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I. Introduction 

Ever since the geometrical-absorptive picture was first applied to high-energy 

two-body scattering processes, 1 the impact parameter profile of elastic. nonflip 

amplitudes has been viewed as a monotonically decreasing function in impact parameter 

(b) space. This profile is often referred to as a tlcentrallt profile. Such forms 

have been used extensively to calculate the effects of absorption on various t’basict’ 

exchanges, as well as to phenomenologically describe elastic amplitudes at high 

energies. 

One of the more successful phenomenological models which uses geometrical 

language, and which has been applied with considerable success to two body processes 

at intermediate and high energies, is the dual absorptive model. 2 This model uti- 

lizes two-component duality. The diffractive-or pomeron exchange-part of any 

given amplitude is assumed to be central in b-space and to have no zeroes in t-space 

for It’s 1 BeV2. This last assumption is of a crucial importance in the phenomeno- 

logical analyses to which the model has been applied, where it has become a common 

practice to parameterize pomeron exchange amplitudes by simple exponentials ,e St . 

It has already been shown3 that the two above assumptions--“centralitylt in b and 

“no zeroes” in t-are in some sense independent. Slight modifications of the profile 

can effortlessly generate or eliminate zeroes in the amplitude. In fact, it is quite 

possible that the structure observed in pp-+pp at ItI= 1.2 BeV 2 (4) is caused by a zero 

in a pomeron exchange amplitude. It is, however, a remarkable phenomenological 

observation that pomeron exchange amplitudes do not exhibit zeroes or dips at values 

of Itl smaller than - 0.8 BeV2. We face therefore the interesting problem: what 

exactly is the relation between the property of ‘tcentralityff in b, and the location of 

the zeroes in t? A precise answer to this question will, of course, provide tests 

for monotonicity of the pomeron exchange profile. Some interest was recently 
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added to this problem by conjectures that pomeron profiles may possess a peripheral 

component5. 

In this work we derive a lower bound on the imaginary part,A(t),of helicity con- 

serving elastic amplitudes which have monotonically decreasing profiles. For a given 

A(t = 0), which defines the strength of the interaction, and which is related to the 

total cross section, aT,by the optical theorem; and for a given slope S = A’ (t = O)/A(t = 0), 

which defines the range of the interaction, we prove that for amplitudes which have 

monotonically decreasing imaginary parts in b-space, 

A(t)> A(t = 0) 
2J1(R6?) 

Rfi 
(1) 

for values of t such that Rfi 5 z N 3.83, the first zero of J1, where Jn is the 

Bessel function of order n. R is defined by R2 = 8S, and is the radius of a uniformly 

grey sphere which generates an amplitude with a slope S. 

In other words, for realistic values of 9 and S, the smallest A(t) (for the t 

range given above) which can be generated by a central profile, is generated by a 

grey sphere of constant opacity. 

An immediate result is that 5, the position of the first zero of A(t), (if zeroes 

exist at all) is constrained by Rfi>z. At intermediate energies, where the slope 

is 3-4 BeV -2 , corresponding to a radius of l-l. 2 fermi, we find IEI 10.5-O. ‘7 BeV2. 

The absence of zeroes for Itl< 0.5- 0.7 BeV2 is therefore a simple consequence of 

monotonicity. 

We have proven our theorem by using the technique of Lagrange multipliers6. 

This method can be used to find bounds only if the lower (upper) bound is obtained 

as a minimum (maximum) in the space of profiles considered, which is not necessarily 

true ingeneral, and must be checked in every specific calculation. This point has 

been overlooked in many previous calculations of bounds by the above technique, 

where it has been implicitly assumed that the bound is obtained in the space. Though 
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in some calculations this assumption is a posteriori obviously justified, no formal - 

proofs were given. We have overcome this difficulty by a technique which we des- 

cribe in the following section, and which may be useful to formally complete the 

calculations of other bounds as well. 

In section II of this paper we state and prove the mathematical theorem which 

gives the lower bound. In section III we discuss the constraints and phenomenological 

implications, and suggest future directions of inquiry. 

