 

m(O)-1 
9 (46) 

i 

where the ci are constants and the ai are the t=O intercepts of the Regge 

trajectories, cri(t), which can be exchanged in the t- channel of elastic scat- 

tering (in this case Compton scattering). One can also take it as an empirical 

fact that parametrizations such as those in Eq. (46), with only a few terms in 

the sum, give very good fits to the energy dependence of purely hadronic total 

cross sections 49 . There it is found that the leading isospin 0 and 1 trajectories 

(those with oi(O) > 0) are the Pomeron (corresponding to diffraction scattering 

and constant total cross sections) which has ap(0)=l and the Pf,A2,p and w 

trajectories, all of which have o(O)= 0.5 as determined either from the usual 

linear Regge trajectories (with slope = 1/GeV2) passing through the physical 
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particle positions or from fits to the hadron-hadron total cross sections at 

high energies 49 . For Compton scattering only t-channel trajectories with 

C = +l are allowed, so we can restrict our attention to only the P’ and A2 

trajectories in addition to the Pomeron. 

We then assume 50 that the total cross section behaves at high energy 

with cyp(0)=l and ~~(0) = 0.5, up to terms which vanish faster than b . This 

particular analytic form is clearly an assumption, based on Regge pole theory 

plus the empirically observed behavior of hadronic total cross sections. Given 

this assumption, one can determine the constants eland c2 from the photon-proton 

total cross section experiments (to which a form such as that in Eq. (47) pro- 

vides an excellent fit5’), and use the resulting expression for performing the 

high energy part of the dispersion integral in Eq. (44). 

The Argand diagram of fl at low energies computed 
50 using the 

dispersion relation with the above assumptions is shown in Figure 3. Clear 

circles due to the first, second, third, and fourth resonances are seen. At 

high energies both Refl(v) and Imfl(v) are smooth functions, with Refl(v)/Imfl(v) 

being negative and decreasing with increasing energy. The exact magnitude 

of the real part depends slightly on what kind of fit5’ to the high energy uT(v ) 

data is used, as shown in Figure 4, but in magnitude the real part of fl (v ) is 

always less than 20% of the imaginary part for energies above about 10 GeV, 

and generally behaves much as in hadronic processes 
49 

. 

B Constant Terms in the Asymptotic Behavior of Forward Amplitudes 

Suppose that the forward scattering amplitude f(v) has the Regge 
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high energy behavior 

-i7roi(0) c 

f(v) = c 
-1-e 

( ) 

i ayi to) 
-V 

sin 7roi(0) 4lr 
i, ai(O) > 0 

(48) 

+ C + (terms which go to zero as v - 03 ) 

where we have explicitely separated the term C (which is a real constant) 

corresponding to a term in the sum with cri(0)=O. Note that the particular high 

energy behavior exhibited in Eq. (48) is an assumption motivated by Regge 

theory. Other forms are possible in general, e.g. logarithms of v . Given 

Eq. (48) the behavior of the real and imaginary parts of f(v ) is 

Re f(v) = 

i, ai > 0 

(&) (-cOt(g”‘))vai’o’ (49a) 

+ C + (terms which go to zero at y- m) 

Im f(v) = 
C (A)v oi(O) 

i, cri(O)> 0 

(4W 

+ (terms which go to zero as v - ~0) 

Thus all the terms in Re f(v) except C which don’t vanish at infinite energy 

could be obtained from Im f(v ) . To calculate C let us define f (R)( v ) for all v 

as: 

f(R)(v), c 
-1-e 

-i7roi(0) c 
i 

( ) 

cri(o) 
sin7roi(0) X7 ’ + c. 

i, cri(O) > 0 (50) 
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Clearly, f(R) (v ) differs from f(v ) only in terms which to to zero as v - co . 

This new function obeys the dispersion relation m 
f(R)(,)=C+H 

I 

dv ’ 
2 Im f(R)(v ‘) 

7r v f2-v 2-ic v,2 ’ (51) 

0 

as is easily verified by explicit calculation, while we assume that the original 

amplitude f(v) obeys a dispersion relation of the form: 

f(v) = f(0) + Im f(v’) . 
(52) 

From the definition of fcR)(v ) we have that 

tracting the two dispersion relations, Eqs. 

v -co: 

f(v)-f(R)(v) - 0 as v - 03. Sub- 

(51) and (52)) we obtain on letting 

/ 

vO 

c = f(0) + + - Im f(R) dvt2 

0 VT2 

(vv)+{$Im [f”)(vl) - f(v’)]. (53) 

vO 

The last integral in Eq. (53) is convergent because f @R) (v )-f(v) goes to zero 

In fact, one usually assumes, as was done 
50 

as v- ~0. in the calculation 

of Re fI(v ) discussed above, that for large values of v , say v 2 N, one has 

Im f(v) = Im f(R) (v) to arbitrarily high accuracy, In that case Eq. (53) becomes 

N N 

c = f(0) + p 
/ 

dv ’ y’Im f @)(v) -4 
/ 

dv ’ - Im f(v I) 
V’ 

0 “0 

Pa) 

or 

N ai 
1 

27r2 
dv ’ crT(v ‘) = f(0) - C+ N 

pi ’ (54b) 

“0 
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Thus, assuming that the forward amplitude f(v ) has the Regge high 

energy behavior of Eq. (48), then Eq. (53) or Eq. (54) allows us to determine 

C purely from a knowledge of the behavior of imaginary part of f(v) (i. e. the 

total cross section) and f(0). In the particular case of Compton scattering off 

protons, the low energy theorem tells us that fI(0) = -o/MN= -3.0 pb-C,eV. 

Evaluation the integral in Eq. (54) up to N=l. 68 GeV (corresponding to W=2.0 GeV), 

and assuming that Im fl (v) has Regge high energy behavior of the form 

(c 1/470v + (c2/471)v a(O) , with o(O) = 0.5, then it seems that the constant C is 

non-zero for the forward Compton amplitude 50 . In fact, it appears that 50,51,52 

C s-3 pb-GeV, i. e. , it has the magnitude and sign of the Thomson limit, fI(O), a 

possibility first suggested by Creutz, Drell, and Paschos 51 . In Regge language, 

such a real constant term in the high energy forward amplitude corresponds to 

a J-plane singularity with o(O) = 0. Whether cr(t)=O, so that we are dealing 

with a fixed pole at J=O, is impossible to tell from the present considerations. 

However, since such fixed poles are not forbidden by unitarity for amplitudes in- 

volving two currents, as they are for purely hadronic amplitudes, and since there 

is no known Regge pole trajectory with the correct quantum numbers and with 

a(O) =J 0, it is quite possible that within the framework of Eq. (48) C # 0 for 

Compton scattering represents a fixed pole in Regge terminology. 

C Non-Forward Compton Scattering 

When we go from forward to non-forward Compton scattering, the 

number of independent amplitudes goes from two to six. The decomposition 

into invariant amplitudes and their relation to helicity amplitudes can be found 

in the paper of Bardeen and Tung (53) . In spite of the complicated spin 

structure, one expects a rather simple differential cross section for Compton 
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scattering at high energy. This is because it is an elastic process, and in 

analogy to all elastic hadron-hadron scattering at high energy, should be 

dominantly diffractive (dominated by Pomeron exchange in Regge language). 

54 This is just what is observed . The measured differential cross 

sections are strongly forward peaked and near the forward direction are al- 

most energy independent from 5 to 17 GeV. If t is minus the square of the 

momentum transfer, then the measured differential cross sections da 
dt’ 

for 1 t I<Nl GeV2 are well fit by the form Ae Bt where B is in the range 6 to 8 GeVW2. 

This is similar to the slope of the differential cross section observed in 

meson-nucleon elastic scattering in the same energy region. 

If the data are extrapolated to the forward direction, t=O , they can be 

compared with what is expected from Eq. (39): 

v2 do 
-dt = ll t=o 

(-$$) 

e=o” 

= (sr+ lRefl(v)/2+ lf2i2, 

where Im fl(v) has been replaced by its optical theorem value. The values 

obtained for the forward cross section 54 , particularly those extrapolated from 

the very small t measurements of Boyarski et al., are in excellent agreement -- 

with the values predicted from the real and imaginary parts of fl( v ) alone, and 

imply that the 1 f2(v) 1 2 t erm is less than about 10% of the dominant term at 

high energies, I In-l fI (v) I 2 = (v a,/47$. Since 1 Re fI(v f12 is also only a 

few percent of I Im fI(v) 1 2 at high energy, these measurements unfortunately 

do not put very strong constants on Re fI(v) for comparison with the dispersion 

relation predictions, although they do imply that 1 Re fl(v I) 1 can not be much 

larger than these predictions. The measurements can then be used to set strong 

limits on extra subtraction constants 55 in the dispersion relation of the form 
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I 

2 
hv . A more stringent test of the dispersion relation for the spin -averaged 

forward amplitude must await measurement of the interference between the 

known Bethe-Heither amplitude for producting low invariant mass electron- 

positron pairs and the Compton contribution to pair production, which will 

allow a determination of both the sign and magnitude of the real part of the 

Compton amplitude 56 . 
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VI Vector Meson Photoproduction 

A Photoproduction of Rho, Omega, and Phi Mesons 

Aside from Compton scattering, the photoproduction of rho, omega, 

and phi mesons are the prime examples of diffractive processes in photon 

initiated reactions. The diffractive nature of these processes was to be expected 

since the vector mesons have the same quantum numbers as the photon, allowing 

exchange of the quantum numbers of the vacuum. In fact, in the vector dominance 

model one would view vector meson photoproduction as taking place (see Figures 

5a and b) through the photon becoming a virtual vector meson, with the vector 

meson then scattering elastically on the nucleon to produce the vector meson- 

nucleon final state. From such a viewpoint one expects vector meson photopro- 

duction to look very much like meson-nucleon elastic scattering, which we will 

see is indeed the case. 

Compared to ordinary elastic scattering of hadrons, however, photo- 

production of vector mesons is presently unique experimentally in that it permits 

direct and relatively easy study of the spin dependence of diffraction scattering. 

This possibility arises both because of the use of polarized high energy photon 

beams and because the decay of the vector meson can be employed as a polari- 

sation analyzer of the final meson. This unique access to the spin dependence 

has been utilized in rho meson photoproduction to give us some very interesting 

information on diffraction scattering. 

Rho meson photoproduction, starting at photon energies of a few CeV, 

acts like a diffractive process 57,58 . The differential cross section in the forward 

direction has almost a constant value --it is in fact falling very slowly with energy, 

just like pion-nucleon forward scattering 57,58 . The exact magnitude of da/dt in 
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the forward direction depends somewhat on what model is taken to explain the 

skewed rho line shape 57, but is roughly 100pb/GeV2 for photon energies in the 

5 to 10 GeV range. The differential cross section is strongly forward peaked, 

and very similar to pion-nucleon elastic scattering with an exponential dependence 

of du/dt on the momentum transfer squared 1 t 1 , for small t. Fits to the slope, 

B, (assuming du/dt = AeBt) give values in the range 6 to 8 GeVm2, again depending 

on the model taken for the rho lineshape, with smaller slopes corresponding to 

models which also give smaller values of du/dt in the forward direction 57 . 

