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ABSTRACT 

We define, in very general terms, a class of theories in which it is 

possible for all symmetries such as SU(3) and SU(3) @SU(3) to be exact if one 

turns off all couplings of leptons and hadrons; but nevertheless, one can have 

ten to twenty percent violations of these symmetries coming about as a direct 

consequence of extremely weak lepton-hadron couplings. A framework is pro- 

posed for discussing these schemes which is independent of specific Lagrangian 

models and so leaves open the question of whether or not the Goldstone bosons 

appearing in these schemes are elementary or composite. For pedagogical 

purposes the last section of this paper is devoted to a brief discussion of a 

simple Lagrangian model having the various properties set out in our general 

scheme. 

(Submitted to The Physical Review) 
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INTRODUCTION 

The interpretation of the successes of the current algebra plus PCAC 

hypotheses in terms of an approximate Coldstone symmetry 192 of the strong 

interactions is appealing if for no other reason than it systematizes approxi- 

mations made in applying these ideas to discussions of physical processes. 

If, however, one is serious about the idea that the strong interactions are 

almost invariant with respect to the chiral SU(3) 8 SU(3) generated by the 

Cell-Mann algebra of vector and axial-vector charges, one cannot help won- 

dering about the origins of the intimate relation that this scheme implies bet- 

ween the weak and electromagnetic interactions and strongly broken hadron 

symmetries. 

To emphasize just how surprising this relationship is, even at the SU(3) 

level, let us contrast the way the CVC-hypothesis relates the approximate 

isotopic spin symmetry of the strong interactions to the algebra of isovector 

charges, and the analagous situation in which current algebra and the Cabbibo 

theory of weak interactions relate the approximate SU(3) symmetry of hadronic 

interactions to the SU(3) vector charge algebra. 

In the first case, one argues that the relationship between the SU(2) of 

isovector charges and the SU(2) of strong interactions is not too surprising. 

After all, the SU(2) for strong interactions would be exact in the absence of weak 

and electromagnetic effects. Hence, if we assume that the entire non-invariant 

part of the total Hamiltonian, Htot, is that describing the coupling of these 

would-be conserved currents to lepton currents,it is no surprise that com- 

mutation of Htot with the isovector charges decomposes it into an SU(2) 
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symmetrical piece - which includes the strong Hamiltonian - and a piece 

of order It o? and *I G yt W’ In this picture it is the smallness of 1’ LY” and 

” G wfl which tells us that we may use perturbation theory to relate the real 

world to an approximately symmetrical one. 

The second case is quite different. N(3) is a symmetry which is 

apparently broken at the purely hadronic level by ten or twenty percent. 

Therefore, if one supposes the reason that the weak vector charges are the 

generators of an approximate SU(3) symmetry is that the only non-symmetrical 

piece of Htot is that containing the corresponding currents; then one must face 

up to the fact that Vf (Y’* and I* Gw 11 are so small that it is difficult to see how a 

naive perturbative approach could lead to twenty percent violations of the 

observed symmetry, as opposed to one percent violations of SU(2). Clearly, 

the same problem faces us if we try to explain, in these terms, the interpre- 

tation of PCAC as an approximate Goldstone symmetry of the strong interactions. 

Despite these problems, the idea that all hadronic symmetries are broken 

by very weak couplings of leptons and hadrons is so appealing that one hopes 

there might exist a scheme of this type amenable to perturbative treatment. 

The purpose of this paper is to describe, in very general terms, how 

this is accomplished essentially automatically in a large class of Goldstone- 

Higgs type theories. 3 Physically, the essential feature of these schemes which 

allows a perturbation theory in small coupling constants to give rise to large 

hadronic symmetry violations is the existence of degenerate vacua. In 

general terms, in these theories - as in any problem involving degenerate 

perturbation theory - one must be careful to isolate potentially large effects , 

intimately related to the degeneracy and its associated instabilities before 

proceeding with naive perturbation theoretic discussions. 
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Our general discussion will be based upon simple features abstracted 

from the various Weinberg-Higgs-Kibble type schemes so fashionable today. 4 

We believe that this type of approach has several advantages. 5 First, it 

separates the details of constructing model Lagrangians and doing complicated 

calculations, from the important physical assumptions which govern the 

structure of low-energy theorems, etc. Second, we can expect that these 

general properties also describe worlds having composite Goldstone particles, 

as nothing we shall say requires the Goldstone particles involved to be ele- 

mentary. Finally, we believe that discussion of the symmetry properties of 

these theories is simpler in this language. 

