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ABSTRACT 

A relativistic, three-dimensional wave equation which restricts 

one of the two interacting particles to its mass shell is applied to the 

study of nuclear forces. A very general property of the relativistic 

nature of this equation is that any dynamical model leads to potentials 

with repulsive cores. These soft core potentials are evaluated 

numerically for a simple one particle exchange model limited to the 

exchange of r, p , w, and a neutral spinless meson. By adjusting four 

of the parameters we obtain good fits to the Reid soft core potentials, 

especially in the S states. The couplings obtained are very reason- 

able, and the results are compared with other recent models. The 

general features of the theory and the quantitative details of the 

model are thoroughly discussed. 
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I. INTRODUCTION AND SUMMARY 

In this paper we present a new theoretical framework for relativistic cal- 

culations of nucleon-nucleon scattering and the structure of the deuteron. The 

equations we present strongly suggest that the nucleon-nucleon interaction will 

develop short range repulsive forces regardless of the dynamics which governs 

the intermediate and long ranges. These repulsive forces owe their origins to 

the relativistic structure of the theory, and thus the repulsive cores are viewed 

as a relativistic phenomena, and not due primarily to the exchange of massive 

vector mesons. 

As a quantitative test of these general ideas we examine a simple model in 

which the nuclear force is represented by the exchange of four mesons; the 7r, 

p, W, and a fictitious a. The a! is an isoscalar spinscalar meson intended to 

represent phenomenologically the major contributions of the two pion exchange 

potential and the massive E meson. By adjusting some of the couplings and 

taking the nonrelativistic limit we achieve a satisfactory fit to the phenomeno- 

logical soft core potentials obtained by Reid. 1 

In this section we present our major results and give a detailed discussion 

of the theory. The mathematical details and most of the specific formulae are 

presented in the remaining sections of the paper. 

A. The Relativistic Wave Equation 

The wave equation we use together with physical motivations for introducing 

such an equation were presented in a previous paper. 2 Briefly, we employ a 

covariant integral equation in which the full two body Green’s function is approxi- 

mated by the Green’s function for the propagation of one free particle (on-mass 

shell) and one virtual particle (off-mass shell). The condition that one of the 

particles be restricted to its positive energy mass shell eliminates the integration 
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over the relative energy, leaving only the three-dimensional integration over the 

relative three momentum. Our equation is therefore a covariant three-dimen- 

sional equation and as such bears a resemblance to other quasipotential ‘equa- 

tions introduced by Blankenbecler and Sugar3 and Logunov and Tavkhelidze4 

(BSLT) and also by Todorov.’ We will make a few comments on these other 

approaches after we have discussed our equations. 

In order to study the dynamics of our equation without solving for the phase 

shifts, we took the nonrelativistic limit (i. e. , the adiabatic limit where all 

momenta are assumed small compared to the nucleon mass) and obtained a 

Schrijdinger equation with an effective potential which could be compared with 

Reid’s phenomenological potentials. This limiting process is very well defined, 

but its accuracy is certainly in doubt, particularly at short distances. Hence 

a more stringent test of the ideas presented here must await a numerical solu- 

tion of the fully relativistic equations, which we are encouraged to undertake by 

the success of the nonrelativistic limit.6 

The relativistic wave equation and one particle exchange potentials for the 

nucleon-nucleon system are written in detail in Section II. 7 In Section III we 

take the nonrelativistic limit. The equations reduce to a coupled set of 

Schrodinger-like wave equations for two companion wave functions ?i;’ and $-, 

which in position space become: 

-($+ ej z)+(x) = - v++(x) e+(x) - v+-(x) l)-(x) 
-2M $-(x) = - V-+(x) J;‘(x) - V--(x) G-(X) (I. lb) 

We have suppressed two component spin indices; the potentials above are actually 

matrices in two component spin space. The existance of the $- wave function is 

due to the fact that one of the particles (particle 2 in this paper) is off-shell, and 
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hence propagates as a mixture of a physical (on-shell) particle and a physical 

antiparticle (with the opposite momentum). This superposition is expressed 

quantitatively in the following decomposition of the one particle Green’s function 

---AEL 
M2-p2-ie 

u(F) ii@ _ v(-jg q-c) 
E -p -ie 

P 0 EP+po- lE 1 
(r. 2) 

where E p zz (M2 + c2) 1/2 and u and v are ordinary Dirac spinors. 8 The identity 

(I. 2) shows that as the energy of the off-shell particle approaches +Ep, it 

propagates almost fully as a particle, while if p. approaches -Ep, the propaga- 

tion is almost fully as an antiparticle (with opposite three momentum as required 

by conservation of baryon number). The decomposition (I. 2) is used in the co- 

variant integral equation to express the covariant wave function in terms of two 

noncovariant but coupled pieces, zi;’ coming from the first term of (I. 2) and zJ- 

from the last term of (I. 2). 

The interpretation of the wave functions $’ and $- as probability amplitudes, 

and the equations (I. 1) as coupled Schrijdinger equations is justified by the 

relativistic normalization condition. When the relativistic potentials are inde- 

pendent of the total energy (which is true for one particle exchanges) this reduces to 

1 = d3x f (1.3) 

The potentials on the RHS of (I. 1) can now be viewed as a matrix potential for 

one large Schrijdinger coupled channel system. As such we see that V +-I- 
and 

V-- are Hermitian and the off-diagonal potentials are related by 

V +- = v-+)7 . (I. 4) 

Note that in the asymptotic region where all potentials are zero, the 

structure of the LHS of (I. 1) forces $- to be zero also. Hence only the $ 
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component contributes to the asymptotic wave function and if we can obtain a 

Schrodinger equation for ii;’ alone, then the effective potential which enters that 

equation is the correct one to compare with phenomenological potentials. Now 

V--(x) is local in our approximation, and hence +- can be eliminated almost 

trivially: 

$-- = [2M - V--]-l V-’ f (r. 5a) 

+ V+- [2M-V--3 -’ V-+ (I. 5b) 

The correct effective potential includes not only V*, but a term quadratic 

in the off-diagonal potentials. In the BSLT method there is no $- wave function 

and the V’- potentials do not occur, so that the extra term in the right-hand 

side of (I. 5b) is missing. But this extra term has some very exciting properties, 

which we now discuss. 

B. Dynamical Origin of the Repulsive Core 

Using (I. 4) we see that the effective potential becomes 

V eff = V++ + V+- [ZM - V--] (V+-)’ 

rv -I-!- 1 -I-- 2 +mIv I 

(r. 64 

(T.6b) 

where in (I. 6b) we have used the fact that V-- << 2M in the intermediate region. 

Hence the quadratic terms are repulsive. Furthermore, in the one particle 

exchange cases discussed below, the matrix potentials are typically of the 

form: 

(r* 7) 
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so that the quadratic term is of shorter range than V and more singular at 

small distances. This guarantees that these terms will dominate at short dis- 

tances, and be negligible at large distances. They provide a perfect model 

independent explanation for the ubiquitous repulsive core, and as our fits show, 

this attractive qualitative picture works quantitatively as well. 

