
SLAC-PUB-1125 
P’H) 
September 19 7 2 

EIKONAL ESTIMATES AND CANCELLATIONS AT HIGH ENERGIES* 

R. Blankenbecler 

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 

and 

H. M. Fried 
Department of Physics, Brown University, Providence, Rhode Island 02806 

ABSTRACT 

Using functional methods and the eikbnal model, the leading s-dependence 

of elastic scattering in a modified G3 theory is discussed. An approximate 

evaluation of ladder or tower graphs and certain nonplanar graphs reveals strong 

cancellations. The net contribution falls as a power of the energy rather than 

saturating the Froissart bound, as found in less complete treatments of multi- 

peripheral models. 
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In view of the striking constancy of the total cross section for pp scat- 

tering, as evidenced by the recent ISR experiments’, it may be worthwhile to 

describe a field-theoretic mechanism which can remove the Cheng-Wu2 ‘and 

Chang-Yan3 prediction of aT - Qn2s for large energies. This cancellation 

phenomena which keeps the multiperipheral graphs from saturating the 

Froissart bound4 has been demonstrated in great detail by using a completely 

different approach5. In this brief note we will use functional methods and the 

eikonal approximation to sum the leading log s dependence of all tower graphs 

and nonplanar checkerboard graphs. Further details will appear elsewhere6. 

For the purposes at hand, we will adopt a hybrid theory, one midway 

between the massive photon QED and the simple $I~ models used in references 

2 and 3 respectively. A scalar nucleon field 21) with sources 7 and 5, a neutral 

vector meson (NVM) field WP with source k , and a scalar pion field r with 
P 

source j are introduced and the interaction Lagrangian is written as 

All self-interactions will be neglected and only the eikonal-like graphs with 

NVMs being exchanged between a pair of scattering nucleons will be retained. 

However, all virtual pion exchanges between the NVMs will be kept. As in 

simpler eikonal models7, it is assumed that the vector meson exchanges 

eikonalize, carrying with them the composite substructures created by pion 

exchange in all possible ways, between all possible NVMs. 

As in other similar treatments*, the generating functional appropriate 

to this theory is defined in terms of c-number sources j, kP, n , and 17 : 
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Z[j,k;v,:] = < (exp i [jr +k* W+?$ +?77])+> 0 
s 

The formal solution for Z is 

< S > Z = expls?G[-i&]q + TrQn(l +gy& SC)] * 

.exp[iJ k.Hc[-i$].k - $ TrQn(l-iA-&Ac)] * (2) 

0 exp[i JjDcj] , 
where the propagators Sc, gPVAc and DC are for the nucleon, ?XVM and pion 

fields respectively. In Eq. (2) the functions 

. 

and 

G[A] = SC [l + igy s~~~1-l 

a,[~] = A$ + hsAc ,-l 

denote relativistic propagators defined in terms of fictitious c-number ‘I po- 

tentials” or sources AP(x) and r (x). The factor < S > represents the normalizing 

vacuum-to-vacuum amplitude. 

If the closed nucleon loops and the closed NVM loops are removed, then 

Z reduces to the simpler form 

Z = exp[i syG[-i&]n + kJk*zc [-i~].k]*exp[~~jDcj]. (3) 

Expressions for all physical processes of interest can be obtained by appro- 

priate functional differentiation of Z. In particular, the configuration space 

scattering amplitude for a pair of nucleons (assumed distinguishable to avoid 
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the necessary symmetrization) is given by9 

A somewhat more convenient form follows if all groups in which a NVM is 

emitted and absorbed by the same nucleon are dropped: 

* GI(ylX1 1 kl) GII(~2x2 1 k2)-p [iJjDcj] 1 j =k=O * (5) 

For h = 0, at(r) = AC and the amputated, mass-shell Fourier transform of I- 
Eq. (5) yields the familiar NVM multiple exchange eikonal model. 

Using similar techniques6 on the more general form of M given by Eq. (5), 

the final result can be expressed in the eikonal form 

t 
T(s,t) = iA 

s 
d2be iqsb 

2M2 
_ eiX h s) 1 f 

where 

e ix = exP[-$J&Dcg]. exp[i$~F~~c(7r)SF,]I n=O 

(6) 

(7) 

and Pl+P2-Pi + Pi3 q2 = (P,-Pi)2 = - t > 0. The source currents F are 

given by 
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co 

FI”, II lx) = $ 2 > / -co 
dt 6 (x- Zl,2 + ‘;q$ * 

The phase ix is a function of the transverse center of mass coordinate dif- 

ference 6 = (z+ -z~)~ . The eikonal phase may be expressed in terms of 

connected graphs only: 

An expansion of x in powers of g2 produces the sum of all the connected 

t-channel amplitudes for nW’s to scatter to nW1s: 

Ga 

ix = c iX 
i n 

where 

ix, = $f 
J 

F;‘. . . F;nMn,n(ul.. .un;vl.. .vn) F;;. . . F;; . 

In the limit in which no pion is emitted and absorbed by the’same NVM, the 

connected t-channel exchange amplitude is 

M 
n, n 

= exp $ DC & 
i j 1 ~c(ulv, I y) . . . 