The class of theories which can be constructed along the lines we shall 

describe is very large. Since the details of any approximately realistic 

scheme introduce complications which only obscure the important physics 

involved, we shall not - in this paper - engage in serious model building. 

Instead, for pedagogical reasons, we shall first discuss an unrealistic but 

easily understood U(1) 8 U(1) model which shows how small l*lepton-hadron*f 

couplings can lead to large violations of the ** Coldberger-Treiman” relation. 

The general discussion of this model is given in Section 1 and we put off until 

Section 3 the exhibition of a Lagrangian model embodying these results. 

Section 2 is devoted to extending the discussion of Section 1 to a framework for 

building more realistic models which include the possibility of generating large 

SU(3) violation in the same way as violations of PCAC. 
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1. A SIMPLE MODEL 

The model we shall discuss in this section describes the coupling of 

fit tional *fleptons ** and *I hadrons. 11 It is contrived to mimic the pertinent 

features of a more realistic theory. In particular, the model has an exact 

*I Goldberger-Treiman relation I* in the limit in which all couplings to **leptons** 

are turned off. Moreover, as we shall show, very weak coupling of the 

**lepton world ** to the “hadron world” will cause large violations of the cor- 

responding relation for physically determinable coupling constants. 

In order to keep our discussion as simple as possible we proceed in 

three stages. First we give a general characterization of the structure of the 

‘*lepton** and ** hadron” worlds in the absence of any couplings between them. 

Next we discuss the important effects which occur when we couple these worlds 

without the introduction of vector mesons. Finally, we discuss the introduction 

of vector meson couplings and what happens when the Higgs phenomenon takes 

place. 

A. Totally Symmetric Model 

We begin by assuming that the uncoupled **leptonf* and ‘*hadron** worlds 

each separately possess a U(1) symmetry of Goldstone type. More precisely, 

we assume that in the absence of “lepton-hadron*’ couplings there exist two 

conserved commuting axial-vector currents lH *‘/J(x) and j?(x). Furthermore, 

we assume that there exists a I* hadronic” pseudoscalar Goldstone boson, 

denoted by I 7rlr’ >, and a **leptonic*’ Goldstone boson, I x * > such that 
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CT* I j?(O)1 0 > = -i#f$) 

< x1 I j?(O) I 0 > = -iqpfto) 
X' 

<x11 j:(O)1 0 > = < T'lJL -5qo) I 0 > = 0 . 

(1) 

(2) 

(3) 

-w - The assumption that Bpjg = 3@jL - 0 combines with Egs. (1) and (2) to force 

mtlzm2 = 
X’ 

0. Note, nothing keeps I r* > and I x1 > from being composite 

particles (although in the model Lagrangian of Section 3 we shall use elementary 

7~ ‘1s and x I’s). 

If we no< assume that the ** hadron world** possesses **spin-$ nucleon*’ 

states, denoted by I N >, and the **lepton world” has **spin-& lepton** states, 

I I >, then in the usual way derive exact Goldberger-Treiman like relations of 

the form 

f(O) G(O) (0) (0) 
T’ n’NN = mN gANN 

f(O) G(O) (0) (0) 
x’ x1@ =ml guy 

(4) 

(5) 

G(O) 
n’NN and GF,)U, in Eqs. (4) and (5), denote the 7r* and x * coupling constants 

to **nucleons** and **leptons ** respectively, in the absence of any “lepton- 

(0) (0) hadron” coupling. Similarly, gANN and gM are the axial vector form factors 

(0) 2 (0) g&p ) and gANN (q2), defined in Eqs. (6) and (7), evaluated at q2 = 0. 

y (y gM 2 ’ “‘(q2, + 

(6) 

(7) 
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B. CoulAing **Leptonsyf to ‘*Hadrons** 

Let us now consider what happens if we couple I1 hadrons” and “leptons*’ 

together by a set of small coupling constants 
1 I 

gi in such a way that only the 

symmetry of ** hadrons + leptons ** under U(1) transformations is preserved. 

