# COMMENTS ON MUELLERISM AND MEAN MULTIPLICITIES* 

R. N. Cahn<br>Stanford Linear Accelerator Center Stanford University, Stanford, California 94305


#### Abstract

It is shown that the Mueller picture of inclusive reactions, in its naive form, leads to a value of the mean multiplicity for a species $c$ in the process $a+b \rightarrow c+$ anything of the form $$
\begin{aligned} <\mathrm{n}_{\mathrm{c}}>\sigma_{\mathrm{ab}}= & \mathrm{A} \log \mathrm{~s}+\mathrm{B}+\mathrm{Cs}^{-1 / 2} \log \mathrm{~s}+\mathrm{C}^{\prime} \mathrm{s}^{-1 / 2} \\ & + \text { higher order in } \mathrm{s} . \end{aligned}
$$

Formal expressions for $A, B, C$, and $C^{\prime}$ are given. No terms proportional to $s^{-1 / 4}$ or $s^{-1 / 4} \log \mathrm{~s}$ occur.


[^0]
## INTRODUCTION

It is well known that the Mueller picture of inclusive reactions leads to a mean multiplicity for species c in $\mathrm{a}+\mathrm{b} \rightarrow \mathrm{c}+$ anything of the form $\mathrm{A} \log \mathrm{s}+\mathrm{B} .{ }^{1}$ In this note we isolate unambiguously the cocfficients $A$ and $B$ and the coefficients of the next two terms. Since the approach to asymptopia in the central region is expected to go as $s^{-1 / 4}, 2$ a priori it might be anticipated that the first correction to the mean multiplicity beyond the constant term would be $\mathrm{s}^{-1 / 4}$ or $\mathrm{s}^{-1 / 4} \log \mathrm{~s}$. As shown below, this is not the case. ${ }^{3}$

## FORMAL CALCULATION OF MEAN MULTIPLICITY

We shall calculate $<\mathrm{n}_{\mathrm{c}}>\sigma_{\text {tot }}$ by integrating the cross section from a lab rapidity of $y_{\text {min }}=\log \left(m_{a} / m_{c}\right)$ up to $Y / 2$ where $Y$ is the lab rapidity of particle $b$, and then adding a piece with $a$ and $b$ inter changed. For simplicity we shall consider only two trajectories: a Pomeron with $\alpha_{P}(0)=1$, and a non-Pomeron with $\alpha(0)<1$. The cross section integrated over transverse momentum for the fragmentation of particle a into particle $c$, which process we denote by (a:c lb), can be expressed as

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{dy}}(\mathrm{y}, \mathrm{Y})=\beta_{\mathrm{P}}^{\mathrm{b}} \mathrm{~F}_{\mathrm{P}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y})+\mathrm{e}^{-\Delta \alpha(\mathrm{Y}-\mathrm{y})}{ }_{\beta_{\mathrm{R}}}^{\mathrm{b}} \mathrm{~F}_{\mathrm{R}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y}) \tag{1}
\end{equation*}
$$

where $\Delta \alpha=1-\alpha(0)$. For large values of $y$ we can use a double $0(2,1)$ expansion, i.e., the a $\bar{a}$ channel Reggeizes as well as the $b \bar{b}$ channel. Thus we have

$$
\begin{align*}
\frac{\mathrm{d} \sigma}{\mathrm{dy}}(\mathrm{y} \text { large, } \mathrm{Y})= & \beta_{\mathrm{P}}^{\mathrm{b}} \beta_{\mathrm{P}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{PP}}^{\mathrm{c}}+\beta_{\mathrm{R}}^{\mathrm{b}} \beta_{\mathrm{P}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{RP}}^{\mathrm{c}} \mathrm{e}^{-\Delta \alpha(\mathrm{Y}-\mathrm{y})} \\
& +\beta_{\mathrm{P}}^{\mathrm{b}} \beta_{\mathrm{R}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{PR}}^{\mathrm{c}} \mathrm{e}^{-\Delta \alpha \mathrm{y}}+\beta_{\mathrm{R}}^{\mathrm{b}} \beta_{\mathrm{R}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{R}}^{\mathrm{c}} \mathrm{e}^{-\Delta \alpha \mathrm{Y}} \tag{2}
\end{align*}
$$