. . . ‘c @n’ Vn) 
I 

corm * 
n=O 

It is straightforward to see that 

(8) 

(10) 

(11) 

2 
ix1 = - i&- KO(I.lW 
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for the present case of vector exchange. This term reproduces the results of 

the simplest eikonal model. The function ix2 alone generates the tower graphs 

which may be estimated for large s by a straightforward, if lengthy, graphical 

analysis. The leading Qns behavior in every A2 order arises from the pure 

ladder exchange of pions with ordered rapidities. If r, such pions are exchanged 

between a pair of NVMs, the resulting nested rapidity integrals generate a 

contribution to ix2 of the form 

4 Qnr(s/so) d2sld2 q2 e 
ib- tql +q2) 

--Al 
2(2nj2 r! (q;+$)(q;+M2) 

(12) 

where 

I cqq) = P-r) -2 [d2Q[Q2+~]-‘[(Q-q~+M+’ = -&- ;dx[M2+x(l-x)q’]-l, 

(13) 

Summing over all r except r = 0, which is a disconnected graph corresponding 

to the second s-channel iterate of ixl, yields 

22 
ix2(b,s) = -2& d qd 2 iqsb a2(q) (s/so) 

A2 a2 (q)/8n 
-1 . 1 

For large b, which is most sensitive to small q, the trajectory o2 may be 

expanded as 

and 

- q2c$ (0) 3 

ix2= - 
Qnsa/so (s,so)ao- IL e-cb2iQn(s’so) ) 

(14) 

(15) 
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where 

@O = 1+ A2 a2 (0)/8n 

a = 

c = 2n/A20!90) . 

If this result is used in Eq. (6), one finds that the Froissart bound is saturated. 

Once it is understood that the source of the leading s dependence is the 

set of nested ladder graphs, it is possible to devise a simple functional ap- 

proach which reproduces the same result. One simply performs the replacement 

2 2 iqab 
ig F&T] FII .-a. - ig” d qe 

(W2 G+M2) 
d4u~Wy(s,uI)~(u,q) , 1 

where 

2 -1 1 7 

and uses the prescription 

du+du- y2 (s, UJ p2 + u; 1 -1 
3 + u+u- - ie - inQn (s/so) , 

(16) 

(17) 

(18) 

where u* = u3 & uo. These steps mirror the detailed graphical analysis. The 

ordering of the pion momenta produces a factor of Qnr(s/so)/r! whose coefficient 

is independent of the relative position along either NVM line. Precisely this 

dependence is produced by the replacement given by Eq. (16) with its exponential 

structure providing the factor l/r! The correct Qns/so dependence and its 

coefficient follow from the replacement (17) and (18). 
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Let us now turn to the problem of computing x, for n 2 3. Unfortunately, 

an analytical evaluation of Eq. (11) is not possible. This problem has been 

discussed in reference 5 where upper and lower bounds were derived for’ each 

value of n. In this paper we will use the functional approach to derive results 

in a simple and transparent manner which are not exact but which lie between 

the rigorous limits. The consequences of a leading-log factor 5 Qnr(s/so) (for 

the exchange of r pions between n NVM lines), multiplied by appropriate coef- 

ficients 02(qi + qi) (assumed independent of position along any NVM line), 

combined with an obvious statistical factor (representing the number of ways of 

selecting pure ladder graphs of this form) may be reproduced by the equivalent 

functional replacements of Eqs. (16), (17) and (18); and one easily obtains 

e iX -1 = i, (za)-2 
d2qQ e 

iqQ. b 8n c oL2tqi+ qj) 

Q=l (q; + M3) (s’so) 1 i< j=l 
. (1% 

Two important features of this equation should be noted: the oscillating phase 

factor in which will provide cancellations between every other term, and the 

rapidly growing s-dependence which is in the form of Regge behavior between 

each possible pair of exchanged NVM lines. 

To illustrate our final result, we make the simplifying assumption that 

the q2 dependence of cr2 can be neglected. This is a reasonable assumption 

since each qQ integral has a convergence factor of (qi + m 2 -’ and each ol,(q2) ) 

has its q2 dependence reduced by x(1 - x) 5 & . This approximation does not 

change the qualitative behavior of the result. The total cross section becomes 
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-2 Re 
OT = 2 

where 

Cn = $ [ bdb[zKo(b,ln- 1. 

Thus the total cross section can be written as 

where 

aT = 2 Re nc2 Cn ine2 (x/Y)~ yn2 , 

Since y is very large in the region of interest, where the previously 

made approximations make sense, this series is badly divergent. However, 

it can be defined as summed by using the formula 

where co 

F(X) - Re c 
n=2 

CninW2 Xn “= X2(1 +X2)-l 

(20) 

(21) 

(22) 

and p2 = Qny. A simple analysis of the Z integral then shows that as s -+ 00, 
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-A2 cz2 (0)/64~ 

?T ,N --I%- 
2&d 

C (Qn s/s~)-~ -t . . . , 

where 

C -8 dx~-~‘~ F(x) . 

Therefore there is almost complete cancellation and rather than behaving as 

the Froissart bound, 2 Qn2s, the total cross section falls as a power of s. 

Further, it is easy to see that if Cn is not given by Eq. (21) but is given by a 

smooth function of n, the total cross section still falls as Eq. (24). 

One may expect that certain of our results are quite independent of 

specific details and approximations used in this model. In par titular , the 

strong cancellations exhibited between higher order nonplanar graphs should 

be a general property of relativistic theories. Consequently, multiregge 

models which do not contain the nonplanar graphs required by unitarity cannot 

be trusted at very large energies. One cannot rule out the possibility that such 

theories are accidentally accurate at intermediate energies. 
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