First let us make a remark about the uncoupled case. If we define the 

states 

Ix > = +cosB (O) 1 x1 > -I- sinLJ(O) 1 7r’ > 

I x > = case to) I 7r’ > - sine to) I x’ > 

where COST (O) = fi’,)/ f(O), sin6 (‘)= f’,9’/ f(O), and f?(O) = f2, + f2, , then 

Eqs. (1) and (2) tell us 

<X I 0 3 = -iqPf(0), 

< r I jw-j5’ 
H 

L 1 0 3 = - iqlL(2 case (O)) fro) 

-5l-J < x 1 j: - JL 1 0 > = -iqp 
( 
f(“)cos~(o)- f(0)sin~(o) 
X Ii- ) 

(8) 

(9) 

(10) 

(11) 

(12) 

i 

Equations (lo), (ll), and (12) make it obvious that it is the invariance 

under combined U(1) rotations of **leptons 11 and 11 hadrons’* which forces I x 1 

to remain massless; whereas, I v > stays massless only if the difference cur- 

rent is conserved. It therefore follows that if we choose to lock the “leptonf7 and 

*5fJ It hadron” worlds together so that the only conserved current is IH + L = 

.5/J 5P J,IJ +gL’ the world continues to possess one Coldstone boson I x gi > which 
t 1 

/ 

- 0 goes smoothly over to I x >, and a massive particle 
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I r (gi) > which goes smoothly to I 7r >. Note, it is the relative size of fro) 

and f(O) 
X 

which essentially defines the correct states to use in any perturbation 

expansion and not the sizes of the 
{ 

\ 
gi J or the details of the couplings involved. 

Keeping this fact in mind, we also note that the Goldstone particle I x > 

will satisfy a pair of exact Goldberger-Treiman like relations 

fG 
XNN = +“NgAw (13) 

fG 
XQ-@ 

= +.mlgAee. (14) 

where G x~’ % gANN-3 ek’ y can be chosen to behave smoothly in the gi’s. 

In particular, we assume that as the gits tend to zero we have 

f - f(O) + 8 (g i ) 

gANN - gANN (O) + e (gi) 

(0) gm -L gm + ‘tgi) 

(15) 

(16) 

(17) 

and that there exists a gi-dependent angle 8 such that 

, (18) 

G 
XJ-Q 

-. cos9 GE!@ + sin0 gRtti + 0 { g2). 

(0) Note, that although we shall assume cos6 - f x, / 
J 

f PP 
X’ 

+ f(O)2 #Jr 1 and 

sin0 - (0) 
f7ry /2! fxI 

/ PP + f tw (0) 
7rIT’ it is entirely possible that in the case f 

X’ 
>> f$), 

(1% 

sin0 (which will be << 1) can vary significantly over the desired range of 
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{ 
\ gi”j t say by a factor of 2). However, we shall see that if we take this into 

account by allowing 6 to be a defining parameter of the coupled scheme then 

all important results become independent of this fact. 