II. Derivation of the Bounds 

In this section we wish to present the two related theorems, theorems 1 and 

2 below, which are the central results of this paper. Since the proofs of these 

theorems involve virtually identical arguments, we shall state and prove theorem 

1 in detail, and merely state theorem 2. We would like, however, to eliminate the 

unpleasant possibility discussed in the introduction, namely, that the lower bound 

is not obtained as a minimum in the space we are considering. To prove that this 

does not happen in our problem, we proceed as follows : we first prove theorem 0 

below, which is identical to theorem 1, except that the profiles are defined on a 

finite interval of b, [ 0 , x] . In this case the bound is necessarily a minimum in 

the space considered and so the lowest local minimum is the lower bound. Using 

theorem 0, we then proceed to prove theorem 1. 

In the spirit of geometrical models, we shall work with profiles which are 

functions of the continuous impact parameter, b. However, the proof can easily 

be translated into the more exact language of partial wave amplitudes labelled by 

the discontinuous parameter, Q. The discreet reader who fears that something 

may be lost in translation, may consult reference (7), where both treatments of a 

similar problem are discussed in detail. 

In the impact parameter notation, our problem is to minimize the imaginary 
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part of a helicity nonflip scattering amplitude 

A(t) = Jm 2b a(b) Jo (ba) db, tso 
0 

given the total cross section, 

L oT 
=2n= A(O) = Jm 2b a(b) db 

0 
and the value of the imaginary part of the amplitude at a point outside the physical 

region, 

GE A(tl) = Jw 2ba(b) I,(bq)db , 
0 

o< tpo 

where to is the value of the first continuum singularity in the t channel, In is the 

modified Bessel function of order n, and a(b) is the imaginary part of the profile 

a(b) s Imf(b) = Im e i6 (b) sin 6(b) . 1 
In addition to these constraints, we require that unitarity be obeyed, ’ 

a(b) F a2(b) 

and we implement the central behavior of the pomeron by requiring 

q))s da@) < 0 
db - ’ 

Theorem 1 may then be stated as : 

Theorem 1: If at some energy, values for % and G are given, and if unitarity is 

obeyed and a(b) is a non-increasing function of b, then A(t), the absorptive part of 

the helicity nonflip scattering amplitude is bounded from below by 

A(t)? 2cR 
2 J,(Rfi) 

Rfi 

in the t-range - z2 5 tR2s 0, where c and R are determined by 

9-r 2 2?r = CR and G = 2cR 
2 Ipq) 

RJtl 
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and z is the first zero of J 
1’ 

Z’ 3.83. 

To prove this, we first need to prove 

Theorem 0: Let !$(x, c, E) be the space of functions, Z(b),defined on O<_b<-x, 

where x>& , such that 

(i) 0 I %(b)jl 

. d+Z (ii) x(b) = x L 0 

(iii) “L = J 2b Z(b)db , and 
0 

(iv) “G = Jx 2b Io(b&I) 5 (b) db. 
0 

Then, for E(b) E 8, 

;i(t) = lX2b Jo(b&) %(b)db > 2zii2 
J (?ifi) 

0 
; G 

where R and C are determined by “L .= cR2 and 
-2 qq) 

g = 2c R I-l& 
for the t-range 

. I 
0 LitJt<z. \ 

Proof of theorem 0: 

The proof involves four steps. First, we show that a lower bound exists, and 

we derive the necessary equations which describe the profile%(b) that minimizes x, 

assuming it is piecewise differentiable. Next we present a function, X(b) which is 

a candidate for the correct solution. Third, after proving a lemma, we show that 

there is no other profile that satisfies the necessary conditions. Finally, we demon- 

strate that our candidate is consistent with the variational equations, thus proving 

that a piecewise differentiable minimizing function does exist. 

To begin, wenote that a lower bound to x certainly exists, because 1x1 ix. 

We have explicitly proven that the lower bound is obtained as a minimum in %, i. e. , 

that there exists a profile Z.(b) in g such that the amplitude x(t) corresponding to 

it is equal to the lower bound. We will not present this proof in this paper, since 
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it is based on involved and purely mathematical considerations. We only wish 

to remark that the finiteness of x plays an essential role in the proof; when x = CO , 

there is no a priorireasonwhy the bound should be a minimum in the space. 

Now we wish to derive the variational equations for the lower bound. To do 

this, we use the Lagrange multiplier technique with inequality constraints. 6, 7 

The auxilliary functional for our problem is 

J 
X gk- 
0 

2bZ(b) JO(b6)db + Q! L [- -Jr2 b%(b)dd 

1 J 
X X +p CL 2b S(b) IO 2 b A@) [Z(b) - “a’(b)] db 
0 0 

(2) 

-J 
X 

2 $(b)‘%(b)db. 
0 

a! and p are equality multipliers, and h(b) and $(b) are non-negative inequality 

’ multipliers. The generalized coordinates of the variational problem are Z(b). 