Measurements5’ of the real part of the rho photoproduction amplitude by studying 

asymmetric pair production show that at photon energies of 4 to 5 GeV the real 

part is negative and is 20 to 30% of the imaginary part in magnitude. Thus the 

imaginary part of the amplitude dominates as it should for a diffractive process. 

Using polarized photon beams it has been established that rho photo- 

production proceeds almost entirely through natural spin-parity (J’=O’, l-, 2+, 3-, . . . ) 

exchanges, with the contribution of unnatural spin-parity (J’=O-, If, 2-, 3+, . . . ) 

exchanges being very small 57,58 . Even at energies of a few GeV, one has over 

90% natural spin parity exchange 57 . This is quite remarkable at such low energies 

and sets rather strong limits on any possible unnatural spin-parity exchange 

component of diffraction. In this regard rho photoproduction is a unique process 

for setting such a limit, because there can be no unnatural spin-parity exchange 

in elastic meson-nucleon scattering, and because the spin dependence is unmeasured 

for processes like elastic proton-proton scattering where such an exchange is 

possible. 

Of even more interest is the spin orientation of the rho meson relative 

to that of the incident photon. If diffraction scattering proceeded through exchange 

of some object (the Pomeron), then the spin orientation of the final rho would 

depend directly on the coupling of the Pomeron at the photon-rho-Pomeron vertex. 
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Two particular possibilities for this coupling are: (a) The Pomeron acts like a 

Jp =O+ object in its couplings. In this case there should be no helicity flip (from 

the photon to the rho) in the t- channel. As a result the rho meson should have only 

spin components equal to *l (like the photon) along the z-axis in the Gottfried- 

Jackson frame 60 (beam direction as z-axis in the rho meson rest frame), which 

acts as a measure of t-channel helicity components. (b) The Pomeron acts in 

such a way as to conserve s-channel helicity , so that the rho should have only 

spin components (helicity) equal to *l along the z-axis in the helicity frame (rho 

direction of motion in the center of mass as z-axis). 

Experiment 57 unambiguously favors the second possibility in the case 

of rho photoproduction, at least for I t 150.4 GeV2. This has led to the hypothesis 61 

that s-channel helicity conservation is a general property of diffraction scattering 

(or Pomeron exchange). While the present rho photoproduction experiments only 

test this hypothesis at the photon-rho-Pomeron vertex, experiment and theoretical 

analysis indicate that the nucleon’s helicity is conserved in high energy pion- 

nucleon scattering 62,63 . Furthermore, it is possible to have the exchange of a 

t-channel object with natural spin-parity and factorizable couplings produce 

s-channel helicity conservation 61,64 . What seems like an obvious s-channel 

phenomenon then has a possible t-channel interpretation. While the extent of the 

validity of s-channel helicity conservation in diffraction scattering remains to be 

established experimentally, the hypothesis has stimulated much theoretical 

activity attempting to understand its origins and consequences. The spin 

dependence of diffraction scattering has gone from being an “inessential” compli- 

cation to being of prime interest. While we understand rather little about the 

exact nature of diffraction scattering or Pomeron exchange, if the hypothesis of 

s-chanel helicity conservation is generally valid it is a remarkable simplicity, 

presumably calling for an equally simple explanation. 
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While rho meson photoproduction remains as the best piece of evidence 

for helicity conservation in diffraction scattering, one naturally looks at the 

photoproduction of the other vector mesons, omega and phi, for confirming 

evidence. However the omega photoproduction cross section, in contrast to the 

rho, falls rather dramatically with increasing energy 57 . The explanation of this 

energy dependence is rather simple. Prom the coupling constants of the photon 

to the vector mesons given in Eq. (17), isospin one exchanges (like r and A2) 

are 50 to 100 times more important relative to diffraction scattering in omega 

photoproduction than in rho photoproduction. The importance of pion exchange 

is verified experimentally using polarized photons to separate the natural and 

unnatural spin-parity exchanges. An appreciable cross section due to unnatural 

spin-parity exchange is found 5’7 (about one-half the cross section at u = 2.8 GeV). 

The energy dependence ( (T a 1/v2) and magnitude of the unnatural spin-parity 

exchange part of the cross section agree with predictions from one pion exchange 

and explain most of the energy dependence found in the total cross section for 

omega photoproduc tion. The cross section due to natural spin-parity exchange 

is mostly diffractive, but still appears to have some energy dependence, presumably 

due to relatively important contributions from A2 (and P’) exchange 65 . 

Phi photoproduction, on the other hand, should be the most favorable 

photoproduction reaction in which study Pomeron exchange. This is because with 

the usual mixing of the SU(3) singlet vector meson with the eighth member of the 

octet to form the physical omega and phi, the phi is just the mixture of singlet 

and octet, composed of only strange quarks, such that all the non-Pomeron exchanges 

decouple in phi photoproduction 66 . Very accurate data are unfortunately lacking 

for phi photoproduction, although it is known that the total cross section is ap- 

57 proximatly energy independent and about 0.5 pb . Good measurements of 
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phi photoproduction at high energy to determine if the forward scattering is energy 

independent, if the shape of the differential cross section changes with energy, and 

if s-channel helicity is conserved are clearly needed to complete the picture of 

vector meson photoproduction. 

B Tests of the Vector Dominance Model 

The amplitudes for vector meson photoproduction are related by the vector 

dominance model both to those for Compton scattering and those for elastic vector 

meson-nucleon scattering. Applying vector meson dominance first to one photon 

leg of the Compton amplitude gives 

WP-TP) =x 
V 

(55) 

where the sum is to be taken over the known vector mesons: rho,omega and phi. 

Squaring the imaginary part of this relation, (neglecting the spin dependence) 

yields 67 

1 - - 
( > 1+q2 :tg 

Y 

where qv is the ratio of real to imaginary parts for ‘yp-Vp . l3q. (56) provides 

a direct test of the vector dominance model in terms of measurable cross 

set tions . In the forward direction Eq. (56) reduces to a relation between the 

total photon-proton cross section and the forward vector meson photoproduction 

67 cross sections . 

By far the largest cross section on the right hand side is that due to rho 

meson photoproduc tion. Although there is still not complete agreement on the 

rho cross sections, the right hand side of Eq. (56) is smaller than the left hand 
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side if we use the Orsay colliding beam values 28 for G/411. Models of the rho 

line shape that give larger forward rho photoproduction cross sections improve 

the situation at t =0, but then the t dependence of the two sides of Eq. (56) is 

different, resulting in factor of two disagreement 54 by trl GeV2. With smaller 

values of the forward rho cross section, both sides of Eq. (56) have compatable 

tdependences 54 . Then a value of f”p/ - 4 r - 1.2 to 1.4 instead of the Orsay value 

of $/4lr= 1.99 * 0.11 would put the two sides in agreement 54,58 . It seems 

quite generally to be the case that smaller values of f”v/ 4 7r than the colliding 

beam values are required to make the vector dominance relations between Compton 

scattering and vector meson photoproduction agree with experiment. 

This is not the case for the vector meson dominance relations between 

vector meson photoproduction and elastic vector meson-nucleon scattering. 

Applying vector meson dominance to the photon leg in the amplitude (Figure 5) 

for photoproduction of a vector meson, V, yields on squaring, 

da (yp+Vp) = 
dt - (VP-VP) f 

where we have neglected spin dependence and transitions of the kind 

V1P’V2P(Vl’ V2 ) * In the forward direction, Eq. (57) reduces, using the 

optical theorem, to 67 

g (YP-VP) 

(57) 

While c+ (VP), the total vector meson-proton cross section, can not be directly 

measured because of the vector meson lifetimes, it can be deduced from the A 

.69 dependence of vector meson photoproduction experiments on complex nuclei . 
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These experiments (for photon energies of 5 to 10 GeV) give 69 rho-nucleon 

and omega-nucleon total cross sections in the range 27 to 30 mb. This also 

agrees with the quark model prediction that these cross sections should be the 

same and equal to the average of the pi plus-and pi minus-proton total cross 

sections (equal to about 28 mb at 5 GeV). 

With values of 27 to30 mb for the rho-nucleon and omega-nucleon total 

cross sections, the right hand side of Eq. (58) is too large compared to the left 

hand side if the colliding beam values for f”v/ 47r are used. In other words, the 

two sides of Eq. (50) would be brought into agreement if f-34 7r were increased 

relative to the colliding beam results. In the case of the rho, one needs values 

of f2/47r 
P 

of 2.8 to 3.2 (rather than 1.99 k 0.11) in order to obtain agreement 

of the two sides of Eq. (58). These larger values of CJ 47r are also in accord 

with the results of the vector meson photoproduction experiments on complex 

nuclei which find values 69 of f”p/4” ) for example, of 2.4 to 3.2. Thus it 

generally seems to be the case that larger values of $/4?r than the colliding 

beam values are required to make the vector dominance relations between vector 

meson photoproduction and vector meson elastic scattering agree with experiment. 

Overall we thus find qualitative agreement of vector meson photopro- 

duction with vector dominance, but quantitative disagreement when we try to do 

better than about a factor of two. This quantitative disagreement can be blamed 

on a dependence of the coupling constants on the photon’s invariant mass squared 

in the field theoretic approach to vector meson dominance or, alternately, on 

contributions to the dispersion relation in the photon’s mass squared from higher 

mass states with the quantum numbers of the photon, such as higher mass vector 

mesons”. With the sizable colliding beam cross sections beyond the rho, omega, 

and phi region found at Frascati 70 , such additional contributions to the dispersion 

relation in the mass squared are presumably present. 
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VII Photoproduction of Charged Pions at High Energy 

A Photoproduction of Charged Pions-Kinematics 

Pion photoproduction at high energy presents many of the features of 

inelastic two body or quasi-two body (nondiffractive) reactions found in both 

hadronic and photoproduction processes in general. It has the advantage that 

the use of polarized photon beams allows us to analyze the spin dependence, at 

least partially, and to decompose the differential cross section into components 

due to different types of exchanges. The resulting experimental information 

provides an excellent example of both our difficulties and successes in under- 

standing phenomena like pion exchange, peaks and dips in differential cross 

sections, energy dependence of reactions, etc. 

The process of pion photoproduction is shown schematically in Figure 2. 

We will be interested particularly in large values of the total center of mass 

energy squared, s = - (pl+k)2, and small (negative) values of minus the in- 

variant momentum transfer squared, t = - (k-q)2. The Feynman amplitude, 

Tfi of Eq. (18) can be decomposed into four invariant amplitudes 35 as follows 

+A2(s,t) 2iy5 (P.Eqa k-P. kq*e) 

+ A3(s, t) y5 (y - Eq - k - Y - kq - E) (5% 

+A4(s,t) 2y5 (y.cP.k-y. kP.e-iMNy.cy.k 1 u(p,) , 

where P = (p,+p,)/2 and E ~ is the polarization vector of the incident photon. 