This is perhaps the most interesting aspect of the theory proposed in this 

paper; the repulsive core is seen as a natural consequence of the Lore& 

invariance of the two-nucleon interaction. We believe that the potential must 

be calculated for all distances before one has a satisfactory theory of the - 

nucleon interaction, and that this approach makes this possible. The point is 

that potentials calculated from the exchange of any single particle, no matter 

what its behavior at intermediate distances, are always repulsive at short 

distances, and the range of the repulsive core contributions from a particle of 

mass m are always (2m)-l, half the range of its contribution to the direct 

potential V+. Hence the situation for the repulsive core is similar to that at 

intermediate range - the full potential is a sum of particle exchanges, the 

highest mass particles tending to be more important because of their longer 

range, but the details depending as usual almost as much on the strength of the 

coupling as on the range. 

In our fits the one pion exchange (OPE) dominates the repulsive core, 

primarily because of its long range. This is a new role for the pion not pre- 

viously expected. To obtain these results we used a nNN coupling of the form 

where q = pf-pi so that $y5 = 2M between positive energy spinors. Hence the 

coupling (I. 8) is a linear combination of pseudoscalar and pseudovector couplings 
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with A adjusting the relative amounts of each coupling in such a way that the 

coupling between positive energy spinnors is independent of A. We fixed gn 

to agree with Reid’ 

9: - = 14.0 47r (1.9) 

so that the long range part of the OPE calculated from (I. 8) is identical to 

Reid. As it turns out, the quadratic part of the OPE depends only on the y5 

part of (I. 8)) the pseudovector coupling making a negligible contribution to the 

V+- potential. Hence by adjusting h, we can change the amount of repulsion 

produced by the pion without changing its long range potential V*. In our final 

fits, we took A = 0.41, although there is some flexibility and h= 0.5 could have 

been used also, If one insists on h=l, fits are possible but the cores tend to be 

too tough, and for h=O the cores would be much too soft. A more detailed 

discussion of this point awaits careful calculations of the two pion exchange 

(TPE) contribution and numerical fits to low energy parameters using the exact 

equations in momentum space. It appears that the nuclear force problem gives 

insight into the off shell structure of the rNN coupling by determining h. 

Our discussion until now has ignored the potential V--. This potential is 

also Yakawa-like, and at a short distance will exceed 2M. Hence, the effective 

potential has singularities at short distances due to the (2M-VU-)-’ factor in 

(I. 6). It is in the spirit of our discussion to take these singularities seriously, 

in which case our potential is technically a hard core potential. We have 

examined the singularities, and they present no serious difficulties. However, 

the question is really not very important because the singularities are inside 

of the distance x=0.3 m -1 

71’ so that they are masked by the soft repulsive cores 

which reach considerably outside of this distance. As a result we have felt 

justified in fitting the Reid soft core potentials. Actually, at such short 
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distances our adiabatic approximation is no longer quantitatively reliable, and 

the detailed behavior of the solutions at short distances must await a numerical 

solution of the momentum space equations. Here the singularities should offer 

no serious difficulty because the individual matrix potentials are regular. 

Before we turn to a detailed discussion of the fits to the Reid potentials 

we present a brief comparison of our treatment with other current work on the 

nuclear force. 

C. Current Status of Theories of the Nuclear Force 

Until now, the BSLT equation has received almost exclusive attention in 

modern relativistic analyses of the nuclear force problem. It has been used by 

Partovi and Lemon’ and by Chemtob, Durso and Riska, 10 who both calculate 

the important TPE contributions. It has also been used by Gersten, Thompson, 

and Green’I ’ in a recent one boson exchange fit to the phase shifts, and a related 

equation has been used by Schierholz 12 for the same purpose. An equation like 

ours has been discussed extensively by Fronsdal and collaborators. 13 

A principal argument given in favor of the BSLT approach is that it is 

covariant, depends on a relative 3 momentum only, and satisfies two body 

unitary. However, these advantages are common to all equations of the quasi- 

potential type, and are also enjoyed by the equation discussed in this paper and 

the one proposed by Todorov’ which we referred to earlier. In fact, an 

infinite number of equations can be easily constructed which enjoy these 

properties, 3,14,15 and it is not yet clear which of these equations will ultimately 

give the best results for nucleon-nucleon scattering. 

This question is important because different quasipotential equations do 

not give the same result in any practical calculation. The reason is that the 

kernal or potential is inevitably approximated by the exchange of a finite number 
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of particles, and the solution of each equation therefore corresponds to a 

different approximation of the full sum of all ladder and crossed ladder dia- 

grams on which the dynamics is based. Only in the event that the kernals 

were summed to all orders could we expect different quasipotential equations 

to give the same result. 

This is already clear in the one particle exchange approximation. In this 

approximation our equation includes off shell effects not included in the BSLT 

equation. Specifically, the V+- contributions are not present in BSLT, and as 

a result they contain no repulsive core. We suspect that if the BSLT kernel 

included terms involving the exchange of many pions, that the combined effect 

of these terms would eventually create the repulsive term which we obtain in 

the lowest approximation. 

In a similar fashion, the very i.mportant TPE contribution must be re- 

calculated for use in our equation. Not only do we need to know the contribu- 

tions to the V’- and V-- potentials, but the V* potential is also different 

because of the different form of the iteration of OPE, which must be subtracted 

from the nucleon box in calculating the TPE. 

In addition to the dynamical advantages already discussed, there are other 

virtues of the approach developed in this paper. In the case of the hydrogen 

atom, for example, putting the proton on shell leads directly to the Grotch- 

Yennie equation 16 which is a Dirac equation with an effective potential which 

does an optimum job with the e-p system. Another advantage of the approach 

described here is that it yields directly the vertex function with one particle 

off shell. When the two nucleon system is in its bound state, the deuteron, 

this dnp vertex function, first discussed by Blankenbecler and Cook, 17 is 

precisely the one needed to discuss in detail the nucleon pole contributions to 

backward p-d scattering and electron- and photo-disintegration of the deuteron. 
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One could object to the use of the equation developed here on the grounds 

that it places only one nucleon on shell, and hence treats the two identical 

particles unsymmetrically. However, as one can see in what follows, this 

lack of symmetry introduces no inconsistencies, and is best seen as a means 

of counting the most important effects which come from the fact that the 

nucleon are off shell. And Fronsdal 18 has argued that only in the unsymmetrical 

situation where one particle is taken as free can one construct a relativistic 

classical theory of two interacting particles. 

We turn now to a brief discussion of the problem of the TPE potential. As 

previously indicated, we have introduced the (I! meson to represent phenomeno- 

logically the combined contribution of the TPE and the more massive E meson 

(950 MeV). We do not wish to suggest that such a simple parameterization 

does justice to this important contribution, but rather we wished to investigate 

other aspects of the nuclear force in this paper, and this is impossible without 

rounding out the dynamics by including some isoscalar attraction which is 

known to come from the TPE. A calculation of the TPE potential within the 

framework of this theory is presently in progress, and when it is included with 

the present analysis we expect many details to change. 