In writing the above functional we have made the extremely mild assumption that 

the minimizingprofile is piecewise differentiable. This assumption is sufficient 

in order to implement the monotonicity constraint into the Lagrange functional by 

using g(b) . Applying the Euler-Lagrange equations to the functional 9, gives 

-Jo@&) - a! - pIo(b&I) + h(b) (1 - 2%(b)) + y = 0 . (3) 

where &(b)z *. 

As usual, it is convenient to define three sets for b, depending on the value 

of X(b). If X(b) = 1, b E Bi and equation (3) becomes: 
. 

be BI: A(b) = .-b-- e(b) -Jo(b,&cy_~Io(b~)?O 

For O<@)<l, b E I, h(b) = 0 and we have 
. 

be I. y =J,(bfi) f (Y f PI,(b&I) . 

(4) 

(5) 

-7- 



Finally, when X(b) = 0, b E Bo, and then 
. 

be Bo: A(b) = T + J,(bfl) + Q! +PI,(b~)LO (6) 

The most general behavior g(b) can have is regions where g(b) = 0 alternating 

with regions where %(b)<O. Suppose b E I. If 2(b) < 0, then $(b) = 0. Equation (5) 

indicates that for b E I, 4(b) cannot be zero except at isolated points since a! and p 

do not depend on b. Therefore $(b) cannot be zero except at isolated points and 

the most general behavior Z(b) can have for b E I is a series of flat plateaus with 

sharp edges. If b E BI, then X(b) = 1, and as soon as X(b) starts to decrease, b ~1. 

Hence the transition from B1 to I must also be a sharp drop off. Similarly, it is 

easy to see that a region decreasing from I to B. must be a sharp edge. 

Let us now discuss the positions of these fall off points. First, consider a 

point connecting a plateau in I to another plateau in I. As shown by equation (5), 

G(b) is continuous and infinitely differentiable for b E I. Since $ (b)? 0 everywhere, 

and since G(b) = 0 at the drop off points in I, it follows that 4(b) = 0 and J(b)>0 at 

these points. Using expression (5), we can write these two conditions as 

Jo (Dn) + a! + P IO (D&i) = 0 (7) 

- fi Ji (D&-t) + /3fll Ii (Dq)‘O (8) 

where b = D is a drop off point. 

Now consider a transition point from Bi to I. Approaching this point from 

the right, we have the explicit expression (5) for &b). Since q(b) = 0 at this point, 

and since G(b)?0 everywhere, the right-hand side of (5) must be non-negative here. 

Since X(b) is identically equal to 1 in B1, q(b) may clearly be chosen to be differentiable 

in B i. Expression (4) tells us that approaching the drop off point from the left, G(b) 

is greater than or equal to the right-hand side of (5). But, since G(b) = 0 at this 

point and is everywhere non-negative, we must have &(b)iO, approaching this 
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fall-off point from the left. The only way to make all these statements consistent 

is to have 4 (b) = 0 whether we approach from the left or the right. Since 4 (b) = (f, (b) = 0 

here, and since +(b)10 everywhere, it follows that 6 (b)10 when we approach from 

the left or right. (Note, however, that q(b) may be discontinuous at this point. ) 

Therefore, equations (7) and (8) apply to this transitionpoint also, with the under- 

standing that (8) is obtainedby evaluating?(b) as alimit from the right. One might 

have thought that e(b) could have been discontinuous at the transition point from 

B1 to I, thus allowing this point to exist without satisfying expresssions (7) and (8). 

That this is not the case can be intuitively understood by remembering that the drop- 

off point is a transition point when approached either from B1 or I. Furthermore, 

expressions (7) and (8) can be obtained by taking the limit of the difference equations 

which govern the transition from BI to I when the problem is treated in the formalism 

of discrete partial wave amplitudes. These arguments are, of course, closely con- 

nected with the assumption that Z(b) is piecewise differentiable. 

It is easy to see that similar arguments can be used in discussing the transi- 

tion from I to Bo. Expressions 

been evaluated from the left. 