The invariant amplitudes Ai(s, t) are Lorentz scalars, free of kinematic 
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singularities, and by a somewhat lengthy but straightforward calculation can be 

related to linear combinations of the s-channel helicity amplitudes discussed 

in Section IV. However, for high energy processes it is more convenient to 

think in terms of t-channel exchanges and to employ t-channel helicity am- 

plitudes divided by certain factors to eliminate kinematic singularities. The 

four parity conserving t-channel amplitudes 71 used are related to the invariant 

amplitudes by 

FI = -AI + 2MNA4 

F2 = (t-p2) (Al+tA2) 

F3 = 2MNAI - tA4 

(60) 

where ~1 is the pion mass. The amplitudes FI and F3 involve natural spin-parity 

exchanges in the t-channel, while F2 and F4 are the result of unnatural spin- 

parity exchanges. This statement is exact for FI and F2, which involve no 

spin flip (in the t-channel) and true to leading order in s for F 3 and F4 which 

correspond to spin flip. In terms of these amplitudes, the differential cross 

section can be written to leading order in s as 

du 1 (-t) IFI12+lF312 
-I=- 
dt 32n 4M; 

+ lF212 
~ -t IF412 - 
(t-P2) 2 1 

(61) 

Neglecting terms of order t/4Mi Eq. (61), can be rewritten in terms of the 

invariant amplitudes as 
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- tlA412 + IAl+tA212 - tlA3t2 1 . (69 
The first two terms on the right hand side of Eq. (62) arise from the amplitudes 

Fl and F3 due to natural spin-parity exchange, while the last two arise from F2 

and F4 due to unnatural spin-parity exchange. These two sets of terms can be 

separated experimentally by using linearly polarized photon beams, since the 

cross section for photons polarized perpendicular to the production plane is 

(to leading order in s) 

do 

d: = & IAll - dA4i2 
I 

while that for photons polarized parallel to the production plane is 

du,l - = & 2) 
dt 

1 Al+ tA212 - tlA,I j , 

(63) 

(64) 

i. e. just the natural and unnatural spin-parity parts of the differential cross 

72 section . 

As a final piece of kinematics, we note that in terms of t-channel 

amplitudes the asymmetry in the scattering from a polarized target (recall 

Eq. (24)) is 
73 

(65) 

which, again dropping terms of order t/4M2, is expressible in terms of the 

invariant amplitudes as 

A= 
g Im[A*A + A*(A +tA -- 

14 31 2 )] 

dcr 
dt 

(66) 
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The first term in the numerator of Eq. (65) or Eq. (66) arises from inter- 

ference of natural spin-parity exchanges, while the second corresponds to 

interference of unnatural spin-parity exchanges. 

B Charged Pion Photoproduction at Small t 

The most conspicuous feature of charged pion photoproduction is the 

sharp forward peak. The differential cross section 74 for yp -r+n jumps 

about a factor of two between t= - 0.02 GeV2 and t=O (see Figure 6a). This 

is such a small t range for such a rapid variation that it could only be due to 

the very nearby (to t=O) t-channel singularity coming from the exchange of 

the pion. The s dependence of the near forward cross section, 2 
i 1 

s-M 
2 du -c 

N dt 

constant in s, also agrees with what is is expected from pion exchange. 

However, if we look at the t-channel parity conserving amplitudes, the pion 

can only contribute to F2, and at t=O we have from Eq. (60) that 

2MN F3(t==O) = - - 
P2 

F2(t=O) = BM&(t=O), (67) 

since the invariant amplitudes can have no kinematic singularities. Thus if the 

pion contribution leads to F2 being non-zero at t=O, so is the amplitude F3 (due 

to a natural spin parity contribution), and the t=O differential cross section becomes 

du 1 F3(t=O) 2 = 
dt I t=o 167r 

I 
2MN 

I = 1 
167r 

1 ‘$” 1 2= -&-lAl(t=O),2 . 

The kinematic relation at t=O in Eq. (67) is often referred to as a 

“conspiracy relation. 1Y If only a single particle or Regge trajectory is exchanged 
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then it is satisfied trivially by F2(t=O) = F3(t=O) = 0, a possibility sometimes 

called “evasioW and in obvious contradiction to experiment. If F2(t=O) and 

F3(t=O) f 0 (called a “conspiracy”), then there is a natural spin-parity exchange 

(a conspirator trajectory in Regge pole theory) contribution to F3 with just the 

correct magnitude at t=O to match the pion contribution to F2. 

Although it is possible to make adequate fits to the pion photoproduction 

data alone with a theory using Regge poles (including, of course, a conspirator 

trajectory) such theories have difficulties because of the predictions they 

make through factorization of pole residues 75 . It has been increasingly realized 

that the most natural explanation for the forward peak in yp - n+n and 

yn-x-p is to be found in pion exchange plus absorptive corrections, or 

equivalently, poles and associated cuts in the angular momentum plane. The 

76 manner in which the forward peak comes about in such a model is seen in 

Figure 7. The slowly varying cut contribution to F2 interferes destructively 

with the rapidly varying pion contribution (which would vanish by itself at t=O) 

to produce a total amplitude for F2 with a sharp forward peak. The amplitude 

F3, which contains no pion contribution, is expected to be slowly varying in 

the region near t=O, and hence to have roughly the value it has at t=O where the 

conspiracy relation, Eq. (67), must be satisfied. As a result, all the rapid t 

du variation in dt is due to the pion contribtuion to the amplitude F2. Since the 

overall differential cross section drops by about a factor of two between t=O and 

du - 0.02 GeV2 and the natural and unnatural spin-parity parts of dt are equal 

at t=O, the unnatural spin-parity part of the cross section must change from 

one-half the total at t=O, to near zero at t= - 0.02 GeV2. As a result, the 

polarized photon asymmetry, c , would appear as in Figure 6b, as is indeed 

74 observed experimentally . 
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Independent of a specific t-channel model for the forward peak, its 

existence and magnitude can be predicted from s-channel considerations in- 

volving finite energy sum rules 77 (-) . Let us consider in particular the amplitude E2 

in charged pion photoproduction due to the isovector component of the electro- 

magnetic current. Then if F(,-) has the (Regge) high energy behavior, 

Fi-) (v , t) OPT 
-1-p 0f 0) 

sin ~~ (t) ’ (y(t)-~ 

where 

s-M2 
v =-k*p/MN = 2M N + t-p 2 

N 4MN ’ 

f-1 . it obeys the finite energy sum rule (F 2 IS odd under crossing, 

sufficiently large N, 
N 

/ 

dv Im F$,-) (v ,t) = p(t) ett) 

0 

Explicitly separating the Born term 35 , we can rewrite Eq. (71) as 

N 

Im F(-)(v) t)dv = 
p(t) NQ! tt) 

2 7r 
vO 

(69) 

v w--v) for 

(71) 

(72) 

where v o = /J + p2/2MN + (t-p2) /4MN is the threshold for pion photoproduction 

and g is the pion-nucleon coupling constant (g2/4n ~14.8). An evaluation 78 

of the contributions to the integral in Eq. (72) at t=O shows that they are small 

compared to the Born term. This is again connected to the dominantly helicity 

3 -z transitions to the second and third resonances discussed in Section IV, 

since only the helicity i state of a resonance contributes to Eq. (72) at t=O. 
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From the dominance of the Born term at t=O we immediately predict that 

p (t=O) and hence F2@ , t=O) does not vanish, so the conspiracy relation, Eq. (67) 

is nontrivially satisfied, and furthermore, that the magnitude of the differential 

cross section is given approximately by the nucleon Born term contribution, 

which is in fact the case experimentally. As t is decreased from zero, the 

Born term in Eq. (72) decreases, vanishes at t= -p2 = - 0.02 GeV2, and then 

becomes negative. Hence, since the integrand is relatively small in magnitude, 

from the behavior of the Born term we also expect a zero in p (t) near t = - 0.02, 

as is again found experimentally. A sum rule for F3(v, t) shows it to be slowly 

varying with t. Thus all the main features of charged pion photoproduction near 

the forward direction can be deduced from the finite energy sum rules together 

(3 with the knowledge that the Born term dominates the sum rule for F 2 . In 

fact, if we note from experiment that the effective value of Q! (t) in Eq. (69) is 

approximately zero, then a “pseudomodel” of pion photoproduction can be 

developed 79 where one simply integrates over the low energy data and through 

finite energy sum rules obtains the t dependence at high energy. Such an approach 79 

is very successful, at least for I t I LO. 1 GeV2, One might then say that we do 

understand the behavior of charged pion photoproduction in some detail at small 

t, both from an s-channel and t-channel point of view. 

C Charged Pion Photoproduction at Intermediate t Values 

The same cannot be said about the behavior at larger values of t, where 

the situation is definitely rather complicated from any point of view. In Table II, 

are listed the quantum numbers of possible t-channel exchanges together with 

possible candidates for such exchanges from among the known mesons and the 

parity conserving t-channel amplitudes to which they contribute. 
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TABLE 2 Exchanges in Charged Pion Photoproduction 

P(-l)J 

+l 

+l 

-1 

-1 

-1 

G 

-1 

+l 

-1 

+l 

-1 

Possible Parity Conserving 
Exchanged Particle t-channel Amplitude(s) 

A2 
Fv Fv 1’ 3 

s s 
P F1' F3 

7r 

B 

A1 

S 
F2 
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We have labelled the parity-conserving t-channel amplitudes by an S or V 

superscript depending on whether they are due to the isoscalar or isovector 

component of the elctromagnetic current, respectively. The ratio of 

du/dt( yn -np)/do/dt( yp -r”n) measures the interference of the 

amplitudes due to the isoscalar and isovector components of the current since 

any particular helicity amplitude, A, has the decomposition A +A ’ ‘for 

YP- n+n and As-A’ for y n -* 7r-p (see Eq. (30)). Then using the con- 

nection of perpendicular and parallel (to the production plane) photon polar- 

ization to natural and unnatural spin-parity exchange, we write the various 

possible cross sections as 

d uII 
dt (YP- n+n) = 1 tf+f + '!B" 1 2 + 1 "Al" I 2 

(73) 
d”l 

dt (yn - n-p) = I -“Ai? +Up If 1 2 

2 
where I ‘(A2 tf+ 1~ p 71 I 2 represents the contribution of I Fy + Fs I and 

- I Fr + FYJ’ to dol/ dt(yp -+ r’n), etc. An analysis of the present experimental 

data 74 then indicates that: 

(1) Although d uI /dt( Yp -* lr’n) is by far the dominant part of 7r’ 

photoproduction for I t I 2 O. 02 GeV2( C = 0.5 to 1.0 at least out to 

I t I = 1 GeV2), the energy dependence of yp - r’n corresponds to an 
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effective value of the Regge trajectory, (Y (t), of zero or less for 

Cl <ltk 1 GeV2. Thus, although p and A2 exchange might be expected to 

dominate d uI /dt, there is no sign of the corresponding energy dependence 

(which would yield o(t) N 0.5 + t/GeV2). 