In particular we have the limiting expressions

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{dy}}(\mathrm{y}, \infty)=\lim _{\mathrm{Y} \rightarrow \infty} \frac{\mathrm{~d} \sigma}{\mathrm{dy}}(\mathrm{y}, \mathrm{Y})=\beta_{\mathrm{P}}^{\mathrm{b}} \mathrm{~F}_{\mathrm{P}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y}) \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{dy}}(\infty, \infty)=\lim _{\mathrm{y} \rightarrow \infty} \lim _{\mathrm{Y} \rightarrow \infty} \frac{\mathrm{~d} \sigma}{\mathrm{dy}}(\mathrm{y}, \mathrm{Y})=\beta_{\mathrm{P}}^{\mathrm{b}} \beta_{\mathrm{P}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{PP}}^{\mathrm{c}} \tag{3b}
\end{equation*}
$$

We next write a formal identity:

$$
\begin{align*}
\int_{\mathrm{y}_{\min }}^{\mathrm{Y} / 2} \mathrm{dy} \frac{\mathrm{~d} \sigma}{\mathrm{dy}}(\mathrm{y}, \mathrm{Y})= & \int_{\mathrm{y}_{\min }}^{0} \mathrm{dy} \frac{\mathrm{~d} \sigma}{\mathrm{dy}}(\mathrm{y}, \infty)+\int_{\mathrm{y}_{\min }}^{0} \mathrm{dy}\left[\frac{\mathrm{~d} \sigma}{\mathrm{dy}}(\mathrm{y}, \mathrm{Y})-\frac{\mathrm{d} \sigma}{\mathrm{dy}}(\mathrm{y}, \infty)\right] \\
& +\int_{0}^{\mathrm{Y} / 2} \mathrm{dy} \frac{\mathrm{~d} \sigma}{\mathrm{dy}}(\infty, \infty)+\int_{0}^{\infty} \mathrm{dy}\left[\frac{\mathrm{~d} \sigma}{\mathrm{dy}}(\mathrm{y}, \infty)-\frac{\mathrm{d} \sigma}{\mathrm{dy}}(\infty, \infty)\right] \\
& -\int_{\mathrm{Y} / 2}^{\infty} \mathrm{dy}\left[\frac{\mathrm{~d} \sigma}{\mathrm{dy}}(\mathrm{y}, \infty)-\frac{\mathrm{d} \sigma}{\mathrm{dy}}(\infty, \infty)\right] \\
& +\int_{0}^{\mathrm{Y} / 2} \mathrm{dy}\left[\frac{\mathrm{~d} \sigma}{\mathrm{dy}}(\mathrm{y}, \mathrm{Y})-\frac{\mathrm{d} \sigma}{\mathrm{dy}}(\mathrm{y}, \infty)\right] \tag{4}
\end{align*}
$$

The six integrals are easily evaluated in terms of Eqs. 1-3. For the integrals $I_{i}(i=1,6)$ we have

$$
\begin{aligned}
& \mathrm{I}_{1}=\int_{\mathrm{y}_{\min }}^{0} d y \beta_{\mathrm{P}}^{\mathrm{b}} \mathrm{~F}_{\mathrm{P}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y}) \\
& \mathrm{I}_{2}=\mathrm{e}^{-\Delta \alpha \mathrm{Y}} \int_{\mathrm{y}_{\min }}^{0} d y \beta_{\mathrm{R}}^{\mathrm{b}} \mathrm{~F}_{\mathrm{R}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y}) \mathrm{e}^{\Delta \alpha \mathrm{y}} \\
& \mathrm{I}_{3}=\mathrm{Y} / 2 \beta_{\mathrm{P}}^{\mathrm{b}} \beta_{\mathrm{P}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{PP}}^{\mathrm{c}} \\
& \mathrm{I}_{4}=\int_{0}^{\infty} d y \beta_{\mathrm{P}}^{\mathrm{b}}\left[\mathrm{~F}_{\mathrm{P}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y})-\beta_{\mathrm{P}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{PP}}^{\mathrm{c}}\right] \\
& \mathrm{I}_{5}=-\frac{\beta_{\mathrm{P}}^{\mathrm{b}} \beta_{\mathrm{R}}^{\mathrm{a}}}{\Delta \alpha} \mathrm{~F}_{\mathrm{PR}}^{\mathrm{c}} \mathrm{e}^{-\Delta \alpha \mathrm{Y} / 2}
\end{aligned}
$$