Two results of this preliminary calculation will be mentioned here. First, 

we have found that in the static limit our TPE contribution reduces largely to 

the exchange of a spin scalar, isoscalar meson of distributed mass. We do not 

believe that the static limit is very accurate quantitatively, but this preliminary 

result helps provide justification for the replacement of the TPE by the a, even 

though calculations within the framework of the BSLT theory suggest that the 

TPE is more complicated. 9,lO Our second remark is that a correct calculation 

of the TPE contribution must include the role of the A(1236) nucleon resonance, 
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which in a simple pole model gives a large contribution to A+ and thereby helps 

to satisfy the Adler self-consistency condition. 19,20 The A contribution also 

cancels most of the contribution to the symmetric 7r-N scattering length, a (+), 

which comes from the nucleon poles in the y5 theory, 20 so that it has the 

effect of decreasing the contribution to the TPE over what one would get from 

the nucleon box and crossed box. Because of these cancellations we believe 

that a rather precise model of r-N scattering must be developed before the 

TPE can be reliably calculated. Another difficulty which we face is that we 

need to know something about n-N scattering with off-shell nucleons before we 

can evaluate our V+- potentials. 

With these preliminary remarks concluded, we turn to our fits to the Reid 

potentials. 

D. Fits to the Reid Potentials 

In the adiabatic approximation, V* and V-- contain central, tensor, and 

spin orbit terms, while V+- contain local spin terms (to be described in 

Section III) and velocity dependent terms involving a single derivative. When 

the exact quadratic term in (I. 6) is calculated, many complicated nonlocal terms 

are generated. In this paper we neglected some of the smaller of these terms 

(for details see Section III) but our final effective potential still contained 

significant velocity dependent terms. These terms were eliminated finally by 

the effective mass transformation, 22 giving us an effective potential depending 

on energy dependent local central, tensor, and spin orbit (L. 6) terms and a 

new Lo (Cl-02) term. This interesting new term is discussed in some detail 

in Section IV, but has not been included in the fits presented in this section. 

Also, the energy dependence of the potentials (which results from the effective 

mass transformation) was not investigated, the total energy of the two nucleon 
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system being fixed at its threshold value of 2M. Thus, although the potentials 

.! 

presented here are local potentials limited to central, tensor and L. S compo- 

nents only, and as such cannot fit all the phase shifts (because of the ‘So, lD2 
splitting for example) this is in no way a limitation of our approach and a more 

exact treatment will include additional nonlocalities. The reader interested in 

these details is urged to study Section IV. 

In Figs. la-e and Figs. 2a-d we compare our theoretical potentials with 

Reid’s1 soft core potentials. In Figs. 3a-d and 4a-d we display the spin 

independent central, spin-spin, tensor and spin orbit potentials separately, 

and show the contributions to each potential from separate particle exchanges. 

The Hamada Johnson 23 potentials are also shown in Figs. 3 and 4 for compari- 

son, but since they are hard core potentials the comparison is not too relevant. 

We will discuss the fits to the Reid potentials first. In Fig. 1 we have 

displayed all of the isospin triplet potentials fitted by Reid except the interesting 

1 D2 state. Our fit to this state would be similar to the ‘So, but the exact 

situation in this case is quite complex, and discussion of this case is reserved 

for Section IV. The same complications occur for the 3Pl state, so that we 

are not inclined to take our rather poor fit to this state (Fig. lc) too seriously. 

The fits to the other states are all quite good. 

The situation for the isospin singlet states is shown in Fig. 2. Here our 

fit to the deuteron channel is compared with Reid’s alternate soft core (SCA) 

potential as well as his soft core potential. Note that the three curves of 

Figs. 2a and 2b almost interpolate between these two cases in a consistent way. 

The fits shown in Fig. 2 cover all of the isosinglet potentials determined by 

Reid, although the complex situation discussed in Section IV also applies to 

the ‘PI case (Fig. 2c)and the 3D2 case (Fig. 2d), so that the poorer quality 
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of these fits must again be taken less seriously. For the 3D2 case we also 

compared our fit with the Reid hard core (HC) potential. 

These fits were not determined by a systematic search in the parameter 

space. To obtain the final curves presented here, we simply varied 4 param- 

eters (see Table I) over a lattice and took the curves which gave the best fits 

to the important ‘S and 3S-3D states, with a little attention to the fact that the , 

P waves should be very repulsive. Hence our fits to the P and D waves are 

presented more to show that these channels are satisfactory, and that the good 

agreement in the 1 S and 3S-3D channels is not accidental. 

The values of our parameters are presented in Table I, together with 

values used in three other recent one particle exchange models. 11,12,24 

Note that we need fewer particles, a fact which we feel is due to the helpful 

role of our quadratic potentials. Furthermore, our p and w coupling constants 

are quite consistent with experimental values, 25,26 and we feel that they are 

more realistic than the values obtained in Refs. 11 and 24. The ratio 

R = (g,/gp)2 = 9.0, is in agreement with the SU(3) nonet scheme, 25 and although 

this was varied in some earlier fits, it was later fixed at this value. The 

coupling of the n is not known but a reasonable upper limit is gt /47r 2 1.3 

for a F/D ratio of 0.6. If the F/D ratio is 0.75, then the coupling is zero. 

In any case, the 77 coupling used in Refs. 11 and 12 is probably too large, and 

if the value 1.3 or less is used, the n makes little contribution to the potentials. 10 

Furthermore, we require only one scalar meson, and no 6 meson. Of course 

we have not yet fit phase shifts, as have the other authors referred to in 

Table I. 

We now turn to the dynamical role of the different particle contributions. 

These are indicated in Figs. 3 and 4, where an exploded view of the isospin 
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one and zero potentials are shown. These potentials are defined by 

V eff = v”c + v~scT1.cT2 + T$S12 + V&L. s (I. 10) 

where I=0 or 1 is the isospin of the two nucleon system, and S12 is the tensor 

operator (see Section III). 

The solid curves shown in these figures give contributions from different 

partial combinations of particles. First, we show the 7r contributions alone, 

then the tip contributions, then the tip-to! contributions and finally the total 

curves which include z+p+o+w and are labeled T. 

It turns out that in some cases (V,) the OPE contribution comes entirely 

from the quadratic term, while in other cases (Vss and VT) the quadratic OPE 

term makes no contribution and the entire OPE contribution is from the long 

range part. In still other cases (VLs) neither the quadratic nor the long range 

part of the OPE contributes. In the first case, the OPE contribution is labeled 

by h (instead of 7r) toremindthereader that it comes entirely from the quadratic 
n 

OPE (and is therefore proportional to h’ - see Section III). In the latter case 

no pion curve is shown at all. 

Because the quadratic terms are nonlinear functions of the potentials, 

there are interference terms and the contribution of the pion and the o is not 

the sum of a pion contribution and a o contribution alone. Hence the p contri- 

bution can not be determined by subtracting the T curve from the p+7r curve. 