Suppose now that there exists 

and ends at b = D2 + x. Equations 

(7) and (8) apply here too, where now q(b) has 

a plateau region 

(7) and (8) must, 

in I, which begins at b = Dl f 0 

of course, be valid at Di and D2, 

but we also need $I (Di) = @(D2) = 0. Integrating equation (5), this condition can be 

written as 

-&- J+bfi) + l/2 a! b2 + /3---- 
D2 

b IIMJ 1 
a 

=o (9) 
D, 

We now notice that we can solve for 01 and p by using (7) evaluated at the points 

D1 and D2. These values can be inserted into (9), and we have a condition that 

must be fulfilled by the end points of a plateau. A remarkable feature of this 
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condition is that it does not depend on the values of the constraints z and E. Notice 

also that since there is no a priori reason to require c)(O) = 0 or C#I (x) = 0, equation (9) 

must be modified by adding -$ (0) to the right hand side if D1 = 0 and Cp (x) if D2=x. 

Expressions (7), (8), and (9) govern the allowed positions of fall-off points 

for our minimization problem. Whether in general for a given value of -t and tl 

they uniquely determine one set of transition points is not clear. However, the 

fact that they are conditions which k~ is necessary to satisfy is enough for our 

purposes. 

We seek, therefore, a solution which is a series of plateaus obeying the con- 

ditions (7), (8), and (9). The simplest profile for Z(b) to assume is a single plateau 

of height E (O<z~l) falling to zero at a radius R. It can easily be shown that if the 
_’ 

given values of ‘z and c can be fit by a profiIe 3(b) which satisfies Osz(b)<l and 

%(b),<O, then there exist values for “R and 05551 such that a single plateau of 

height E and radius h will also fit z and ?!. Physically this is clearly the case. 

This profile results in the expressions for %, i?!, and the lower bound given in the 

statement of theorem 0, above. A solution (if it exists) with n plateaus of heights 

i I 
‘Fi and radii 1 gilgives for the lower bound to A 

where $ =z. -Z.. and 8 
1 1+ 1’ n+l= 0. 

Since the value of x at t = 0 is fixed by the constraint x;, it can be seen from (lo), 

that any solution with more than one plateau which falls below the one plateau 

solution for O&&~Z must necessarily have some members of the set lEi\ be 

greater than R, the radius of the one plateau solution. 

We shall now prove that for O<z&z there are no n plateau solutions (n>l) 

which satisfy the variational conditions. There are therefore no solutions of the type 
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described in the last paragraph, and so the one plateau solution provides the only 

local mimimum in this region of t. To show this, we need to use the following 

lemma. 

lemma: Suppose we can fit the given values of the constraintsz and G with a one 

plateau profile function of height r(OIZLl) and radius E. Any other profile which 

consists of n flat plateaus (n>l) with sharp edges must have at least one fall-off 

point at some b<g in order to fit the same value of the ratio of the constraints, 

E/E. 

Proof: Define g = g/z. For a solution with n non-zero plateaus (n > l), we have: 

g =q g =q 

5 zig ‘q-- 5 zig ‘q-- 
i=l i=l il, il, 

211(z1 ?) 211(z1 ?) 
z z zrii? zrii? i i i i 2 I1(Ei Ki) 

ZZ 

2 2 qiip qiip s14q s14q q it2 q it2 E Jt- 
1 1 1 1 

i=l i=l 
where El is the smallest member of where El is the smallest member of r r “R. “R. 

Il(Y 1 Il(Y 1 
. This follows because 7 is . This follows because 7 is 

1J 1J Y Y 
notonically increasing function of y. notonically increasing function of y. Evaluating gfor the one plateau solu Evaluating gfor the one plateau solu 

mo- 

tion with 

radius CR, we find 

Hence, if ?ii?a, gn>%i, and the n plateau solution will not be able to fit the same 

values of the constraints as the one plateau solution. Therefore, Ei<‘il. 

To complete the proof of theorem 0, we need only show that for -z2/g22<ti0 

it is not possible to have the left end-point of a plateau at O<b<^R. To do this, 

we first refer again to expressions (7) and (8). Now, p>O which can most easily 

be seen in our problem by referring to expression (8), and remembering that 

we need at least one fall-off point to occur when JI(b fi)lO. Consider first 

equation (7) for the two end points of a plateau, D1 # 0 and D2 # x. Since IO is 
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an increasing function of its argument, we must have 

JoP2 fi) < JoPIJ--; D2’ D1 (11) 

in order for (7) to be satisfied at both end points. Now look at inequality (8). 