(2) While d oI /dt( yn -r-p) and dul/dt( yp - x+n) are equal at 

very small t where presumably only absorptive cuts due to pion exchange dominate, 

their ratio (of n-/?;t) decreases to a minimum value of - 0.2 at t = - 0.4 GeV2. 

This requires that the ” p” and “A2” contributions are of comparable magnitude 

and interfere strongly in the F1 and F3 amplitudes. If the llp’f and “AZ” con- 

tributions had the phase of the Regge signature factor =F l-Kin CY (t) 3 they could 

not interfere since they would be 90’ out of phase assuming cyp (t) = oA (t). 
2 

Also, any “nonsense zeroJY (due to a factor of a(t) in the p exchange contribution ) 

would result in an absence of interference where a! (t) = O(t = - 0.6 GeV2), while 

experiment shows almost maximal interference there. 

(3) The values of d u ,, /dt(yp - 1;‘n) and d u,, /dt(yn - n-p) are 

equal within rather large errors. There is then no need for the “Brr term in 

Eq. (73), although it may be present and out of phase with the “til term. 

(4) The large values7g of the asymmetry for yp - 7r+n using a 

polarized target at photon energies of 5 and 16 GeV require both the (out of 

phase) FI and F3 amplitudes to be present in 7’ photoproduction. 

In short, we have a rather complicated situation in charged pion photo- 

production at intermediate t values. Both natural and unnatrual spin-parity 

exchanges are present for It I I 1 GeV2, and both the isovector and isoscalar 

components of the electromagnetic current make important contributions to 

du /dt in this t range. Simple Regge pole models fail? presumably again due 

to the importance of absorptive corrections or cuts in the angular momentum 
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plane. This failure is a general feature of other inelastic photoproduction 

processes such as y p - q”p, y p - p, y p -K+h , etc., which we do not 

have the time to discuss here, but which are well treated elsewhere (see 

particularly reference 65). We have concentrated on only charged pion 

photoproduction, where there is much experimental information and where both 

our successes and difficulties are most apparent. While we understand many 

of the phenomena at least qualitatively, we clearly do not have a well founded 

theory on the basis of which we can make detailed quantitative predictions. 

D Tests of the Vector Dominance Model 

Whatever the specifics of the dynamics of charged pion photoproduction, 

one expects the same dynamics in pion production of vector mesons if the vector 

dominance model is to be true. Specifically, one has the relation8’ 

du 
-t 7r+n) + 1 ) 11 

dt - (rn - T-P) 

hl* h-1) t (7% 

where the 7rc and 7~~ differential cross sections have been added to cancel the 

isovector-isoscalar interference term on the left hand side and the w and Cp pro- 

duction terms have been dropped from the right hand side as numerically 

negligible. The combination of density matrix elements pl1 * plBl for the 

rho meson corresponds to linear polarization perpendkular or parallel to the 

production plane, and is presumably to be evaluated in the helicity frame 29 . 

Averaging over the two polarizations yields 
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[ 
g (3/p --n+n)+* (yn -r-p) 1 

= (f-r ($)2 pll $ ( a-p -pan) . (75) 

Qualitatively, the most striking prediction of photoproduction and 

Eqs. (74) and (75) is the existence of a forward peak in 7r-p ,p”n due to a 

rapid variation of (pll-pl-l) g ( n-p -p’n). This has recently been 

observed81 * m an investigation of the reaction r-p - r’ 7r’-p for small t 

values at 15 GeV. Moreover subject to some assumption on the behavior 

of the s-wave pion pairs, it appears that Eq. (74) is quantitatively verified for 

small t in the case of polarization parallel to the production plane and the 

colliding beam value for f2 /47r. There are quantitative difficulties in the 
P 

case of perpendicular polarization, however, as both near the forward peak 

and at intermediate t values the left hand side of Eq. (74) is too large 74,81 
. 

This would require a smaller value of f: /4n than given by the colliding beam 

experiments if Eq. (74) were to be in agreement with experiment for per- 

pendicular polarization. But such a change in f2 /47r would ruin the agreement 
P 

in the case of parallel polarization. Thus again, we find qualitative agreement 

with the vector dominance model, but quantitative troubles if we consider the 

predicted relations in detail. 
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VIII Inelastic Electron Scattering: Introduction 

Since the electron is apparently an elementary, structureless particle 

with a known electromagnetic interaction with matter, inelastic electron scatter- 

ing is an ideal probe of the structure of other composite objects such as atoms 

and nuclei. By bombarding a target with a beam of known energy and detecting 

only the outgoing electrons, one can determine the charge distribution within an 

object, and hence gain information on the constituents inside. 

An example is shown in Figure 8 where a “typical” result of scattering 

electrons of given incident energy through a fixed angle on a nucleus is shown. 

For final energies near the incident one, one sees the peaks due to elastic scat- 

tering and the excitation of discrete nuclear levels. At lower final energies 

(greater energy loss) there is a broad quasi-elastic peak due to electrons scat- 

tering off the constituent nucleons and ejecting them from the nucleus. 

In the case of hadrons like the nucleon, we believe we are dealing with 

a composite object in some sense or another, but we do not know what the basic 

constituents are, if any, nor do we know the nature of the forces which bind them 

together. Furthermore, there is a very important difference between hadrons 

and atoms or nuclei in that the binding energy of the system is not small compared 

to the overall mass in the former case, as it is in the latter. Quark constituents 

of the nucleon, for example, must be very strongly bound or we would have seen 

them long ago. This lack of weak binding in the case of a constituent of a hadron 

makes it unclear that one can carry over the simple version of the idea of electron 

scattering as a direct probe of substructure from atomic or nuclear systems to 

hadrons. Nevertheless this way of thinking, particularly in terms of point quark 

constituents, has been very useful both in predicting and interpreting the results 

of inelastic scattering of electrons off nucleons and in relating and predicting the 
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behavior of other processes 
82 

. We shall discuss this approach to inelastic 

electron scattering in more detail in Section XI. 

Another way of approaching the subject of inelastic electron scattering 

is through the use of ideas borrowed from strong interactions. We have already 

discussed some of these ideas in connection with specific photoproduction proc- 

esses. In particular, if we consider electron-nucleon scattering as in fact a 

collision of a virtual photon (emitted by the electron) with the target nucleon, we 

can apply theoretical ideas on hadronic two-body collisions, the difference with 

hadron-hardon processes being that the “mass” of one of the incident particles 

(the photon) can be varied. This turns out to be an important advantage, and 

leads to very interesting applications of strong interaction theoretical ideas, 

particularly those of duality which equate the description of a scattering amplitude 

in terms of direct channel resonances and background to that in terms of ex- 

changes in the crossed channel. We shall spend some time developing this approach 

to inelastic electron scattering in Section XIII. 

A third method of approach is in terms of light-cone commutators. As 

we shall see in the next section, measurements of inelastic electron-nucleon scat- 

tering can be related to the Fourier transform of the matrix element of the com- 

mutator of two electromagnetic currents taken between nucleon states, 

I d4x e -iq*x 
< I[ 

P J,+, Jv (O(~P> _ 

where 
% 

is the four-momentum of the exchanged photon. If we consider scatter- 

ing at high energies and momentum transfer, and in particular the limit where 

the energy loss of the electron and the momentum transfer squared both become 

infinite in a fixed ratio, then the scattering is governed 83 by the behavior of the 

I 
as x 

P 
approaches the light cone, x2 = 0. This suggests 
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making a light cone expansion 84 
of the commutator of two electromagnetic cur- 

rents, with the coefficients in the expansion being operators (e. g., another cur- 

rent) in general. One hopes that some or all of the operators appearing in the 

expansion can be abstracted from simple free field theories (e. g., a free quark 

field theory), very much in analogy to the algebra of currents at equal times which 

holds at the tip of the light cone 
85 

. The light cone expansion of the commutator 

of two currents may then be applied to various processes 
83,84 

, electron scatter- 

ing in the limit of infinite energy losses and momentum transfers being one partic- 

ular case when the commutator is sandwiched between nucleon states. Especially 

when additional assumptions are made about the matrix elements of the light cone 

commutator, many (but not all) of the results of the approach in terms of quark 

constituents of the nucleon can be reproduced 85 . While we shall not discuss this 

subject in any detail, considerable progress has been made in unifying the ideas 

of scale invariance, the algebra of current commutators on the light cone, and 

some of the results of the quark constituent approach (see reference 85), and it 

is an important area of present research. 
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IX Kinematics of Inelastic Electron-Nucleon Scattering 

We are interested in the process shown in Figure 9, where k and k’ are 

the initial and final electron four-momenta, q is the four-momentum transfer 

carried by the virtual photon, and p is the target nucleon’s four-momentum. The 

final hadronic state n then has four-momentum p, = p + q and invariant mass 

squared w2= -(p+qj2* In the laboratory frame (initial nucleon at rest) with E 

and E’ the energies of the initial and final electrons, the Lorentz scalar variable 

v = -p . q/MN = E - E’ (76) 

is the virtual photon’s energy, and the invariant momentum transfer squared is 

q2 = 4EE’ sin26/2 , (77) 

where 8 is the scattering angle and the electron mass has been neglected com- 

pared to its energy. Knowing v and q2 from measuring the incident and scattered 

electron, the invariant mass W of the final hadrons is fixed by 

S= ti =2MNu +M;-q2. (79) 

The S-matrix element for the process in Figure 9 may be written using 

the rules of quantum electrodynamics at the photon-electron vertex as 

sfi= &fi+ (%$d4)(P,tk’ -P -k) ( -eWGi~p u(W) 

x (app /s2) <PnIJv qP> ’ (79) 

where Jv is the (hadronic) electromagnetic current operator. Averaging over 

initial and summing over final electron and nucleon spins, we are led to an ex- 

pression for the double differential cross section in the laboratory for detection 
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of only the final electron of the form 

2 
do 1 E’ 

daldE1 = - - 
(2Q2 E 

where the factor L 
PV 

arises from the trace of the gamma matrices due to the 

electron (neglecting the electron mass), 

2 
L = 

PV 
+k;kv + $ 0 1 6 

PV ’ 

and the structure of the nucleon is summarized in 

w =$ 
PV c X($) <plJp qn> 

nucleon n 
spin 

<nIJv (0)/p> (2 ‘Q3 a(4) (pn -p -q) 

(80) 

(81) 

(82) 

spin 

where the second term in the commutator is zero by energy conservation for v > 0. 

By Lorentz and gauge invariance the tensor W 
86 

PV 
may be written as 

W cLv =qv d12) 6 (pv -y) +w2 b2) 

The quantity W 
PV 

is just (l/4 r2 CY) times the imaginary part of the Feynman 

amplitude for forward Compton scattering of virtual photons of mass2 = -q2. 