At intermediate distances where the quadratic terms are negligible, such a 

subtraction is valid, but at short range it may be very misleading. 

We discuss the role of the four particle exchanges individually. 

T: - As in any theory, the pion contributes the asymptotic long range 

potential and the major share of the tensor potential. A new feature 
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of this theory is that the pion also contributes lots of repulsion to the 

spin independent central potential through its quadratic term (labeled 

v l 
This repulsion gives a major contribution to the soft core, 

explaining practically all of the repulsion in the isosinglet case 

(Fig. 4a) and much of the repulsion in the isotriplet case (Fig. 3a). 

The quadratic OPE potential also explains another very important 

feature of the spin independent central potentials: The isotriplet VC 

is less repulsive (or more attractive) than the isosinglet VC. Of the 

particles listed in Table I, only the c and 6 will give a splitting be- 

tween the two VC potentials, and the p splitting has the wrong sign 

and the 6 probably does not exist. The quadratic OPE potential intro- 

duces a splitting in the right direction and by making h < 1 this splitting 

can be reduced to the point where, when combined with the p it is just 

the correct size. 

But the OPE contributions could never give a satisfactory theory 

by themselves, for they fail in just about as many ways as they 

succeed. In particular, the OPE gives negligible contributions to the 

spin-spin part of the central potential, Vss, and these terms must 

be large if there is to be attraction in the S states together with strong 

repulsion in the P states. Hence the OPE provides none of the attrac- 

tion in the central potential necessary to bind the deuteron and explain 

the strong threshold ISo scattering. For these we need other 

contributions. 

P: The p makes very important contributions to the Vss terms, and 
- 

in this way helps provide some needed attraction in both the 3 3 S- D 

and ‘S states and repulsion in the P states. In orier to fit all these 
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states simultaneously a large term of the form (7 lo 3- 2)(ol.02) is 

needed. The pion contributes just such a term, but it is much too 

small. The p contributes the term 

m2 2 -m x 
(T~.T~)(~*c~) -+(1-t-K )2 

6M P 
2 e 

P 

X 
(I. 11) 

This is important only because of the large value of K 
P’ 

which is 

enough to overcompensate for the suppression introduced by the 

coefficient mz/6M2. 

The p also makes a major contribution to the L* S potential. 

Its contribution to the tensor potential is unfortunately not very 

helpful, and this deficiency is only rectified after other contributions 

have been considered. 

When the p and r have been included, the picture is reasonably 

satisfactory in all cases but the spin independent central potentials, 

vC’ which are much too repulsive. To rectify this situation we need 

some central attraction. 

Cl: As we have - The central attraction is provided by the CY meson. 

repeatedly emphasized, the a! is meant to be a phenomenological 

representation of the TPE. Note how it makes a decisive impact 

on the VC potentials, but that its contributions to the other potentials 

is very minor. The fact that it contributes to the tensor and spin- 

spin potentials at all is due to existence of the quadratic potentials. 

g: Finally, the o meson is added because it is well known to exist 

and it would be inconsistent to include the p and omit the w. As one 

can see, the w does help the fits in a number of ways. It makes 

some helpful contributions to the Vss and VLs potentials, and its 
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contribution to the tensor potential is quite decisive in giving a good 

V$. However, its repulsive contributions to VC are not needed in 

this theory, and they serve primarily to force us to increase gz to 

compensate for the repulsion. The reason why the w is a good deal 

less important than the p is due primarily to its small anomalous 

moment, K o. This means that even though its coupling is 9 times 

as strong as the p (which is important in VC) the factor g2(1+Kw)2 

is only about l/3 of the corresponding factor gz(l+Kp)2. 

We conclude this section with the following comments: 

(i) The fits would be improved by a longer range p type of contribution from 

the TPE. This would give us larger Vss potentials, which would increase the 

P wave repulsion and at the same time increase the S wave attraction. With 

such terms a smaller p and w coupling would be acceptable and the range of the 

CL could be made shorter and its coupling smaller. We do expect such contri- 

butions to be present in the TPE. 

(ii) Examination of all of the partial contributions to VC (Figs. 3a and 4a) show 

that every curve is repulsive at short distances, This is an example of the 

model independence of our repulsive core which we emphasized previously in 

this section. The size and shape of the core does indeed depend on the dynamics, 

but its existence does not. In all of the cases we looked at while we were 

searching for a good fit, cores were present. 

(iii) Although the overall effect of the quadratic terms is repulsive, these 

terms do not make repulsive contributions to every potential. The most 

striking example of this is the tensor potential, where the quadratic terms are 

attractive and make important helpful contributions to Vt (Fig. 4c) at short 

distances. 
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(iv) As we discussed earlier, the potentials presented here do have singu- 

larities at short distances. The singularity in the isotriplet potential is at 

X c E .26 m?,l while in the isosinglet potentials it is at xc z .23 m?,‘. These 

singularities are well inside the distances usually taken for hard cores and in 

any case the adiabatic approximation breaks down at this distance so that the 

short range behavior of the potentials and wave functions must be determined 

by solving the relativistic equations numerically. 

The remainder of the paper includes a detailed discussion of the relativistic 

equations and potentials (Section II), the transition to the nonrelativistic limit 

and the reduction of the effective potential (Section III), and a discussion of 

some of the more usual nonlocalities contained in this theory (Section IV). 
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II. THE RELATIVISTIC THEORY 

In this section we develop the explicit form of the relativistic wave equa- 

tions and potentials discussed qualitatively in the previous section. 

A. The Wave Equations 

In momentum space our quasipotential equation is2: 

where ,Q and v are spinor indices, P = (IV, 0 ) is the total energy-momentum 

4-vector, p and k are relative 4 momenta 6 and i are defined below), ^Y is the 

interaction kernal with particle 1 on the mass shell, C is the charge conjugation 

matrix, I? is the covariant deuteron-nucleon vertex function. 17,27 
PV We shall 

see how I’C is related to the relativistic wave functions in what follows. The 

equation (II. 1) together with our notation is illustrated in Fig. 5. In (II. 1) 

summation over repeated indices is implied. 

The two body Green’s function, G, is 

G 

I 

(II* 2) 

where, since particle 1 is on the mass shell, 

ii = (kg&); G- = (Po,p) 

k. = Ek-W/2; i. = E 
P 

-w/2 

E = (M2+k2)1’2 k - 

(II. 3) 

Note that the energy of particle 2 is W-Ek, so that particle 2 is also on its 

mass shell whenever W = 2E k’ 
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Our first step is to reduce (II. 1) to two coupled integral equations by 

using the following identity for the projection operator on particle 2 (see also 

Eq. (I. 2)): 

-2M f)(k) $+kJ 0.4) 

where u@) and v(‘) are the standard Dirac spinors and a sum over the repeated 

2 component spin indices is implied. The identity (II.4) enables us to introduce 

two wave functions (the overall normalization of these wave functions is fixed 

by the normalization condition discussed below). 