C. Adding Vector Mesons 

What we have described to this point is the general structure of a theory 

of r*hadrons?l and ?*lept.onsl* which is invariant under a simultaneous U(1) 

transformation. Due to this symmetry there is still one Goldstone boson, 

I x {gi} >, and so we do not have a scheme which looks like a possible real 

world. This will now be taken care of by introducing a set of assumptions 

equivalent, for our purposes, to assuming that at the Lagrangian level we have 

extended the remaining U(1) symmetry to a gauge symmetry. The Higgs 

phenomenon in our general scheme will amount to the assumption that we have 

a massive vector meson, vd”, coupled to **nucleonsl* and **leptons** by a 

universal coupling of the form gWP jz+L. We assume that in general 

2 
“W 

E g2f2 

and that y*nucleon beta decay” goes primarily through WP exchange and so we 

can define a fyweak coupling constant*‘, GW, associated with WP exchanges 

as 

Gw = g2/m& G l/f 2 . (21) 

(20) 

We complete our definition of this scheme by assuming that the x’s Goldberger- 

Treiman like relations change smoothly in g and that Eqs. (15) through (19) 

are correct perturbation theoretic statements if we include g among the small 

, 

constants 
{ 

\ 
gi/ ’ 
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D. The *‘Real World’s** Goldberger-Treiman Relation 

Within the spirit of this approach we have 

G nNN 2 cosfl GiykN- sin0 G(&, . 

-5r-t Moreover, by definition < 7r I jH + L I 0 > = 0 implies that the process 

r - B + I cannot proceed by direct WP exchange of the form r - W P --L +J!. 

Hence, only direct 7r - lepton couplings and couplings induced by the fact that 

7 is partially a x1 contribute to this process. Thus, we define 

Equations (13), (14), (18) and (19) now yield 

and so 

and 

G(O) 
T'NN = trnNgANN -f case g XINN)/f sin8 

G(O) 
X1@- 

- f(0)sin8g 

fg 
G 

g case x’NN 
TNN f sinB - ~0~8 1 

f = (f sin8) 1 _ g7r’le 
5i- GWf2cosB (0) GWmlf gAee sin0 1 

Finally, using f 2Gw z 1 we obtain 

(22) 

(23) 

(24) 

(35) 

(26) 

(27) 
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g n’an 
GWmIf gAee sin0 

IL 
“NgANN - 

gx’flN 

(Gw)” cos 19 1 

Clearly the product of the leading terms in these expressions gives the usual 

PCAC result, f,GrNN E mNgANN, and the remaining terms provide us with 

corrections to this relation. Assuming G W = lO-5/mN M 2 x lO-7/mt, 

(0) sinof= mr, gum 1 andmf = mn/200 We See that even if I gr’NNI w 

I gxlNNI = lo-lo we still expect ten percent violations of the I* Goldberger- 

Treiman” relation. (Note that in this case the gXINN corrections, which cor- 

respond to nucleon mass shifts, will be negligible; but, there is no a priori 

reason to force this to be true. ) Also note that our final result is independent 

of the fact that there can be significant fractional variations in sin0 as we 

promised. 

Summarizing, we note that the two important features of our model 

B leading to the final result are (1) the way in which the large quantity f = (Gw)-- 

enters mu1 tiplying small quantities, and (2) the assumption that when the Higgs 

phenomenon takes place its only important effect is to remove the x particle 

from on-shell states; it is important that it does not, except in a smooth way, 

affect relations following from the Goldstone nature of the ccupled theory. 

All of these assumptions can be shown to hold in the correct renormalized 

perturbation theory of the model given in Section 3, as well as other models of 

(28) 

this type. 
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2. SOME GENERAL REMARKS 

We will now proceed to generalize our discussion and define a scheme 

having essentially the same structure. The defining assumptions of this scheme 

will be stated in terms of currents, their algebra and perturbation hypotheses; 

in the kind of situation we envisage these assumptions would replace the usual 

calculational techniques associated with the Gell-Mann current algebra plus a 

perturbation approach to PCAC. 

To begin with, let us note that the simple U(1) @U(l) model already dis- 

cussed suggests strongly that, for at least a large class of gauge theories, the 

important aspect of the theory will be the general way in which the separate 

I* lepton- hadron ** Goldstone symmetries coalesce to give a single combined 

symmetry scheme of Goldstone type. In these worlds, insofar as the symmetry 

properties of the theory are concerned, the only real importance of the Higgs 

phenomenon is that it provides us with a mechanism for eliminating whatever 

unwanted Goldstone bosons we happen to have. Of course, the resulting 

massive vector mesons must be considered when we try to make contact with 

usual theories of weak interactions, but that proceeds along the lines sketched 

in Section 1. 