The left-hand side is the derivative of (7) with respect to b. This derivative is 

required to be non-negative at the end points, and the value of the function is 

required to be zero. Suppose these two equations are satisfied at the left end 

point of a plateau, DI. In order for them to be satisfied again at D2, there must 

be a region between Dl and D2 where the left side of (8) is negative. Call a point 

in this region P. Then tie require, 

or 

P J-t 
-qqq-- ; Di< P< D2 . 

Since I,,(y)/y is a monotonically increasing function of y, it is necessary that 

J1(P fi) 
> 

JIP1fi 

P&E Difi ’ 
D1<P<D2 . (12) 

In figure 1, we have plotted J,(y) and Ji(y)/y. This curve can be read as 

Jo(b fi and Ji(b fl)/b fi plotted as a function of b for fixed t. For a value 

of b corresponding to O<y<y2, we can not have the left end point of a plateau, 

since we will never be able to find a P which will satisfy (12). Now let us con- 

sider the interval yI< y< y3. If we begin a plateau in this region, in order to 
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satisfy (11) we will also have to end the plateau in this region. But, then we 

will not be able to satisfy (12). Since y1<y2, this shows that we cannot have a 

transition between two non-zero plateaus when O<yzy3. Therefore, by the 

above lemma, we’cannot have an intermediate plateau with end points, D,#O 

and D2#x. 

The only other possibility to consider, is the existence of a plateau with 

end points D,$O and D2=x, leading to a two plateau solution with B. empty. We 

shall now show that such a profile cannot satisfy the variational equations. We 

can write the expressions for x, z, and “G generated by this profile as 

Now, let us fix g,, x, and a2, and calculate aSl/a$ . Using the chain rule and 

the definitions of a! and p, we find, 

Performing the same operation with $-z2, we have a similar expression 

withfil+x. Now, since D2=x is not a bonafide drop off point, #(x) may not 

be zero, and is given by the left-hand side of (9) evaluated at D2=x and 

Dl=Rl#O. But, equation (13) and the analogous one obtained by letting RI-x 

together imply that the left-hand side of (9) is zero. Therefore $(x)=0. Since 
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G(b) 2 0, $J (x) 5 0. (Since we are at the edge of the domain over which our 

space is defined, we cannot argue that 4 (x) = 0. ) That is, the left-hand side 

of (7) evaluated at x is non-positive. These conditions on G(x) together with 

the facts that (i) b = fi, is a bonafide drop off point and (ii) El < g (by the 

lemma proved above) guarantee that an argument analogous to the one used 

above for D2+x based on conditions (7) and (8) applies here also. Consequently, 

this profile cannot satisfy the variational equations. 

We have shown, then, that for -(y3/fi)2 <-(z/E)~L t 5 0 there is no func- 

tion in our space that satisfies the variational equations other than the one 

plateau profile, and so this profile generates a unique local minimum. 

Finally, it is interesting to see how we can check the consistency of our 

solution with the variational equations. Using the chain rule of differentiation, 

and the definition of the multipliers in terms of derivatives of the lower bound, 

we find for our solution 

which is the same as (9) with $I (0) = 0. Using (7) and (14) we can solve for a! 

and p and with this value of p consistency requires that inequality (8) be obeyed. 

This inequality will be satisfied for the region of t we are interested in if 

2JlW Y J+Y) 
--JoO’Q~ 3 Y 

z LY>O 

and 

for all y > 0 . 

We have explicitly checked these conditions and find that they are satisfied. 
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Having proved Theorem 0, we now proceed to establish our bound by proving 

Theorem 1. 

Proof of Theorem 1: 

Let a(b) be a monotonically decreasing function in 10, m) , such that 

05 a(b)5 1, and 

co 
L= I 2b a(b) db 

0 

G=/-w2ba@)IO(b61) db . 
0 

We first prove three inequalities which will be used later. If w > 0, the 

monotonicity of a(b), positivity, and the properties of IO imply 

GI. lw 2b a@) IO @ Al) db 2 a(w) lw 2b IO@ cl) CIIJ 
0 0 

w b2t 4 
2 a(w)/ 

0 
2b $ db = a(w) tl F 

so that 

8G 1 
a(w) 5 t 4 - 

1 w 

Consider now 

co 00 
2b a(b) db 5 I 2b8G 1 +8G -- 1 

W % b4 3 w2 

(15) 