(rr. 5) 

and write the two coupled matrix integral equations: 

-W?q,@) = - -!Yh -J [I v;;, 
(27r)3 ’ 

ss’(g,k_,w) ic’,,slfg + v-- rr~,ssT~‘!Sw) Y)itst Ed 
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I 

Hence the potentials are defined: 

+- 
v&93w) = 

On the LHS of (II. 7) we have used the indices 1 and 2 as a shorthand notation 

for the 2 component indices {r, rl/ and {s, s’) respectively. This will also be 

employed in Section III. 

So far all of our expressions are exact insofar as we have made no non- 

relativistic approximation, The individual matrix potentials V and the wave 

functions $’ and $- are not themselves covariant, but the entire system (II. 6) 

is. 

B. The Normalization Condition 

The next task of this section is to write down the relativistic normalization 

conditions for I’C. Correcting the errors in Ref. 2, we have 

1 = J d3P(rc)t 6) d- 
(237j3 I-iv dW2 

where 

R = Gpol,vp@,W) d 
8W2 
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In what follows, we will assume that ‘V is independent of W, and therefore 

R=O. Using (II. 4) we then obtain 

G 1 Pa 10) 
which is easily differentiated with respect to W2. The normalization condition 

reduces to: 

(II. 11) 

where sums over the two component spin indices have been suppressed. In one 

particle exchange theories where ‘V is not a function of W, (II. 11) is an exact 

result. Note that it is a positive definite condition, establishing that the wave 

functions (II. 5) can be indeed thought of as probability amplitudes. 

C. The One Particle Exchange Potentials 

Once the form of the interaction matrix ‘V is given, the theory is completely 

specified. In this paper we restrict the dynamics to the exchange of r, (Y, p, 

and w mesons. 

‘IT: For the OPE potential we take the linear combination of pseudo- - 

scalar and pseudovector interactions given in Eq. (I. 8). Replacing 

the Dirac indices of particle 1 by the subscript 1, and similarly for 

particle 2 gives: 

A 
where g2/47r= 14.0 as discussed in the introduction, q=&k and from 

(II. 12) 

- 22 - 



where h is an adjustable parameter which governs the mixture of 

pseudoscalar to pseudovector coupling. In our final fits A=0.41. 

The squared momentum transfer, q2=t, takes a special form 

when particle 1 is on shell. We have 

i = (i~-;)~ = (Ek-Ep)2 - (k__IJ2 

= 2M 2 - 2EkEp + F_P 

In the adiabatic limit where 

lp~l and Ik_l << M , 

then 

(II. 14) 

(II. 16) 

and we obtain the usual nonrelativistic form for the OPE potential. 

Finally, note that the exact form of the OPE potential, Eq. (II. 12) 

is energy independent, so that the assumption used to obtain the nor- 

malization condition (II. 11) holds. 

O!: - For the (Y exchange potential we use the simplest form for the 

coupling of an isospin zero, spin zero meson to nucleons: 

a AA -9; $1, 
,v’ 12@,k) = m2 A 

2 

where gcr is the QNN coupling constant. Note that this potential is 

again independent of energy. 

As we emphasized in the introduction, the 01 used here is not 

necessarily to be identified with the physical E meson with a mass 

of about 950 MeV and a width of about 400 MeV. Rather, it is 

thought of as a simple approximate form for that part of the 
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intermediate attraction which is isoscalar in nature. Hence ma and 

gQ! are- treated as parameters, and the final values are listed in 

Table I. 

p and W: For the vector meson exchange potentials we use a vector meson - 

nucleon coupling of the form: 

where g 
P 

is the pNN coupling and K is the “anomalous moment” 
P 

coupling - i. e., it is the F,/F, ratio of the p coupling constants. 

The 

L I 

same form without the 7-y is used for the w coupling. 

Using these forms the p potential becomes 

2 6 A 
g (7 1’ 7 2) q(s) q-cl) 

.r/p,,@,k = p 
m2 - Z 

P 

and the w potential is the same except for 7 1. T 2 factor which is 

missing. 

The p and w introduce 6 parameters. In our final fits 5 of 

these were fixed: the masses we set equal to the w mass, the K 
P 

and Kw factors set equal to the anomalous moments of the iso- 

vector and isoscalar nucleon form factors respectively and the 

ratio R=gi/gi = 9.0 as suggested by the nonet scheme. The 

only coupling we varied was g 
P’ 

and its value is given in Table I. 

The theory is now completely specified. In the next section 

we treat the difficult problem of taking its nonrelativistic limit. 

P. 17) 

(II. 18) 
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III. THE NONRELATIVISTIC THEORY 

To obtain a simple picture of the behavior of these equations and potentials 

in the nonrelativistic domain, we go to the adiabatic limit. This is the limit in 

which the external 3-momentum p, internal S-momentum &, and E = W-2M 

can all be regarded as small compared to M. Of course one can always restrict 

E and W to the nonrelativistic domain, but the assumption that k, is small com- 

pared to M requires that the integrals in (II. 6) will be dominated by small values 

of &, which in turn will be true only if the range of the force is large compared 

to M-l. This latter assumption is not really very good, but should suffice at 

least to give one much physical insight into the nuclear force. Ultimately, the 

results must be checked by integrating the equations (II. 6) numerically, as 

discussed in Section I. 

A. OPE Potential 

Using equations (II. 7) and (II. 12) we calculate the OPE potentials to leading 

order M -1 . We obtain 

w 1) 

where q=p - k and N N N 

(m.2) 

Note that the potential is local, since it depends on q only. Also, the off 

diagonal potentials V+- are large unless A is small. 
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Since the potentials are local, we may define position space potentials in 

the usual way: 

V(rJ = --L- 
Pd3 

J d3q e+lqsr V(q) . 

Fourier transforming (III. 1) we obtain 

V:(r) = Vi-(r) = (7 1e TV) 1 
V:(r) 01.02 + Vi(r) S12(rJ 1 

c .r l- Vi-(r) = -Vi+(r) = -i (7 I. 7 2) 7 V;(r) 

where if we let x = rnp : 

3CI.Z 02’S 
s12(9 = r2 - Y.2 

2 
pi- =z 

( 1 

m3 -x 

lr $yk 

X ( 1 
g2 m2 

v’; j--q ==-&g ( > 
1+1 e-x 

x x 

(rrr. 3) 

(In. 4) 

(Ia. 5) 

Note that our VW OPE potentials are identical with those obtained by previous 

workers, while our V 
f- and V-- potentials are totally new. 

B. The Q! Exchange Potentials 

A calculation of the CY potential to leading order in M 
-1 gives 

2 

(v+J, = -(v,,,, = &) 
I 

1 - -..I-- 
a- 

,;2 b3x9 
l 
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and 

A 

where S is the total spin operator, i= + (01+02). To obtain the result (III. 7) we 

have adopted a common philosophy - terms of order M -2 are retained in the 

LaSpart of V++ because these give the largest contributions, but terms of the 

same size are neglected in the central part of V* where terms of order unity 

are present. 