As we have already seen, at least some interesting results follow on the 

grounds of general hypotheses of this sort, without the necessity for believing 

specific Lagrangian models or engaging in complicated calculations. The same 

techniques readily extend to the general case and can be used to discuss vio- 

lations of other PCAC identities such as the Adler self-consistency conditions, 

pion-nucleon scattering lengths, 7r”- 27, etc. Details of how to do this and 
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discussion of how one can use experimental information obtained from low 

energy hadronic processes to place limitations upon the possible structure of 

the lepton world will be discussed in another paper. In this paper we will be 

content to describe the general features which will be true for any scheme of 

this type. 

Once again it is simplest to describe this scheme in two steps. First 

we shall describe the presumed structure of uncoupled worlds of hadrons and 

leptons, and then we shall discuss the general effects which occur due to 

coupling these worlds. 

A. Uncoupled Worlds 

The most general case we wish to consider is one in which the lepton and 

hadron worlds possess separate isomorphic chiral algebras of currents GH 

and GL. Although, we force the lepton and hadron current algebras to be the 

same we do allow the amount of spontaneous symmetry breaking in these worlds 

to be different. To be specific, we assume that there are subalgebras, NHCGH 

and NLC GL, of currents whose charges annihilate the lepton and hadron vacua. 

[e. g. we might assume that GHZ GLZ SU(3) @SU(3) and that NH is the SU(3) 

subalgebra defined by the hadronic vector currents and NL is the one dimensional 

algebra consistent of the usual leptonic electromagnetic current.] The 

remaining conserved currents are assumed not to annihilate the vacuum. 

This last hypothesis is precisely stated in the following way. Let us 

denote by jgo (CI! = 1,. . . , n) a basis of GH, the first m- of which are a basis 

for NH; and let us denote by ji, (a! = 1,. . . ,n) a basis for GL, the first mr of 

which are a basis for NL. We then suppose that in the hadronic world there are 
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4 (n-m) hadronic Goldstone bosons, I r:, > coupled by the currents jHa 

(o!=m+l , . . . , n) to vacuum. In the same way, we assume there exist 

(n-m?) Goldstone bosons in the lepton world, I x h >, coupled by the currents 

jl;lL,,(a=m*+l,..., n)tovacuum. In the totally symmetrical case we can 

classify the currents and the goldstone bosons into irreducible representations 

(0) of NH and NL and if we let I na! > stand for a boson belonging to a representation 

of NH of type ‘u* etc. , we have in the totally symmetrical case 

< x’ 
q 03-)P 

cl! ‘jHp IO>=-iqP6 

and 
Pl) 

< x’, 
. P9-4 

Ikp IO>=-iqP6 
P,) 

q(r26Lyp fx’ l 

(29) 

(30) 

As in the U(1) x U(1) case, in the absence of hadron-lepton couplings the 

hadronic and leptonic Goldstone bosons satisfy exact Goldberger-Treiman like 

relations and exact low-energy theorems. 

B. Coupling Leptons and Hadrons 

If one turns on even extremely weak couplings between the hadron and 

lepton worlds - without introducing gauge mesons - there is a mixing of 

hadronic and leptonic Goldstone bosons I 7~; > and I x; > the strength of 

which has nothing to do with the strength of the couplings between the worlds. 

Instead, the important quantities which determine the nature of this mixing are 

the constants f F! ( f$) and the way in which the GH +L conserved currents 

go over to sums of ji@ and j[@ in the limit of vanishing lepton-hadron 

couplings. We can always choose the currents jL+L , a! so that they go over to 
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definite hadronic currents, J Ha!, labeled by their NH quantum numbers. In 

that event, the general situation we describe corresponds to the specific 

assumption 

.P, 
jH+L, Q! 