(16) 

and also 

(17) 
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Let E > 0 be given. Choose x large enough so that 

8G 1 E ---<- 
5x2 2 

and so that 

Io@G--) > ; l 

Consider the profile a”(b) defined over [ 0, x] and being equal to a(b) for 

0 Lb< x. Define: 

I 
X 

z= 2b g(b) db , 
0 

& 
ix 0 

2b :(b) IO@&) a , 

Consider the difference 

co 

p1=. h 
2b a@) db , 

co 

P2= x J 
2b a(b) Io@fil) db . 

“G G G-P2 G -P2L + P-p 
---x---z 
z L L-P1 L tL-pp * 

But 

p2 L IoG+ Pl 

so that 

(19) 

(20) 

Define now E and R by 

then from the monotonicity of Il(y)/y it follows that I?IR, and if R d-t 5 z, also 

&Li (Z. 
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The profile X(b) satisfies the conditions of theorem 0, and therefore 

in the range of t considered. Also from (17) and (20) 

00 
I 

X 

2b a(b) Jo@ 63 db L -pl 

and we find that 

co 

/ 2ba(b)Jo(b&)dbz L 
2J1(Rfi) 2J1(R fi, 

+1 
0 R fi - Pl R J-t > 

Butby (16), (18) and (20), pl< E, and since E can be chosen as small as one 

wishes, we end up with the result claimed in theorem 1: 

/“2b a(b) Jo(b J-t) db 1 L 
2 Jl@ fi> 

RG 
= A(0) 

2J1@ ti 

0 Rt/Z 

Since the lower bound is positive for &t < i, the first zero of the imaginary 

part of the scattering amplitude must occur at fi 2 z D 

A bound similar to the one derived above, which does not depend on extrap- 

olations outside the physical region can be stated as follows: 

Theorem 2: If at some energy, values of cT and 

A’(O) = $ Al t=. = i dw b3 a(b) db 

are given, and if unitarity is obeyed and a(b) is a non-increasing function of b, 

then for -z2/R2 < t < 0, A(t), the absorptive part of the scattering amplitude - - 

is bounded from below by 

A(t) 2 2c R 
2 Jl@d% 

R& ’ 
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where c and R are determined by 

aT 
2n = A(0) = cR2 , 

and 

A’(o) = ; cR4 . 

This theorem can be proved by arguments exactly analogous to those used 

to prove theorem 1. The comparative utility of these two bounds will be dis- 

cussed in the next section. 

III. Discussion 

In the previous section we proved that the imaginary part of any nonflip 

elastic scattering amplitude, which satisfies unitarity, corresponds to a 

monotonically decreasing profile in b space, has a given value A(0) at +O, and 

has a given slope S = A1(tzO)/A(t=O) (or a given value G=A(ktl), tl> 0), is 

bounded from below by 

as long as R J-t is smaller than the first zero of Jl. R is given by either 

Ri = 8S for the S-constraint or 

G = A(0) 
21& 61, 

for the G-constraint. 

The interpretation of the equality constraints is clear. A(0) defines the 

overall strength of the interaction while S or G/A(O) defines the range of the 

interaction: the natural unit in b space (or, equivalently, in t space). 
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In the t range with which we are concerned, the minimizing profiles, and 

hence the functional forms of the two bounds is the same. However, the values 

of the bounds may be different because Rs may be different from RG, depending 

on the numerical values of S and G used in the two problems. We have not 

treated the problem for larger values of 1 t I, and it is quite possible that in 

those regions the bounds will be entirely different in their functional form. 

We can gain some insight into the relationship between these two bounds by 

noticing the following: For small tl, we can approximate G = A(t=ti) by 

A(0) + A’(O)+ Then, using the first order expansion of 

we find RG=R~, and the two bounds are identical. 

Now, since tl is outside the physical region, A(ti) may be difficult to 

measure directly. Obviously, if we know the value of A(tI) (perhaps from 

theoretical considerations) we can use the G-constraint to derive a bound. 

However, even in the absence of such information, we can evaluate A(ti) by 

extrapolating from the physical region using a Taylor’s expansion of A(t) about 

t=O. Of course, if we keep only the first order term in the expansion, (and the 

linear approximation of Ii), the two bounds become identical as described above. 