The off diagonal pieces of this potential are not local, so that in position 

space they will introduce gradient operators. If the position space wave functions 

are defined according to 

$(r) = -JL 
(270” 

I- 
d3k e ik-r @I W 8) 

(and similarly for p) then we have 

k -+ -i T (Tn. 9) 

and similarly for p. Since p is the final momenta, gradient operators which 

arise from p will always operate on both the potential and the wave function, 

while those from k operate only on the wave function. In the V-+ potentials we 

will always express the nonlocality through k, and in the V+- potentials it will 

be expressed through p. In this way, the generafrelationship V+- = (V-+)? is 

most conveniently recorded. 

In position space the a! potentials become: 

V:(r) = -Vi-(r) = -Vt (r) - & Vy (r) La S 

ia .r 
V+&(r,iT) = + +-- V;(r) + ia2. 7& V:(r) 
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and 

io .r 2 Vi+(r, i7) = - 7 1 o! V:(r) + z V6 (r) ig2. 7 

The v operates on everything to its right. If we define 01 = rna/rnT, then 
2 -cYX 

Vf + z$-,% 
( ) 7r 

(III. 10) 

(III. 11) 

C. p and w Exchange Potentials 

When making the M -1 expansion for the p and o potentials we again follow 

the somewhat inconsistent policy of keeping the largest contributions to each 

different type of spin term, even though in some cases comparable contributions 

to the central potential are being neglected. The p potential gives us: 

+- 
( 1 V p 12= 

gp2(T ‘7 ) 
’ 2 r-2~7~~~ - K u .q 

234 Dp @ p 2-J. 
+ W+_Kp) s,’ Pp2) 1 

2 
gp (7 1’ 7 2) 

234 Dp (9 
Kp a2.%+ i(l+Kp)~(clxf12) 

I 

In position space we obtain: 

V:(r) = VP-(r) = (7 1. TV) V,(r) - [ p $--($+ 2Kp) VT(r) L.6 

n 

w. 12) 

“; -I-- 2 P 2P h 

6M2 
(l+Kp) V,(r) yc2 - (l+Kp) V,(r) S12WJ 
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:, 

+- 
VP (r) = (71.T2) ia VP,(r) 

(l+K ) r*olxcr2 

-+- r VP,(,) 1 

o+y r ‘5X~2 p 
2 r V,(r) 1 (JII. 13) 

If we let p = mp/ma, then 

( 1 
g2 e-PX 

VpO 5 = $ rnT x 
7r 

p2+s+3 
X2 

I @I. 14) 

We obtain the same equations for the w contribution except that the factor 

(T I. 7 2) is missing from (III. 12) and (III. 13). 

D. The Coupled Schrijdinger Equations 

We now return to Eq. (II. 6) and take the adiabatic limit of both sides. This 

means, in particular, that we will implement the assumption that the internal 

k integration is dominated by momenta which are small compared to M, so that 

terms involving k/M can be treated as small quantities. We obtain 

-2M$-(19 = - 
s 



where each of the potentials is a sum of the potentials (III. l), (III. 7), and 

(III. 12)) and we have indicated that in this approximation the diagonal potentials 

V* and V-- are local (except for L. i terms). 

These equations can be reduced to more familiar form by casting the equa- 

tion into position space using (III. 3) and (III. 8). We obtain 

- ($+E) $+(r) = -V++(r) zj+(r) - V+-(r, iF) 7$-(r) (III. 16a) 

-2M 9-(r) = -V-+(r, iy) G+(r) - V--(r) #J-(r) (III. 16b) 

where the potentials are 

V*(r) = UC + U ss 01’U2 + UT S12(G) + ULS LG 

uc=-v;+v;+(T p2) vi 

J 

m2 
ugs = (7 p-2) + + (1+Ku)2 V; 

6M 

‘T = b-(3) r ;v; - (1+Kp)2 V;] - (1+Kw)2 V; 

l-~2) (1.5 + 2Kp) V; -t (1.5 + 2Kw) V’;’ I (III. 17) 

and 

i(T .r io .r r-g Xu 
V+-(r)=V, +- +V, ++Vi 2’, 2 + $3 2'Tbl 

K K 
v~=v~-(Tl.~2’+rp1-+7~ 

V; = - (T~.T~) (l+Kp) VT - (l+Kw) Vy 
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VI = $ 1 ,v; + (7 LST2) v. p +v; 
I 

(rrr. 18) 

and V -+ = (v+-)?. The expression for V-- will undergo further approximations 

and the final expression is given below. 

The reductions of these equations to a single SchrXinger equation was 

sketched in part I. If one includes all the terms in V--, this reduction is 

tedious, but offers no difficulties in principle. The final effective potential 

one obtains is an Hermitian, velocity dependent potential which contains many 

non-local terms. These terms are very interesting, but are small and their 

complexity tends to obscure the main features of the result. These small terms 

are probably also more sensitive to the errors in the adiabatic approximation. 

For these reasons we eliminated most of these terms by approximating V-- 

by the leading terms from the a!, p , and w contributions. We took 

-- 
V =v;+(yT2)v;+v; (III. 19) 

which makes V-- a local, spin independent potential. The terms we have 

omitted are the OPE and the g l U I 2, S12 and L-S terms from the Q, p, and o 

contributions. Since all these terms are down by M -2 from the terms given 

in (III. 19)) and this potential contributes very little to the details of the inter- 

mediate range force, the approximation is justified within the framework of 

the adiabatic approximation. 

We now turn to the details of using Eq. (III. 16b) to eliminate the $- wave 

function from Eq. (III. 16a). As long as V-- is local, the formal solution was 

given in Section I Eq. (I. 5) with the effective potential defined in Eq. (I. 6a). 

To obtain a practical form for this potential we must reduce the complicated 

second term, which we have referred to as the quadratic potentials and will 
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denote by VQ 

VQ E V+- [2M - V--j-’ (V+-)’ . (III. 20) 

The algebraic details of this reduction will be given in part E below, and 

the reader not interested in these details may skip directly to the final answer 

in part F . 

E. Reduction of the Quadratic Potential 

In order to simplify the algebra we introduce some convenient spin pro- 

jection operators, although with the simplification (III. 19) this technique is not 

really necessary. However, these operators will be very useful in the future 

if we wish to include ol* c2 and S12 terms in V--, such as would come from 

the OPE. 

We may define the projection operators 

so = a (1 - a1*02) 

+, = ; (3 + up2 + S12) 

which satisfy the relations 

X2 = x. X.X. = 0 
i 1 1 J 

where xi represents any of the So, 

that 

(III. 22) 

These are complete in the sense 

h h A 

l=So+Tl+T2 

Y72 
= -3io + Tl + e2 

52 
=2+1-4T2 

(III. 23) 
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With these operators we can easily compute the operator [~M-v--]-~ in the 

event that V-- depends on the invariants in (III. 23). 