.P -P 
- $I,a + Xa$L,P 

in the limit of vanishing lepton-hadron couplings. It is then clear that one can 

define a set of mixed Goldstone boson states I XQ, > and I na > such that the 

x0! Is stay massless as a consequence of the conservation of jL+L o’s and 
, 

the others require a mass as lepton-hadron couplings are turned on (this is 

not always a very small mass due to the large vacuum expectation values 

involved as is obvious in the Lagrangian discussion given in Section 3). 

As in the U(l)@U(l) case, the particles which remain Goldstone bosons 

in the presence of couplings satisfy Goldberger-Treiman like relations, etc. 

which one can expect to behave smoothly as couplings to vector mesons are 

turned on. 

Clearly, the number of Goldstone bosons in the coupled world will be at 

most n and at least max (ml, m). Therefore, if we specify X (yP, we have gone 

a long way towards constructing a general model. 

If we now consider what happens when the Higgs phenomenon takes place 

we note that this amounts to introducing a set of gauge bosons WE coupled 

to the ji + L currents in the form g W’ j a a! H+L,p’ 
The basic defining hypotheses 

which must be made are (1) that the Wirs have a mass matrix given by6 

(31) 
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.+ 

g2 < ‘I&+L o11 x6 ’ < +j I&+L p IO> , , (32) 

where the states I x6 > mean we sum over all remaining Goldstone boson 

states, and the - indicates that we drop the factors of (- iqP) appearing in 

the formulae analogous to that given in Eq. (10). 

This, of course, will mean that there will be as many massive vector 

bosons as there are Goldstone bosons I x6 > and that they will fall into 

irreducible representations of whatever normal symmetries remain. 

We would like to conclude this general description by pointing out that 

these hypotheses are in complete accord with the results of renormalizable 

Lagrangian field theories. Moreoever, once one departs from Abelian 

models (such as our U(1) @U(l) model) then the introduction of vector meson 

exchanges between the leptonic and hadronic worlds automatically implies - 

at the Lagrangian level - Goldstone boson exchanges between the two worlds. 

This will be true because in the non-Abelian case the vector mesons themselves 

transform under constant GH +L transformations and so they automatically 

provide a mechanism for locking the lepton-hadron vacua together. (N. B. 

in our U(1) @U(l) case this was not true. ) The terms in the Lagrangian cor- 

responding to direct Goldstone exchange arise automatically as renormalization 

counterterms. Hence, one way of looking at the successive breaking scheme 

we have described is to say that insofar as the low energy structure of the 

theory is concerned it is the set of renormalization counterterms which play 

the key role. This is not a totally uninteresting remark, since it points up the 

fact that the very small couplings corresponding to the Goldstone boson exchange l 

could be thought of as due entirely to second order weak effects. 
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3. A SIMPLE LAGRANGIAN MODEL 

The purpose of this section is entirely pedagogical and it is unnecessary 

in order to understand the arguments given in the previous sections. Never- 

theless, for those unfamiliar ,with the way the Higgs phenomenon takes place 

and/or the way the Goldberger-Treiman relation comes about in model 

Lagrangians, this section provides a brief discussion of all these points. The 

total Lagrangian we shall consider is 

+ 3 
I 

(BP + igWc”)(o’ - in’) 
I( 

(a@+ igWJ(a’ + in’) 
)I 

- B2(cF2 +rt2-f* VW) 

(33) 

This Lagrangian is not the most general one we should write down if we were 

really going to pay attention to giving a correct prescription for renormalizing 

the theory defined by it: however, since most of the really important points to 

be made can be heuristically arrived at on the basis of semi-classical argu- 

ments, we shall ignore the niceties. 
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Clearly under these conditions even this simple Lagrangian seems 

formidable enough. In order to simplify our discussion let us approach it in 

three stages. 

First, let us consider the case g = E = g xNN = g~ti = 0. In that event 

Stat decomposes into 

+ 8 (a$ y2 + 4 (iyf y2 - B2(crf2 +nf2-fr W)2 
(34) 

and 

(35) 
+ ~(ap~~)2 + +(i$x’12 - &($,2 + x’2- f(O)2 2 

x ) 
. 