In terms of W1 and W2 the experimentally measured double differential cross 

(83) 
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section resulting from combiningEqs.(80), (81), and (83) is 

2 
d (T 2 =4a E’ 

dfl’dE’ 
q4 

2 [2W1(y ,q2)sin2 d/2 +W2(v ,q2)cos20/2], (84) 

so that the structure functions W1 and W2, as they depend on v and q2, summarize 

the results of inelastic electron-nucleon scattering. 

As noted above, WP v is proportional to the imaginary part of the am- 

plitude for forward (virtual) photon-nucleon scattering. By the optical theorem, 

the imaginary part of the forward Compton amplitude is proportional to the total 

cross section for photons on nucleons. In fact, we could consider inelastic 

electron scattering as being a collision between the exchanged (virtual) photon 

and the target nucleon. One is then simply studying the total cross section for 

the process “y” + N- hadrons, where the hadrons have an invariant mass W 

and we are able to vary the energy, mass, and polarization of the incident 

photon beam. This leads one to define virtual photon-nucleon total cross sec- 

tions for transversely and longitudinally polarized photons 
87 

u-,$v ,s2) and 

oS(v ,q2). In terms of these total cross sections 

aT+EcrS ) 

where 

K=v -q2,‘2MN 

and 

(85) 

1 
E = 

1+2 l+v2/q2 tan2 e/2 ’ 

so that 0 5 E 2 1. 
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On comparison with Eq. (84), we have the relations 

w2(v,q2) = + $- [&,q2) +&,s”]] - 
4r cl! q +v2 

(86) 

At q2 = 0, oT(v , q2= 0) is just the total photoabsorption cross section of real 

photons on nucleons (shown for the proton in Figure 1). The quantity as (v , q2) 

must vanish at q2 = 0 because of the constraints of gauge invariance. The con- 

tribution of the single pion plus nucleon channel to oT and as may be expressed 

in terms of sums of squares of multipole amplitudes, very much as was done 

for real photons in Section V, with the electric and magnetic multipoles contrib- 

uting to aT (v , q2), and the longitudinal multipoles to us (v , q2) 
88 . 

The results of experiment are then to be expressed in terms of W1 and 

W2 (or aT and us , which are related through Eq. 86) as they depend on v and q2. 

A kinematic map of the v -q2 plane is shown in Figure 10. The lines at fixed W 

correspond to given values of the hadronic missing mass. Measurements along 

the line W = 0.94 GeV = MN correspond in particular to elastic scattering where 

WI and W2 have delta functions due to the nucleon pole: 

elastic 
w1 4M; 

6 V -q2/2MN 

GE(q 2 2 )+ 
elastic w2 ( 2 v,q 1 

f$.;(q2) 
N = 2 

1+-+- 

s(v -s2/2M) , (87) 

4M; 
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G,(q2) and G,(q2) being the usual electric and magnetic form factors of the 

nucleon. Measurements of inelastic scattering are usually made at fixed angle 

and incident energy, with varying final energy as shown in Figure 10. As the 

energy loss increases (final energy decreases) one first encounters the elastic 

peak, then the region of prominent resonance excitation, and finally, for 

W 2 2 GeV, the inelastic continuum. Measurement of the scattering along two 

(or more) fixed 8 lines in the v -q2 plane allows separation of WI and W2 (or aT 

and as) at the crossover point, which then has the same values of v and q2 but a 

different value of B and E for the different lines. 

All the above discussion may obviously be applied as well to inelastic 

muon-nucleon scattering. There are also two other closely related processes. 

First, in the above we averaged over the electron and nucleon spins, as is done 

in all present experiments. In the future it should be possible to employ a polar- 

ized electron beam and a polarized target to determine the spin dependent structure 

functions d (v , q2) and g (v , q2) defined by 89 

c <p+‘~J,&O)~n) <nIJv UV~p,s)(2%f!d4)(pn-p -4) 
n 

- c<Pt -sIJ,jO+> <n!Jv (O$, -s>W%4\pn-p -9) 
I 

(88) 
n 

where the antisymmetric tensor E 
IJVACT 

is +l in the case e1234 and sois a co- 

variant spin four-vector for the nucleon (s2 = 1, s l p = 0). 
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Using the lepton trace, 

L pv= ;($$, +k;l$, + ts2/2)6,, tePVhokAk’o) 

for helicity f i electrons, one calculates that the spin dependent structure func- 

tions lead to the measurable difference, 

d20++ d2,+ + 
dQ’dE* -dfl’dE = 

(89) 

x (E+E’cosB)d(v,q2)+(E-E’cosB)(E+E’)MNg(v,q2) 
1 > 

, 

whered20t l/dn’dE’(d~“/dn’dE’) is the double differential cross section 

when the spins of the electron and nucleon are antiparallel (parallel) and along 

the direction of the incident beam. Note that both a polarized beam and target 

are required as otherwise the antisymmetric (inp - v ) tensor in Eq. (88) gives 

zero when contracted with the symmetric lepton trace in Eq. (81). Just as one 

can define total photon-nucleon cross sections, (r T and as, which are linearly 

related to W1 and W2, it is possible to define 90 total cross sections cp and CJ~ 

( 
UT= 3 2 up+uA) 1 

for (virtual) photon spin parallel and antiparallel to the nucleon 

spin, respectively. These are then linearly related to d(v ,q2)and g(v ,q2) and, ne- 

glecting a possible cross term between longitudinal and transverse polarizations, the 

difference of double differential cross sections appearing in Eq. (89) can be alterna- 

tively rewritten in terms of u-~ and uA 90 . 

Second, through the conserved vector current hypothesis 91 the weak 

vector current (strangeness non-changing) is related by an isospin rotation to 

the isovector part of the electromagnetic current. Thus neutrino and antineutrino- 

nucleon inelastic scattering would be expected to exhibit similar properties to in- 

elastic electron scattering. For such processes, not only do we have the structure 

functions W1 and W2, which now get contributions from both the vector and axial- 
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vector currents, but also a structure function W3 which arises from the inter- 

ference between the vector and axial-vector currents. The double differential 

cross section for neutrino (antineutrino)-nucleon inelastic scattering is g2 (neglecting 

lepton masses) 
d20 

dQ’dE’ = 9 [2 sin2(~)W~*)(v,q2)+cos2(~) WF)(v,q2) 

r E+E’ - sin2 (g) Wr)(v,q2)] , 
MN 

(90) 

where the weak coupling constant G N 1.0 X 10m5/Mi , and the +(-) superscript 

corresponds to neutrinos (antineutrinos). The close similarity to Eq. (84) for 

inelastic electron scattering is evident. 
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X Inelastic Electron Scattering Experiments and Scaling 

The first measurements of inelastic electron scattering at high energies 

and momentum transfers 93 showed that besides the excitation of the prominent 

nucleon resonances there is a large cross section for “deep” inelastic scattering 

with excitation of the continuum. The size of the cross sections may be simply 

summarized as being roughly point-like: When the cross section at fixed q2 is 

integrated over v one obtains a result which is the same order of magnitude as 

the Mott cross section for scattering from a point proton. 

What are the other properties of this large cross section? Measurements 

of the scattering at different angles but the same value of v and q2, as we saw in 

the previous section, permit a separation of the contributions of W1 and W2 to the 

double differential cross section. Such a separation of W1 and W2 is equivalent to 

a knowledge of R = os/oT by Eq. (86). The value of R obtained by averaging over. 

the present data 
94 in the deep inelastic region is R = 0.18 f 0.10. This is cer- 

tainly small, and given possiblesystematic errors it is possible, although unlikely, 

that R = 0. The individual values of R do not show any strong dependence on v or 

q2. The scattering is thus dominantly transverse, rather than longitudinal. 

The same measurements 93 which showed the point-like size of the scat- 

tering also showed a second phenomenon, the scaling behavior proposed by 

95 Bjorken . “Scaling” is the statement that as v and q2- co, vW2 and W1 be- 

come non-trivial functions of the dimensionless ratio w = 2 MNv /q2 only, rather 

than functions of both v and q2 as would be the case a priori. We may look for 

the scaling behavior in the data where I/ and q2 are finite by studying the behavior 

of vW2 and W1 at any fixed value of w as we vary q2 (and therefore v ) and see if 

they tend to (non-zero) limiting values as q2 becomes large. Since from a theo- 

retical standpoint scaling is a statement of behavior as v and q2 -co, any other 
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dimensionless variable, w’, such that c3’-w as v and q2 -ao, is in principle 

just as suitable as w as a scaling variable. Another variable could in fact lead 

to the scaling behavior sooner in the sense that v W2 and W1 could become in- 

dependent of q2 (and hence equal to their q2 -00 limit) for smaller values of 

q2 if they are studied as functions of q2 at fixed w’ rather than w. 

This is in fact the case for inelastic electron-proton scattering. If we 

take data with q2 2 1 GeV2 and for the moment stay away from the low W region 

with prominent nucleon resonances, then there is a more rapid approach to scaling 

behavior if one uses the variable 96 

u f = 1 + W2/q2 = w f M;/q2 . (91) 

Clearly w’ is dimensionless and is the same as w in the Bjorken limit of v and 

q2 
94 - oc . Using a fixed value of R = 0.18, Figure 11 shows v W2 and 2MNW1 

as functions of w’ for various q2 intervals and W L 2.0 GeV (beyond the promi- 

nent resonances). Clearly both v W2 and WI scale non-trivially (i.e. : are finite 

and independent of q2 at fixed w’) to within the accuracy of the data for w’ in the 

range 1 < w ’ < 10, as long as q2 5 1GeV2andW 2 2.OGeV 94 
. The scaling 

of v W2 and W1 is independent of the particular value of R chosen in plotting 

Figure 11. As long as R is small, as shown by direct measurements, one obtains 

essentially the same result of scaling for both W1 and v W2 starting at incredibly 

low values of q2 = 1 GeV2. 

Another way of looking at the results of the deep inelastic scattering ex- 

periments is shown in Figure 12 where the experimentally measured combination 

of total cross sections, aT + E as, is plotted against q2/W2 for various hadron 

masses W. Also shown is Gi(q2) + q2/4 MN GM(q 2 2 2 
i ) 

), the analogue of aT + as for 

W = 0.94 GeV, i. e. , elastic scattering. When l/9 < q2/W2 . l/3, correspond- 

ing to the relatively flat part of v W2 between w’ of 4 and 10 in Figure 11, uT + E as 
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falls slowly (like l/q2). But when q2/W2 becomes large, we come below the knee 

in v W2 and oT + E as falls rapidly, roughly like l/q6 for fixed W. From Eq. (86), 

a l/q 6 - 00 implies that 94 

= (w’ - 1)3 (92) 

as q2/W2 - co or w’ -1. The behavior of CJ~ + as oc l/q6 as q2- oo at fixed 

2 2 
W is just the behavior of the elastic analogue of aT +os, Gi (q2) +- 

at large q2 if we take dipole forms for G Eptq2) 

4 M2 GM tq2) 9 

and GMp (q2). As noteNd many 

times previously, the deep inelastic (W 2 2 GeV) cross section does fall with 

increasing q2 more slowly than elastic scattering at the same value of q2, partic- 

ularly for values of q2 of a few GeV2 for which w’ is in the range where v W2 is 

approximately constant. But for sufficiently large values of q2 the cross section 

for any fixed W falls rapidly, very much as elastic scattering does already at 

much lower values of q2. 