To simplify the treatment of the spin functions which make up the off 

diagonal potentials V+- and V-+ we introduce the spin operators 

P. 
R, = & (alar + 020r) 

. r - (01x~2) 
.r - 02*r) +a r (III. 24) 

These operators can be regarded as odd operators in the sense that products of 

even numbers of R’s always give the even operators (HI. 21)) while odd powers 

of R’s reproduce themselves. Note that 

(III. 25) 

while all other products involving the R’s are zero. When the even operators 

multiply from the left we have: 

TIR+ = R+ 

h h * 

T2Ra = Ra (III. 26) 

all other left products being zero. The right products (the results of multiplying 

the R’s on the right by the even operators) can be obtained from (HI. 26) by taking 

t- the Hermetian conjugate of both sides being careful to remember that Ra - Rb. 
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Note the relations 

which holds for any R. 

These operators are also complete in that 

I 
-=R++Ra+ r 93 

- = R, - Ra - Rb r 

ir4~1>(u2) = k 

2r a-‘b 

In terms of these operators, the off diagonal potentials are 

+- v =-* 1 v+k+-t-vaka+vbg 
I I 

+iu2*Tvl 

ZZ -i U+ icr 2’ v 3 

V -+ t =iU +ivt02 3 

where : 

V a=V; - (l+;K,) v(;l+ (y2)[V;- (l+;Kp)V;] 

and va was previously defined in Eq. (III. 18). Introducing 

D=l-2M 1 v-- 

= 1 v;+v;+(T1-72)vp0) 

P. 27) 

(III. 28) 

(In 29) 

(III. 30) 

(III. 31) 
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we obtain 

The first term of (III. 32) is reduced using (III. 25), but the second term requires 

knowledge of how a2. 7 commutes with the R’s. We use the relations 

U2’ 7 ;1+ = (Ra+R.$ U2’ 7 + : (r-a+ %I+ ZT,) 

u2. a Ra = ; (R+-R a+l+) U2. T - & (r.7 - U1* L + 4 So) 

u2-Tlf$, = i (R++R,-RIJ 0~07 - & (r.?+ al.L + z?,,) 

U2.Fj’ -2~ u .r (r.V-02.L) 
r2 2 

Doing the algebra we obtain a reduced form for the quadratic potential: 

Q Q Q Q L.i vQ = UC + uss 0fa2 + 'T ‘12 + 'LS 

2 
+U;DL*D-UEG -+& (U,) yg 

(III. 33) 

(III. 34) 

where we have a new spin invariant 

L.D= + L. (Cy2) @I. 35) 

which seems to violate isospin conservation. This is not the case, however, 

and an understanding and discussion of this term will be put off for the next 

section. The potentials U will suffer one more transformation, and their 

final form will be given below. 

The equation (III. 34) exhibits the velocity dependence of the quadratic 

potential through the terms proportional to UE where 

UE = +‘(2D) (III. 36) 
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To compare our effective potential with static potentials we transform this 

dependence away using the effective mass transformation. 22 If we introduce 

a new wave function zjT according to 

(III. 37) 

then qT and $ + have the same asymptotic behavior, so that the phase shifts and 

binding energies are unaffected by the transformation. The Schrodinger equa- 

tion for zjT will contain no velocity dependent terms. The new effective potential 

one obtains differs from the old, and we have 

% 
eff+e’E+%%?- 4MDT 

1 Ufl 
+2M E 

where the prime on the UE refers to differentiation with respect to r and 

1 2 DT=D(l+UE)=D+zvf 

(III. 38) 

(III. 39) 

The new effective potential has an energy dependence introduced by the trans- 

formation. 

F. Summary of Final Equations 

We collect together the final expressions for the potentials. After the 

effective mass transformation we obtain a Schrijdinger equation for a trans- 

formed wave function 

-( g+c) @T = - ‘T$T (III. 40) 

where the relation between qT and Ic;’ is given in Eq. (III. 37). The transformed 

potential has the form 

VT = VC + Vsso1.~2 + VT S12 + VLs L-S + VLD L-D (III. 41) 
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where the new spin invariant L. D was defined in Eq. (III. 35) and will be dis- 

cussed in the next section. The potentials are all of the form 

D Q 
“c=T uc+vc 

DU Q 
VSs=Fq ss+vss 

D Q 
vT=VT+vT 

DU Q 
VLs=q Ls+vLs 

Q 
‘LD = VLD (III* 42) 

where the U potentials have been given in Eq. (III. 17) and come from the long 

range V * potential. The factor D/DT which modifies these contributions was 

defined in Eqs. (III. 39), (III. 18), and (III. 31). This factor arises from the 

effective mass transformation. 

The quadratic contributions to each potential are given below: 

Q- 2 2 2 8M DTVc - 2v+ + va -I- vb - 2 (2v+ - va - Vb) 

1 
-D “Q 

1 
3 t2v+ - va - v,,) 1 

+4M+z (v$$)“+~(v$&) 
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Q 2212 2 8MDTVSS=-v +-v -vb r 3+ 3a 

1 

Q&I DTV; = v; - vz +G (v+ +v 
a ) - DE (v++vad 

2M DTr V& = -vQ(v+ - va) + D $ ' 
0 

2l 
Q 0 vQ 2M DTrVLD = vQ(v+ - vb) - D D (HI. 43) 

where the v’s are defined in Eqs. (III. 18) and (III. 30). In these equations the 

prime refers to differentiation with respect to r. 

The potentials (III. 42) are the ones presented in Figs. l- 4. In those 

figures and in the discussion we ignored the presence of the potential VLD. 

This potential has some very interesting properties, and we turn to a discussion 

of this now. 
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IV. SOME SPECIAL NONLOCAL INTERACTIONS 

There are many nonlocal interactions present in the theory presented in 

this paper. The easiest one to deal with was the velocity dependence, which we 

eliminated by the effective mass transformation. Other nonlocalities at short 

distances were neglected when we simplified V-- (Eq. (III. 19)). It turns out 

that many of these which we neglected are of the same type as the new nonlocality 

which results from the L. D potential. 

The existence of the L. D term defined in Eq. (III. 35) means that our poten- 

tial is not symmetric under interchange of particles 1 and 2, which might at 

first glance seem to be either a violation of charge independence or the 

indistinguishability of the particles. Actually, it is not really a manifestation 

of either, but is due to the fact that particle 2 is off shell and particle 1 is on 

shell. There is no symmetry between the two particles because we are working 

in a dynamical region where symmetry is not expected. In this language the 

Pauli principle means simply that the sister equation for particle 1 off shell and 

particle 2 on shell contains no new information. 

Because the off shell nucleon is close to its mass shell except at short 

distances, one expects VLD to be of very short range, and this is indeed the 

case. As Fig. 6 shows, VLD is comparable to the quadratic contributions to 

VLs and as one can see from Fig. (3d) and (4d) these are of very short range 

compared to the full potentials. 