Following the usual semi-classical argument we observe that in order to define 

a perturbation theory using fields whose vacuum expectation value is zero, we 

should rewrite gH so that the fields involved are the ones for which the 

potentials B2(02 + YT 2 - fr (“)2)2 and c2(G2 + x2-f(0)2 2 x ) have minima for zero 

values of the fields. This is accomplished in the usual manner by defining 

(3.’ = (T +fW; $1 = $+f(O) 
x X 

(36) 

and rewriting Eqs. (34) and (35) as 



I, -19- 

SH = ~N(i$-G~o~~o))$N-G~~N~N(‘l. + iy57r1)eN 

(37) 
+ + 2 fir (OJ2u2 1 + * (y’)2- B2(u2 + 7r12)- 4B 2 (0) f, u(u2 +7f 12) 

and 

2 = 7 L L (ifi-G f(‘))$ - ‘G 
xflx 1 xn$ (@ * i y5x ‘I$ 

(38) 

+ fr (8p@)2 - 8C 2 (“‘g52] +*(a,x)2-C2(~2+X’2)-4C2f;O)~($J2+X’2) fX 

Quantizing these Lagrangians leads to a hadron world with a massless x and 

a massive (T and a Goldberger-Treiman relation m E) = G~~$~“). Similarly 

for the lepton world. 

If we now consider what happens if we still let g = 0 but allow all other 

mixed coupling constants to be finite, we see that the proper potential to 

minimize is 

2 2 B (a’ +vr 2-f;O)2)2 + C2($‘2. x -fx 2 VW) - E (alq5’ + 7rx)2 . 

It is trivial to show that we can solve this by letting x = x = 0 and defining 

cl=c +fr and $‘=Q,-tf so that at the minimum o = @ = 0. For the 

’ case f(O) >> f(O) * 
X 71 it is easy to show that fx is very nearly f (0) 

X 
but that fr can 

be appreciably different from f (0) 
rr - Nevertheless, if we rewrite Eq. (33) with 

g = 0, u and # replacing 0’ and r$’ and defining 

(39) 7f = cose7rf- sinOx’ ; x = cosBxl +sin07r1 

where cosB = fx and sin0 = fr / J fl + f,” , we find that we have a 

quantizable Lagrangian for which x is a massless field, r describes a field 

whose mass is approximately rnz Hence, 
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as before E M 10 
-7 gives reasonable values for the 7~ field mass. Furthermore, 

we see that 

mN = fnGTNN+f i? x XNN 
= f (sin8 G,NN+ case gxNN) 

and 

I”a =f G 
x XQQ + f*gTQQ = f (cos8 G 

XQQ 
+ sin6 g,,) I 

(40) 

(41) 

which is what we obtained from general arguments. (Recall the fn in Eq. (39) 

corresponds to f sin@ in our general discussion and not the experimentally 

determined 7r -decay constant. ) 

It is a simple exercise to convince oneself that letting g # 0 just gives a 

W meson of mass rnt = g2f2 and since the minimization problem is unchanged 

(except to higher orders in g) one obtains essentially the same Goldberger- 

Treiman relation given in Eq. (40). 

CONCLUSION 

At this point we would like to add a few remarks concerning our general 

discussion and point out directions in which this work might be extended. As we 

have already stated, there appear to be a large class of theories for which all 

hadronic symmetry breaking can be reasonably assumed to be due to weak 

couplings of hadrons to leptons. Moreover, we have conjectured that as a 

general featnre of such theories it is the Goldstone nature of the decoupled 

leptonic and hadronic worlds which govern these effects and not the details of 

the coupling scheme involved. We believe one of the important advantages of 

proceeding to explore these questions in the general manner we have outlined is 
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that one does not have to worry whether or not the Goldstone bosons involved 