Another very interesting property of the deep inelastic cross section is 

that it is isospin-dependent , i. e. , different for neutron and proton targets. Neg- 

letting corrections for internal motion, final state interactions, and Glauber cor- 

rections, the neutron cross sections are given by the difference of the deuterium 

and hydrogen cross sections 
97 . With this assumption, the data 

96 indicate that 

the neutron cross sections are smaller than the proton cross sections over a large 

kinematic range. Assuming that at each v and q2 value the same value of R=us/aT 

holds for both the neutron and proton, then v WZn/v W 
2P 

is smaller than unity at 

least for w’ 5 6, and vW 2n scales within the accuracy of the data g6. If one plots 

vwzp - VW2n’ then there appears to be a maximum near w’ = 4, at which point 

vw2p - IIW2n = 0.1 and the ratio v W2n/v W 
2P 

N 2/3. 
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These properties of inelastic electron scattering would be expected to, 

carry over to inelastic neutrino (or antineutrino) scattering. There one would 

expect the structure functions W1, v W2, and v W3, to scale 92 . Unfortunately 

the present data 98 do not allow a clean separation of the three form factors. 

There is, however, evidence for a consequence of scaling, namely, that the total 

cross section should rise linearly with the incident neutrino energy. The present 

results g8 are those for neutrinos, 

G2M E 
o(E) = (0.52 f 0.13) ,” (93) 

per nucleon from a propane-filled bubble chamber experiment. There is also 

some evidence 98 that use of w’ rather than w leads to scaling sooner in inelastic 

neutrino-nucleon scattering, just as it does for inelastic electron-nucleon 

scattering. 

From the above discussion, it is clear that the existing experiments 

which detect the final electron only are rather extensive and cover the presently 

available energy and momentum transfer region rather completely. Aside from 

refinements and filling in some accessible regions between existing measurements, 

the next step in inelastic electron scattering experiments is to investigate the 

nature of the hadronic final state. Preliminary results 
99 indicate that the rho- 

plus-nucleon final state forms adecreasingpercentage of the total hadrons as q2 

increases from zero to w 1 GeV2. Experiments have also been performed on 

forward pion and proton electroproduction 
100 

, and many other experiments are 

planned. This is a very interesting subject which, together with the investigation 

of the spin dependence of inelastic electron scattering and inelastic neutrino scat- 

tering, will clearly occupy much attention at both electron and proton accelerators 

in the next few years. 
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XI The Parton Model 

The large magnitude of the inelastic electron-nucleon scattering data 

and the scaling behavior arise naturally in the models where the nucleon is com- 

posed of point constituents. In fact such a model was originally used to predict 

that the cross sections for inelastic electron-proton scattering would be of point- 

101 like magnitude . The key means of implementing such a model is to view the 

nucleon in an infinite momentum frame of reference where the nucleon is Lorentz- 

contracted into a thin pancake and the motion of the constituents, called partons 102 , 

is slowed to a standstill by time dilatation. If the partons in the nucleon are 

limited in the magnitude of their momentum in its rest frame, then in the infinite 

momentum frame they will each have a finite fraction xi of the infinite momentum, 

P , with xxi= 1. If, following Drell and Yan 103 , we choose the center of mass of 

the incident electron and nucleon as the electron energy goes to infinity as the in- 

finite momentum frame, then the time of interaction of the virtual photon is of order 

T. - 
1nt pot, = 

4P 

2MN” -cl2 
, 

where P is the momentum of the incident electron in the center of mass. The life- 

time of a state made up of partons of momentum fractions xi is on the other hand 

of order 

T lifetime- xE:-E = 
q$Tz&-~~ 
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Thus if 

2MN” -q2 >> 
c 

1 

-M2 , 

then Tint << Tlifetine and one may treat the electron as scattering instantaneously 

off the long-lived, essentially free, partons, i. e. , one can use the impulse approx- 

imation. The inequality is satisfied if 2 MNv and q2 are much greater than any 

transverse momentum squared or mass squared, with the ratio w = 2 MNv /q2 

fixed. Then the fraction of longitudinal momentum, x, on the parton from which 

the electron scatters is given by (l/w) which is fixed and non-zero (see below 

and reference 102), so that 

k;I + M2 1 - M2 
X. 

i 1 

is bounded, while 2 M v - q2 = q2 (o - 1) is increasing linearly with q2. 

With the imposition of a transverse momentum cutoff, Drell, Levy and 

Yanlo4 have shown that the canonical quantum field theory of interacting pions 

and nucleons gives rise to such a parton picture in the infinite momentum frame. 

The partons in this model are the virtual pions and nucleons making up the nucleon, 

with the interacting partons, i. e. , the free point constituents which interact with 

the electromagnetic current, being the bare nucleons , and not the pions. 

In summary, the detailed assumptions made in the parton model of in- 

elastic electron scattering are 
102. 

. 

(1) The nucleon consists of a superposition of a number (N) of point con- 

stituents (partons) which can be treated as free particles in the infinite momentum 

frame as 2 MNv and q2 become infinitely large with the ratio w = 2 MN v /q2 fixed. 
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The exact configuration of the partons and their fractions of the total momentum 

depend on the strong interactions. 

(2) The partons have negligible transverse momenta (compared to 

2 
*J q )and, asP -00, the i’th parton has (neglecting masses and transverse 

momenta) a fraction xi of the total momentum of the proton 

Pi’XiP , 

with 0 I xi < 1. 

(3) In the infinite momentum frame the electron scatters instantaneously 

off the point parton leaving it with the same mass and charge. A little calculation 

then shows that the contribution of a single parton (with a fraction xi of the longi- 

tudinal momentum) to W2 (v, q2) is : 

Wf)(v, q2) =Qf 6 (V -q2 /‘MNXi) 

Q; x. 
= -+ 8(Xi - q2/2MNv) . 

Let P(N) be the probability of N partons occurring (C P(N) = l), 

N 2 
i=C,Qi the sum of the squares of their charges and fN(x) the distribution of 

longitudinal momentum fraction normalized so that 

/ 

1 

fN(xi)dxi = 1 . 

0 

Then v W2 for such a distribution of partons is given by 102 

N Pl 

(94) 

(95) 

vW2(v, q2) = v UP c Ql hi fN(Xi) 6 (V -q2/2 MNxi) 
i=l 0 
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= xPtN) c&f xfN(x) 
N i x=q2,‘2MNv 

(96) 

= ~~ (x = q2,‘2 MN v = l/w) . 

The quantity v W2(v, q2) = F2(x) is then predicted to scale 95 , i.e., be just a 

function of x = l/w at infinite q2 and v . The point-like magnitude of the data 

hasbeenput in through the assumption of point constituents. The shape of 

F2(x)/x gives a weighted average of fN(x), the distribution of longitudinal mo- 

mentum of the partons. A similar calculation indicates that Wi(v, q2) should 

scale: W1(v,q2) = FI(x) as 2 MN v and q2- co. The exact relation between 

FI(x) and F2(x) depends on the spin of the partons, with 2 MNx FI(x) = F2(x) 

(corresponding to R = oSS/oT = 0) in the case of spin i constituents. 

If one is willing to take the parton model seriously ina quantitative 

sense, two sum rules emerge immediately from these considerations. From 

the normalization condition, Eq. (95), and assuming the same distribution of 

longitudinal momenta for all the partons so that 

1 

XifN(xi)dxi = l/N , 

we obtain the sum ruleslo 

(97) 
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and 

relating moments of the data to the sum of the squares of the charges and the 

average charge squared of the partons, respectively. 

Since experiment 94 suggests bhat R =- ‘ss/aT is small, one thinks in 

terms of mostly spin 2 L partons. If all the partons carry conventional charges 

Qi=fl, thenC&i?/N= 1. Month e other hand, considering the nucleon as made 
i 

up of three quark partons, one has c QF/N = (4/9 + 4/9 c l/9)/3 = l/3 for the 
i 

proton and c &F/N = (4/9 + l/9 + l/9)/3 = 2/9 for the neutron. Experimentally 96 
, 

i 
the left-hand sides of Eq. (99) for the proton and neutron are 

1 

I 
dx F2p (x) z 0.14 

0.1 

1 

I 

dx FZn (x) 2 0.10 , 

0.1 

with errors of f 15% from the values of F2 constructed from the small angle 

(6’ and 10’) datag3. The large angle data g4 (with larger values of q2) and/or 

using w’ to construct F2 ‘,‘“1” the small angle data yield slightly smaller values 
. 

for 
/ 

FZp(x) dx. Since / F2 (x) dx, although unmeasured, is less than about 0.03 
0 

with any reasonablelextrapolation of F. 
2Q Or F21> to x = 0 (o = oo), we see that 

dx F2p (x) and 
/ 

dx F2n(~) are too small to agree with the simplest models. 
0 

Even a model with a “quark-antiquark sea” (equal amounts of pp, nn, and Ah 

- 80 - 



1 
quarks) as the partons gives 

J 
dx F2 (x) = 2/9 N 0.22, which is larger than 

(I 
either the experimental proton or neutron integrals. One is forced to either dis- 

regard Eq. (99) because an assumption made in its derivation is wrong (e. g. , 

the same momentum distribution for each parton and the resulting Eq. 97)) or 

to invoke the presence of neutral partons in order to lowerE &f/N below 2/9. 
i 

No assumption on the parton momentum distribution enters the sum 

rule in Eq. (98)-it follows simply from the normalization condition of Eq. (95). 