To study the behavior of L. D, we first assume that the nucleons are non- 

identical particles, but that isospin is still conserved. The states are specified 

by the total angular momentum J, the orbital angular momentum L, the total 

spin S, and the isospin I. The fact that the particles are non-identical means 

that the states do not have to have antisymmetric wave functions, and hence 
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both isospin states exist for each J, L, S. Now, one can easily show that La D 

commutes with 3, L2, and 7, but does not commute with S2. Hence L-D can 

be expressed as a matrix in block diagonal form, diagonal with respect to J, 

L, and I. Since S can only be 0 or 1, L* D is a 2 x 2 matrix, and its matrix ele- 

ments are easily shown to be 

Hence L* D changes triplet states into singlet states and vise versa. In the usual 

nonrelativistic theory the Pauli principle fixes S once J, L, and I have been 

chosen, so that only the diagonal elements of (IV. 1) would occur, and hence 

terms of the form L. D are absent from the potential. 

In our theory the particles are still identical, but the wave functions are 

not required to be antisymmetric because only particle 1 is on shell. To see 

why this is so we restrict our discussion to spin zero particles and return to 

the vertex function, I’, for two off shell particles, which is a function of the 

relative energy and relative S-momentum. The Pauli principle would require 

that this function be antisymmetric in its relative 4 momentum. 

UpO’P) = - J%PO’ -p,> .(Iv. 2) 

When we put particle 1 on shell, we fix po=Ep-W/2, while if particle 2 is on 

shell po= -Ep+W/2. Hence there is a different wave function to describe each 

case: 

r(Ep-W’2, P) = P,k) 

rt-Ep+w2,_p) = r2g 
crv. 3) 
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The antisymmetry now becomes a relation between two different wave functions 

rather than a condition on one wave function. Equation (IV. 2) becomes 

r,Q) =-r,t-g) . 0-V. 4) 

If we were using the BSLT theory (or the Todorov equation) then po=O, and there 

is only one wave function like the nonrelativistic theory and we still have the 

antisymmetry. 

Losing the antisymmetry means that all possible J, L, S, and I states 

contribute to a partial wave expansion. However, the states that are totally 

antisymmetric (as p - -p) and hence have isospin I satisfying the relation N N 

1 = ; (1 - (-1)~s ) (Iv. 5) 

are the only ones which can contribute to real physical scattering. This is 

because when both particles are on their mass shell, Ep=W/2, and lY1=lY2 and 

only antisymmetric states are allowed. These will be referred to as even 

states. Hence the symmetric states with isospin given by 

I=+ ( 1 + (-l)L+s 
> 

are virtual. In this sense they are like the wave function q- which affects the 

dynamics even though it does not contribute asymptotically. These will be 

referred to as odd states. 

A way to write the partial wave expansion for I’I which includes these 

restrictions is 

where 

re@) = -ret-p) and r’cp) = +r”q . 
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In a similar way (from (IV. 4)) 

JyP) = c 
J,L,S 

w. 9) 

The factor BEp-W assures that the I” contribution will vanish on shell. It is 

also suggested by the requirement that if F is even in p it must be odd in 

PO - EP-W/2. Note that the wave function in momentum space is 

GLS@) 
2EP-W + (Iv. 10) 

so that only the antisymmetric part has the (physical) singularity at EP=W/2. 

It is now clear that the role of the L. D term in the potential is to couple 

the odd states to the even states. Without this term the odd states would be 

present but uncoupled, and as such would have no influence on the dynamics. 

The only states which are affected are those with J=Lzl, for only in this case 

do S=O and 1 states both exist. Hence the dynamics of four states are affected: 

the isotriplet 3Pl and ‘D2 and the isosinglet ‘PI and 3D2. The fits shown to 

these potentials in Section I will therefore be modified by coupling to unphysical 

virtual states. This additional coupling can be thought of as an additional non- 

locality which enters the theory. As Fig. 6 shows, in the present approximation 
. 

the coupling only becomes effective inside of x g 0.6 rni’. 

The equations for these coupled states can be obtained from (IV. 1) and 

(IV. 10). For the odd states it is convenient to introduce 

$o@) = 
-NrO@ 

2EP-W * 
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This odd wave function has an asymptotic part just like an even wave function, 

and is related to the odd wave function defined in (IV. 10) according to 

In position space in the nonrelativistic limit we obtain: 

S V 
E+V eff $f = - JJz) -$ 

(Iv. 13) 

where S and S’ are spin quantum numbers and are either 0 or 1 and S#S. 

These equations can only be solved numerically. Such a study should not 

be undertaken until the other small terms of this type have been included. But 

the best way to handle this problem is to return to the original momentum space 

equations which can be solved numerically with less difficulty. 
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I 

I. 

Table Caption 

One particle exchange parameters used in this paper are compared with 

those used in Refs. 11, 12, and 24. The quantities are defined in 

Section II. Those parameters labeled with an * were varied in the final 

fits to the potentials. The other parameters and R = (gw/gp)2 = 9.0 were 

fixed. The left column gives the quantum numbers of the exchanged 

particle using the notation I(Jp) where P is the parity. Masses are in 

units of the pion mass. 
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Table I 

OPE 

w-) 

0 to+) 

w-) 

w-) 

0 (13 

w+) 

Cutoffs 

h * 

m E 

$411 * 

k 
P 

m 
P 

gy4n 

k 
W 

m 
W 

This 
Paper 

Ueda 
and Green, 
Ref. 24 

Gersten, 
Thompson, 
and Green, 
Ref. 11 

Schierholz, 
Ref. 12 

14.00 

0.41 

14.95 14.47 14.4 

--- --- 

2.41 

2.6 

1.89 

3.0 

18.05 

5.64 

--- 

--- 

--- 

9.92 

4.1 

1.4 

2.88 

6.8 

5.03 

--- --- 

--- --- 

4.28 

3.96 

8.05 

3.96 

1.0 1.51 0.86 0.605 

3.70 5.06 6.38 4.78 

5.64 5.5 5.5 5.11 

9.0 23.87 20.63 9.05 

-0.12 0.0 0.0 -0.1 

5.64 5.64 5.64 5.62 

--- 

--- 

No 

2.35 

5.5 

Yes 

1.14 --- 

6.9 --- 

Yes Yes 
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Figure Captions 

1. Isospin triplet states. The solid curves are theoretical potentials pre- 

sented in this paper. The dashed curves are the soft core potentials of 

Reid (Ref. 1). 

2. Isospin singlet states. We also show the Reid alternate soft core potential 

(SCA) in (a) and (b) and the hard core potential (HC) in (d). 

3. Isospin triplet potentials defined in Eq. (III. 42). The solid lines are the 

various partial contributions discussed in the text. The lines labeled T 

are the complete result. The quadratic potentials are defined in Eq. (III. 42) 

and (III. 43). The dashed lines are the Hamada Johnson hard core potentials 

(HJ) given in Ref. 23. 

4. Isospin singlet potentials. See the caption to Fig. 3. 

5. Diagramatic representation of Eq. (II. 1). The x on line (1) indicates that 

particle 1 is on its mass shell. * 

6. The potentials VLD are compared with the quadratic contributions to V LS’ 
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