are to be thought of as elementary or composite. Hopefully, even if one could 

construct a solvable model of quarks binding to form a set of hadronic Goldstone 

particles, the general features of the physics involved in coupling these to 

leptons would be the same. Another point worth mentioning is that identities 

based upon the low energy theorems for the Goldstone bosons of the coupled 

lepton-hadron worlds would have to be free of anomalies. At the Lagrangian 

level this is essential in order to be able to carry through the renormalization 

program in gauge theories. For models this can be accomplished either by 

cancelling lepton anomalies against hadron anomalies or by basing models 

upon anomaly free symmetry schemes. Still one more point that is worth 

speculating upon is that if one assumes in the lepton world all but a simple 

U(1) subsymrnetry is of the Goldstone type, one will automatically generate 

an isospin violating piece of the strong interactions. Presumably, the largest 

effect of these terms will be seen in the meson mass spectrum and it might 

provide us with a completely self consistent way around the failure of Dashen’s 

sum rule for the electromagnetic mass differences of the pseudoscalar mesons, 

as well as a different way of treating processes such as TO+ 2y and n - 37r. 
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FOOTNOTES 

1. The original suggestion that PCAC is related to a slightly broken chiral 

symmetry is due to Nambu and his collaborators [see Y. Nambu and 

D. Lurie, Phys. Rev. 125, 1429 (1962) and earlier papers cited therein]. 

The first paper suggesting the relation between modern work on current 

algebra and a chiral symmetry scheme seems to be S. Weinberg, Phys. 

Rev. Letters 16, 163 (1966). An extensive list of later references on - 

SU(3) x SU(3) is contained in Weinberg’s report in Proceedings of the 

Fourteenth International Conference on High-Energy Physics, Vienna, 

1968, edited by J. Prentki and J. Steinberger (CERN, Geneva, 1968), p. 253. 

2. More detailed discussion of how conventional ideas of PCAC are related to 

a perturbative approach about a Goldstone symmetry limit can be found in 

R. Dashen, Phys. Rev. 183, 1245 (1969); R. Dashen and M. Weinstein, 

Phys. Rev. 183, 1261 (1969); R Dashen and M. Weinstein, Phys. Rev. 

188, 2331 (1969). 

3. The original discussion of the mechanism of eliminating unwanted Goldstone 

bosons from a theory by adding vector mesons is P. W. Higgs, Phys. Rev. 

145, 1156 (1966) and the extension of these ideas to the non-Abelian case 

was discussed by T. W. B. Kibble, Phys. Rev. 155, 1554 (1967). The 

extension of these ideas to a discussion of weak interactions of leptons is 

discussed in S. Weinberg, Phys. Rev. Letters 2, 1264 (1967). 

4. An extensive list of papers realted to such theories can be found in 

J. D. Bjorken et al. , SLAC-PUB-1107, September 1972 (submitted to 

Phys. Rev. ) and T. Hagiwara and B. W. Lee, Stoney Brook preprint 

October 1972. 
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5. Some of the general points made in this paper have been independently dis- 

cussed in the context of a specific model in the paper by T. Hagiwara and 

B. W. Lee in reference 4. Also, some features of this approach apply to 

the scheme given by I. Bars, M. B. Halpern and M. Yoshimura, Phys. 

Ref. D6, 696 (1972) and in Department of Physics and Lawrence Berkeley - 

Laboratory preprint (October 13, 1972). 

6. This way of defining a generalized Higgs mechanism, although correct, 

is - to our mind - lacking in elegance. It would be much nicer if one 

could give a different, more directly intuitive set of assumptions from 

which Bq. (32) follows directly. One way of deriving Eq. (32) based upon 

a set of assumptions which are not more economical than the ones we 

make in Section 3 is the following. Define jI$+L+w 3 Q! g 
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N. B. the first two terms for the right hand side of this are of order 

unity if m& x g2. 

Taking the divergence of both sides and assuming i3 j’ /.A H+L+W is of order 

f’gf’ we obtain 

e$g) = iqv 
1 
z< 
6 

ol TH+L+w , aI x6 > < x6 17H+L+w p lo > , 

Cancelling terms of order unity gives the desired relation. 