This sum rule was originally proposed by Gottfried 105 in the form 

/ $vw2p(v,q2) = 1 (101) 
0 

for the proton (but not the neutron) for all q2 within the context of the quark 

model where CQp = 1. At q2 = 0 this sum rule is trivially satisfied due to the 
i 

contribution of the Born term and vanishing of the continuum. At finite values 

of q2, however, the integral on the left-hand side diverges (logarithmically) if 

the limit of cT (v, q2) is non-zero as v -co at fixed q2, for then v W2(v, q2) 

is non-zero in the same limit. Thus, if we are to make any sense of Eq. (lOl), 

the constant part of the total cross section (or v W2) must not be counted in the 

sum rule. Bather, the manner in which Eq. (101) is satisfied at q2 = 0 (by the 

Born term) suggests (see Sections XII and XIII) we should include only the direct 

channel resonances and non-constant part of the total cross section. The pos- 

sibility that sense can be made of Eq. (101), as well as its q2- cc limit (using 

the scaling property of v W2 (v , q2) ), 

[+f F2p($j = I$ F2p (x) = 1, t 102) 

1 0 

which similarly diverges if F 2p(o) z 0, is discussed in reference 106. 
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These divergence difficulties are avoided if we cons,ider the difference 

F2n(~)] = c W($ Q; - 2 Q:) ' 
(lo3) 

, i,n 

since the constant part of F,(x) as x- 0 (or w -co), which corresponds to 

diffractive virtual photon-nucleon scattering (see Section XII) presumably cancels 

between the proton and neutron. In a parton model where the nucleon consists of 

three quarks (plus any number of other partons which are the same for both 

neutron and proton) the right-hand side of Eq. (103) equals l/3. Experimentallyg6 

12 1 

/ $f k2p (;) - F2n (;j] = / $ [FBp(x) - F2Jx)] = 0.13, (104) 

1 l/12 

with rather large errors ( f 40’%). With a reasonable form for F 
2P 

- F2n for 

large w (small x) it is possible that the integral from 0 to 1 in x (1 to XI in w) is 

equal to l/3, but this requires pushing the values of F 
2P 

- FZn to the upper 

limits of the errors in the present data. 

It thus seems that quantitative comparison of the parton model with the 

data through the sum rules Eq. (98) and (99) leads to a somewhat complicated 

picture. The measured mean squared charge c &f/N is so small that it requires 
i 

neutral partons to lower the theoretical value below the minimum value of 2/9 

obtained in a quark parton model. While F 
2P 

- FZn has a broad peak reminiscent 

of the quasi-elastic peak seen in electron scattering off nuclei (Figure 8), the 

magnitude of 
/ [ 

$ F 
2P 

(x) - F2n(~) 1 is at best marginally consistent with quark 

partons. Nevertheless, the simplest way to remember the experimental data 

qualitatively is with a parton model in which the nucleon consists of point quarks. 

A good quantitative fit to the experimental data has in fact been recently achieved 
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by Kuti and Weiskopf 107 using three “valence” quarks, neutral “gluons , ” and 

a quark-antiquark sea. 

The parton approach to deep inelastic electron-nucleon scattering is 

easily extendable to inelastic neutrino (antineutrino)-nucleon scattering. The 

parton model predicts the scaling of the structure functions (see Section IX) 

WY) = Fy) (x), v WF) = Ff) (x), and v Wp) = Fr) (x). The simplest three- 

quark parton model gives in addition 92 

2 MNx FI”) (x) = Fr) (x) = -x Fr) (x) 

and 

1 

(105a) 

I y $+’ (x) = 2 

0 
(105b) 

1 

J 
e FL-’ (x) = 4 

0 

From appropriate sums and differences of Eq. (105 a and b) and the 

corresponding quark-parton results for electron scattering, 

2 MN x F1 (x) = F2(x) 

and 

1 

J $F zp (x) = 1 
0 

1 

J F F2n (x) = 2/3 , 

(106a) 

(106b) 

0 
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one can derive in a few seconds most of the sum rules that have been discussed 

for inelastic neutrino scattering as well as those relating the structure functions 

of inelastic neutrino to inelastic electron scattering (see, for example, reference 

108). It is also possible to extend the parton model to treatment of deep inelastic 

electron-positron colliding beam processes 109 
and to production of lepton pairs 

in high-energy hadron-hadron collisions 110 . 

Many of the results of the parton model are obtainable in other more 

elegant ways. For example, besides the scaling behavior itself, some, but not 

all, of the sum rules connecting inelastic neutrino and electron scattering may be 

derived from light cone commutators 85 . The sum rules which cannot be derived 

by the light cone commutator approach involve specific assumptions about the 

matrix elements of operators, taken from the naive quark model, in addition to 

algebraic statements about the commutator of two currents on the light cone. In 

the quark-par-ton model, we are thus mixing both the algebraic (counting) properties 

of the quark model for the currents with statements on the (quark) structure of the 

wave function of the nucleon. It is quite possible that the first of these properties 

is true (even if real quarks do not exist), while the second is false. However, 

even if the quark-parton model fails in this last regard, it certainly is a very use- 

ful guide and mnemonic, provides intuition in many cases where other approaches 

are inapplicable or fail 111 , and gives a unified way of thinking about deep inelastic 

103,111 phenomena . 
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XII High Energy Behavior 

of the Forward Virtual Photon-Nucleon Amplitude 

Let us again consider inelastic electron-nucleon scattering as a collision 

between the exchanged virtual photon and the target nucleon, and focus our atten- 

tion on the total cross sections cT and as. By the optical theorem, these total 

cross sections are related to the imaginary part of the forward virtual photon- 

nucleon scattering amplitude. In the case of hadron-hadron scattering, we have 

an extensive experimental knowledge of total cross sections and the associated 

forward scattering amplitude, as well as much accumulated theoretical insight. 

Some of these experimental observations and theoretical ideas have already been 

discussed in Section VI in connection with the behavior of the total cross section 

for real photons on nucleons. In particular, we recall that diffraction scattering 

or Pomeron exchange in the forward amplitude corresponds to the constant part 

of total cross sections as the energy increases , while the nondiffractive part of 

the forward amplitude, due to other, non-Pomeron exchanges gives rise to a 

component of the forward amplitude which falls with increasing energy. 

At large v and fixed q2 we have from Eq. (86) that 

VW2 Oc q2 bT+%$ 
(107) 

W1~VUT . 

Since the total cross sections behave as v o!(O) - 1 as v-00, where o(O) is the 

position of the relevant leading J-plane singularity (o!(O) = 1 for the Pomeron and 

a(O) < 1 for other exchanges), v W2 (v, q2) behaves as v a(O) -1 and WI as v o(O) 

as v- 00 at fixed q2. We then see that v W2 and Wl/ti’ must both behave as 

(,,)Qm - 1 as w’-co if the region where scaling takes place overlaps the Regge 

region where v W2 and WI/v behave as v a(0) - 1 . 
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Thus v W2 and WI/w’ should be constant at large w’ if purely diffraction 

is present (o(O) = 1) in the scaling region, while if there is a non-diffractive compo- 

nent of theforward virtual photon-nucleon amplitude , v W2 and Wi/w’ should de- 

crease as w’- co. Unfortunately, for large values of w’ (say w’ > lo), there 

is presently no data over a large range of q2, nor is there a separation of W1 and 

W2, so we have no strong evidence for scaling beyond w’ N 10. If we use the 

same (small) value of R = cs/cT found 
94 for w’ < 10, then the data that are avail- 

able are consistent with scaling and v W2 decreasing for large values of w’. For 

R = 0, and assuming scaling holds for all q2 2 1 GeV2, both v W2 and WI/w’ de- 

crease by - 20% between their maxima at w’ 2: 5 and w’ % 25. If we increase 

the assumed value of R for w’ > 10, the values of v W2 obtained from the differ- 

ential cross section measurements go up compared to those obtained assuming 

R = 0, but those of Wl/ w’ go down. Since W1 and v W2 are now known rather well 

for w’ < 10, one cannot change Wl or v W2 in this region. Thus either or both 

v W2 and WI/w’ decrease at large w’ if we accept q2 ,> 1 GeV2 as relevant for 

scaling (as it is for w’ < 10). One may alternatively directly consider values of 

94 
OT at points where a separation of cs and cT has been made . One then finds 

that cT appears to be a maximum between w’ of 3 and 4 and at q2 = 1.5 GeV2 falls 

at least as much with increasing energy as the total photo-absorption cross section 

does over the same v (or W2) range as at q2 = 0. Thus, there is experimental 

evidence from the energy dependence of the measured cross sections for a non- 

diffractive component to virtual photon-nucleon scattering at values of q2 for which 

there is scaling for w’ < 10. 

More direct evidence for the presence of a nondiffractive component of 

the amplitude comes from the difference between neutron and proton inelastic 

scattering discussed in Section X, since such a difference requires the exchange 
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of an isospin one object in the forward virtual photon-nucleon amplitude, while 

the Pomeron is assumed to have isospin zero. Thus there must be a sizable non- 

diffractive component to forward virtual photon-nucleon scattering. However, 

present experiments certainly do not rule out v W2 and WI/w’ falling to a non- 

zero value as w’ -00, so that some diffractive component may be present, 

particularly at large w’. Nor do present experiments rule out v W2 and/or WI/w’ 

falling to zero as ~‘-03. The question of the exact magnitude of the diffractive 

and nondiffractive parts of the cross section in the scaling region is then still 

open (see the discussion in reference 112)) with the resolution presumably to be 

accomplished experimentally when the range of very large v and q2 becomes 

accessible. 
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XIII Duality and ScalinP in Inelastic Electron Scattering 

A nondiffractive component of a forward amplitude and the correspond- 

ing decreasing total cross section at high energy are correlated with the presence 

and behavior of resonances at low energy, at least for purely hadronic processes 113 . 

In particular, total cross sections for processes like K+p and pp scattering, which 

have no obvious s-channel resonances at low energy, have essentially constant 

total cross sections above laboratory energies of a few GeV, while processes like 

K-p and pp scattering, which have many strong s-channel resonances at low energy, 

have total cross sections which decrease substantially as the energy is increased 

above a few GeV. This correlation of the behavior of total cross sections and the 

presence of resonances is part of the “two-component” picture of duality for two- 

body amplitudes. In this picture, “Pomeron exchange” or diffraction at high 

energies is connected to the low energy non-resonant “background,” while “ordinary” 

exchanges (non-Pomeron Regge trajectories or cuts) are connected to the low energy 

s-channel resonances 113,114 
. The connection of resonances at low energies to 

“ordinary” exchanges at high energies takes quantitative form in terms of finite 

77 energy sum rules . These sum rules relate integrals over the imaginary part of 

the amplitude at low energies to the properties (residue functions, Regge trajec- 

tories) of the t-channel exchanges at high energies 115 
. 

Given the presence of a nondiffractive component of the forward virtual 

photon-nucleon amplitude in the scaling region (from the experimental observations 

of energy dependence and neutron-proton differences in inelastic electron-nucleon 

scattering at values of q2 where scaling is observed), we expect that for q2 2 1 GeV2 

nucleon resonance electroproduction will have a behavior which is correlated with 

other features of deep inelastic scattering. In particular, we would like to com- 

pare the behavior of the resonances with the behavior of v W2 and WI in the region 

where scaling behavior is observed. 
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The behavior of the resonances in comparison to v W2 in the scaling 

region 116,117 can be seen in Figures 13 and 14 where the function v W2(v, q2) 

is plotted versus w’ at various values of q2 (assuming R = cs/cT = 0.18). The 

solid line, which is the same in all cases, is a fit ‘18 to the data for W > 1.8 GeV 

and q2 >, 1 GeV2 where scaling in w’ is observed. We refer to this curve then 

as the “scaling-limit-curve, ” v W,(w’). The values of v W2 at fixed q2 are ob- 

tained by interpolating the data 93 up to a hadron mass, W, of 3 GeV. Above 

W= 1.8 GeV, where there are no prominent resonances visible, the interpolated 

values of v W2 at fixed q2 agree with the scaling-limit curve, v W2( w’), as expected 

from the existence of scaling in 0’. 