Since the lower bound which we have obtained is positive for OLR fi 5 z , 

where z is the first positive zero of Ji, it follows that A(t) cannot vanish in 

this range of t. At intermediate to high energies typical values of the slope of 

pomeron exchange amplitudes correspond to radii, R, of approximately 1 fermi, 

and therefore A(t) cannot vanish for It I 5 0.6 BeV2. We shall show below that 

the monotonicity requirement is a strong constraint in our problem, and there- 

fore the phenomenological lack of zeroes in diffractive amplitudes in this range 

may be attributed to the monotonic behavior of such amplitudes in b or B space. 
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At higher values of It I, zeroes may occur,3 andpresent data4 indicate that a zero 

may exist near It I =O. 8 - 1.2 BeV2 in the diffractive amplitudes of the process 

pp-+pp. (We shall comment below on bounds which can improve our results, and 

may give a lower bound on the position of the zero quite close to the “observedvalue. ‘I) 

Of course, since our bounds are derived at a fixed value of s, they can 

say nothing about the allowed positions of the zeroes as a function of energy 

without additional information. However, we would like to remind the reader 

of the following situation: If the interaction radius grows as a function of energy, 

then the first zero of A(t) can move towards t=O at higher energies. It has been 

29 shown that S cannot grow faster than $n s) , and therefore Rs cannot grow 

-2 faster than In s, and the first zero of A(t) cannot approach t=O faster than @.n s) . 

There is phenomenological evidence 12 that S grows definitely slower than !Zn s, 

in which case the motion of any zero of A(t) towards btr-0 is slower than (In s)-‘. 

We turn now to a more specific discussion of the role of the monotonicity 

constraint in our results. That this is indeed a strong restriction can be seen 

by comparing our result with similar bounds derived without the assumption 

of monotonicity. 

Singh and Vengurlekar’ derive a lower bound on A(t) assuming all the con- 

ditions of theorem 1 except monotonicity. Our bound increases by roughly a 

factor of two the region in t derived by Singh and Vengurlekar over which A(t) 

must be positive definite. In fact, expanding our result in theorem 2 for small 

It I, and keeping only the first two terms reproduces the result of Ref. 9. Hahn 

and Hodgkinson 10 add a value for the elastic cross section to the assumptions 

of Singh and Vengurlekar . Their lower bound passes through zero at t - -0.4 BeV’. 

Hence, replacing the elastic cross section constraint by the monotonicity con- 

straint again significantly improves the lower bound on the position of the first 
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zero. Because of the behavior of Jo, it is clear that the monotonicity require- 

ment should be in general more important in lower bounds on A(t) than in upper 

bounds, and this seems to be the case. 11 

While our results go a long way towards understanding the absence of zeroes 

at small Itl in Pomeron dominated reactions, a further improvement in the lower 

bound of the position of the first zero would be quite welcome. Looking at the 

profile which generates our lower bound we see that the physically most 

unrealistic feature is the existence of a sharp discontinuity. One might attempt 

to remedy this problem by explicitly requiring the profile function to be smooth. 

Such an attempt, however, would fail since there exist smooth functions which 

are arbitrarily close to discontinuous functions. A fermi function with a very 

narrow transition region, for example, is a smooth function which can be made 

arbitrarily close to our one plateau, discontinuous profile. In other words, if 

we try to modify our problem by adding a smoothness assumption on a(b), we 

will find that the lower bound on A(t) will not be obtained as a minimum in the 

space. It is possible, however, to implicitly enforce a smoothness assumption, 

and thus circumvent this problem. For example, adding a fixed value of the 

elastic cross section to the constraints of theorems 1 or 2 will, for realistic 

ratios of u~~/cJ~ (gel/aT 5 l/4) significantly alter the profile which gives the 

lower bound. We believe that the space of functions defined in this way will not 

have the pathology discussed above. Furthermore, the minimizing profile may 

well be smooth in the relevant t range, and in any case will substantially improve 

some of the results presented here. 
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FIGURE CAPTION 

1. This figure illustrates the definition of the points yl, y2, y3 and z used 

in the text. z is the first positive zero of J,(y) or of Jl(y)/y. yl and y3 

are such that if u E (y,,y3) and v k (yl,y3), JI(u)/u < JI(v)/v. y2 is 

such that if u < y2 and v 2 y2, Jo(u) > J,(v). 
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