We first of all note that we can easily see the prominent N* res- 

onances at values of q2 where v W2 scales for W 2 2 GeV. A given resonance 

(including the elastic peak) occurs at wR = 1 + Mi/q2 and moves toward w’ = 1 as 

q2 increases. We also note that the prominent resonances do not disappear with 
n 

increasing q’ relative to a “background” under them which has the scaling behavior. 

(Note that for values of q2 beyond about 3 GeV2 the present data are not of suffi- 

ciently high statistical quality in the low W region to reveal whether the prominent 

resonances are still present.) Instead, the prominent resonances (and the back- 

ground) seem to roughly follow in magnitude the scaling-limit-curve at the cor- 

responding value of w’. 

This can be seen even more clearly if the heights of the prominent res- 

onance bumps in v W2 are divided by v W,(w’) evaluated at a value of w’ which 

corresponds to the given resonance and value of q 2 at which measurements were 

made. Then one sees that the ratio of the height of the resonance bump to the 

magnitude of the scaling-limit-curve at the appropriate value of w’ remains 

roughly constant 112,117 for the prominent N* resonances as q2 changes from 

1 to 3 GeV2. 
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. 

Thus at least the prominent nucleon resonances have a behavior which 

is strongly correlated with the scaling behavior of v W2. Furthermore, a recent 

analysis 119 of R = cs/cT for W < 2 GeV shows the same small value (consistent 

with zero) that is found in the scaling region. In addition, we know that elastic 

scattering is less from neutrons than from protons, just as is the deep inelastic 

scattering. One, of course, cannot determine without a detailed partial wave 

2 analysis what the q dependence is of the many broad, low spin N* resonances 

that we know exist from pion-nucleon phase shifts. But the behavior of the 

prominent N* resonances that we can see gives the essential clue as to what is 

116,117. 
happening . That a substantial part of the scaling behavior of the virtual 

photon-nucleon amplitude is due to a nondiffractive component of the amplitude 

which is directly reflected in the behavior of the resonances. In a duality frame- 

work we say that the nucleon and N* resonances at low energy are an intrinsic 

part of the scaling behavior and correspond to the presence of non-Pomeron ex- 

changes at high energy. The resonances build up, in the sense of finite energy 

sum rules, the nondiffractive part of the amplitude on the average and yield the 

non-Pomeron exchanges at high energy, resulting in a falling cT or v W2 (w’) curve 

at high energies and a difference between neutron and proton inelastic scattering. 

What is unique to studying duality in electroproduction is, of course, 

the experimentally observed scaling behavior. This allows one to consider data 

at fixed values of w’, but different values of q2 and W2, both within and outside the 

region of prominent resonances. Thus we can compare the data where there are 

prominent narrow resonances directly with data for vW,(w’) for large q2 and W2 

where nature has accomplished the appropriate averaging of the many broad res- 

onances and backgrounds or t-channel exchanges present here. Hence, without 

any extrapolation to low energies using a model or theory valid in the high energy 
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region, one can directly see the beautiful oscillations of v W2 in the low W region 

about the scaling-limit-curve, which represents the average of many resonances 

and backgrounds at large W. 

This comparison of the low W and high W regions using scaling can be 

given quantitative form in terms of a generalized finite energy sum rule 116,117 . 

The possibility of making a quantitative connection using finite energy sum rules 

between the low W region where there is N* resonance excitation and the deep 

inelastic region where scaling takes place is already suggested by Figures 13 and 

14 where the scaling-limit-curve appears to roughly average the resonances in 

vw2. The relevant sum rule is found 112,117 to be satisfied to within 10% or 

better for values of q2 from 1.0 to 3.0 GeV2 if the integral is carried up to en- 

ergies or values of w’ which correspond to hadron masses, W, of 2.0 GeV. Con- 

sidering the statistical as well as systematic errors present in both the data and 

the interpolation to fixed q2, the agreement is extremely good. Furthermore, the 

prominent resonances make important contributions to the sum rule-their removal 

would destroy it. Thus the resonances play a significant part in building up v W2 

in the sense of finite energy sum rules. 

If the prominent resonances are really “following” v W2 (w’) in magnitude, 

we are led to ask what must be the large q2 behavior of the form factor of a given 

hadronic final state of mass W if it is to participate in the scaling behavior of v W2? 

It is rather simple to show 116 that if G(q2) is the excitation form factor of the 

hadronic final state of mass W and 

G(q2b-- c ( l/q2)n’2 

2 
as q - 00, and if v W2 can be parameterized as 

(108) 

vw2 -c’(w’ - 1) P 
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as w’ -1, then these two behaviors can co-exist only if 

n=p+l (110) 

Thus each hadronic final state of mass W, if it is to participate in the 

scaling behavior, must have an excitation form factor with a specific power of 

falloff in q2 as q2 -co, and this power is the same for all W and is related to 

the power with which v W2 rises at threshold. If we apply this in the low-energy 

region to a given resonance of mass MR, then all resonances which follow v W,(w’) 

in magnitude (as we have seen the prominent N* resonance do) must have the same 

power of falloff in q2 as q2 -co (including presumably the zeroth resonance or 

elastic contribution to v W2 which has n z 4), and again this is related to the be- 

havior of v W2 at threshold. That the resonance excitation form factors all have 

a behavior at large q2 which is similar to the behavior of the elastic form factor 

(with n N 4) has been previously indicated 96,120 . As we have p N 3 from Eq. (92), 

it also follows that Eq. (110) is at least approximately satisfied. For the case of 

the elastic peak in v W2, Eq. (110) is just the relation of Drell and Yan 121 , first 

found in the parton model. 

Thus we see that both qualitatively and quantitatively the behavior of elastic 

scattering and N* resonance electroproduction is remarkably correlated with the 

scaling behavior of deep inelastic scattering. In particular, as q2 changes, the 

prominent N* resonance bumps in v W2 closely follow the magnitude of the scaling- 

limit-curve, v W2 (w’), at the corresponding value of the scaling variable w’. This 

leads to relations between the behavior of the resonance excitation or elastic form 

factors at large q2 and the behavior of v W,(w’) as w’- 1. A quantitative connec- 

tion between resonance electroproduction and scaling behavior can be made in terms 

of finite energy sum rules. When integrated over the region of the prominent N* 

resonances (up to W = 2.0 GeV), the sum rule is satisfied to within 10% or better, 
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which is within the statistical and systematic errors inherent in the data and 

its interpolation to fixed q2. 

The connection to ideas of duality taken from purely strong. interaction 

processes is very close and interesting. Qualitatively, the correlation between 

the height of the prominent resonance bumps and the scaling-limit-curve’s mag- 

nitude, the fact that R = gS/~T is small both in the deep inelastic region and in 

the low energy resonance region, the prediction of neutron-proton differences, 

etc. , provide examples of the correlation between low and high energy phenomena 

which is at the heart of duality ideas. Quantitatively, the agreement of the finite 

energy sum rule over a large range of q2 where one can still see that there are 

resonance bumps present in v W2 and the averaging of the resonance bumps by the 

scaling-limit -curve, v W2 (w’) , provides a very striking example of the averaging 

of resonances to a smooth curve even outside the Regge regime. 

The averaging of the resonances by the scaling-limit -curve is exactly the 

behavior one expects in dual resonance models of electroproduction where the 

hadronic final state is completely expressible as a sum of resonances. There have 

been many models of this kind proposed 121 , mostly within the framework of the 

122 
Veneziano model . Up to now, all such models have been affected with troubles 123 

in that they either have bad asymptotic behavior in v or q2, or they lack factoriza- 

tion, which must be a basic property of any model based on resonances. In addi- 

tion, many of the models which agree with experiment quantitatively have additional 

ad hoc assumptions or parameters. Nevertheless, such models are important at 

least as theoretical laboratories, and show the consistency of scaling with a world 

made purely out of resonances. 

The relation of the approach to inelast.ic scattering through duality to other 

treatments is not completely understood. For example, in our discussion of duality 
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we have related various properties, particularly those of resonance electropro- 

duction, to the scaling behavior observed to hold for deep inelastic scattering, 

but we have not predicted scaling, as the parton model does. It is tempting to 

assume a common origin for both properties of electroproduction in terms of 

point-like substructure within the nucleon, e. g. , quark partons which are re- 

sponsible both for the deep inelastic scattering and for forming N* resonances 

when they are excited to specific levels. However, it is difficult to make this 

into more than a suggestive picture, particularly since one deals with incoherent 

scattering (the impulse approximation) in the parton model, while resonance 

phenomena are certainly coherent properties of the whole nucleon. Establishing 

connections between the various approaches to deep inelastic scattering, as well 

as establishing clear limits on their individual domains of validity, is clearly an 

important activity to pursue. Hopefully both future experimental and theoretical 

work will help us unravel the physical origin of the incredible regularities ob- 

served in inelastic electron scattering. 
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Figure Captions 

FIGURE 1 

FIGURE 2 

FIGURE 3 

FIGURE 4 

FIGURE 5 

FIGURE 6 

FIGURE 7 

FIGURE 8 

FIGURE 9 

The photon-proton total cross section and the pi-zero -proton 

total cross section divided by 250 

Kinematics of single pion photoproduction 

Argand diagram of the forward Compton amplitude, f,(W), 

in the low energy region 50 

Ratio of the real to imaginary parts of the forward Compton 

amplitude, f I, at high energy for different fits to the total cross 

section 50 

(a) Kinematics of vector meson photoproduction 

(b) Vector dominance model view of vector meson photoproduction 

(a) Differential cross section for yp - 7r’n at high energy 

(b) Polarized photon asymmetry, c, for yp - T+n 

Production of a forward peak in pion photoproduction from de- 

structive interference of the pion exchange and absorptive cut 

amplitudes 

Inelastic electron scattering from a nucleus 

Kinematics of inelastic electron-nucleon scattering 
2 

FIGURE 10 The v -q- plane with lines of fixed hadron mass, W, and fixed 

electron scattering angle, 8 

FIGURE 11 The structure functions 2MNWr and v W2 versus W’ for various 

q2 ranges 

FIGURE 12 The measured total cross section combination, cT + E os, 

for various fixed hadron masses, W 
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FIGURE 13 v W2(v, c12) at valves of c12=0. 75, 1.00, 1.25, 1.50 and 1.75 GeV2 

(data points interpolated from experiment) and v W2 (w ‘), the 

scaling-limit-curve (solid line), plotted versus o r 

FIGURE 14 v W2(v, c12) at values of q2=2. 00, 2.25, 2.50, 2.75, and 3.00 GeV2 

(data points, interpolated from experiment) and v W2( 0’) , the 

scaling-limit-curve (solid line), plotted versus 0’ 
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