$$
\begin{align*}
\mathrm{I}_{6}= & \int_{0}^{\mathrm{Y} / 2} d y \beta_{\mathrm{R}}^{\mathrm{b}} \mathrm{e}^{-\Delta \alpha(\mathrm{Y}-\mathrm{y})} \mathrm{F}_{\mathrm{R}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y}) \\
= & \int_{0}^{\mathrm{Y} / 2} d y \beta_{\mathrm{R}}^{\mathrm{b}} \mathrm{e}^{-\Delta \alpha(\mathrm{Y}-\mathrm{y})}\left[\beta_{\mathrm{P}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{RP}}^{\mathrm{c}}+\beta_{\mathrm{R}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{RR}}^{\mathrm{c}} \mathrm{e}^{-\Delta \alpha \mathrm{y}}\right] \\
& +\int_{0}^{\infty} d y \beta_{\mathrm{R}}^{\mathrm{b}} \mathrm{e}^{-\Delta \alpha(\mathrm{Y}-\mathrm{y})}\left[\mathrm{F}_{\mathrm{R}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y})-\beta_{\mathrm{P}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{RP}}^{\mathrm{c}}-\beta_{\mathrm{R}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{RR}}^{\mathrm{c}} \mathrm{e}^{-\Delta \alpha \mathrm{y}}\right] \\
& -\int_{\mathrm{Y} / 2}^{\infty} d y \beta_{\mathrm{R}}^{\mathrm{b}} \mathrm{e}^{-\Delta \alpha(\mathrm{Y}-\mathrm{y})}\left[\mathrm{F}_{\mathrm{R}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y})-\beta_{\mathrm{P}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{RP}}^{\mathrm{c}}-\beta_{\mathrm{R}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{RR}}^{\mathrm{c}} \mathrm{e}^{-\Delta \alpha \mathrm{y}}\right] \tag{5}
\end{align*}
$$

The final integral in $I_{6}$ from $Y / 2$ to infinity is of higher order than the two preceding ones. We have then for $I_{6}$

$$
\begin{align*}
I_{6}= & e^{-\Delta \alpha Y} \beta_{R}^{b} \beta_{P}^{a} F_{R P}^{c} \frac{\left(e^{\Delta \alpha Y / 2}-1\right)}{\Delta \alpha} \\
& +e^{-\Delta \alpha Y} \frac{Y}{2} \beta_{R}^{a} \beta_{R}^{b} F_{R R}^{c}+e^{-\Delta \alpha Y} \int_{0}^{\infty} d y \beta_{R}^{b}\left[F_{R}^{a: c}(y)-\beta_{P}^{a} F_{P R}^{c}-\beta_{R}^{a} F_{P R}^{c} e^{-\Delta \alpha y}\right] e^{\Delta \alpha y} \\
& + \text { higher order } \tag{6}
\end{align*}
$$

It is easy to see that the integral in (6) converges. To find $<n_{c}>\times \sigma_{\text {tot }}$ we add the other half of the rapidity distribution. This contribution is given by interchanging a and $b$ in Eq. (6). When this is done, $I_{5}$ cancels against a term in $I_{6}$ and we have

$$
\begin{equation*}
\left\langle\mathrm{n}_{\mathrm{c}}>\sigma_{\text {tot }}=\mathrm{AY}+\mathrm{B}+\mathrm{CY}^{-\Delta \alpha \mathrm{Y}}+\mathrm{C}^{\prime} \mathrm{e}^{-\Delta \alpha \mathrm{Y}}+\right.\text { higher order } \tag{7}
\end{equation*}
$$

with

$$
\begin{aligned}
& \mathrm{A}=\beta_{\mathrm{P}}^{\mathrm{a}} \beta_{\mathrm{P}}^{\mathrm{b}} \mathrm{~F}_{\mathrm{PP}}^{\mathrm{c}} \\
& \mathrm{~B}=\left\{\int_{\mathrm{y}_{\text {min }}}^{0} d y \beta_{\mathrm{P}}^{\mathrm{b}} \mathrm{~F}_{\mathrm{P}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y})+\int_{0}^{\infty} \mathrm{dy} \beta_{\mathrm{P}}^{\mathrm{b}}\left[\mathrm{~F}_{\mathrm{P}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y})-\beta_{\mathrm{P}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{PP}}^{\mathrm{c}}\right]\right\}+(\mathrm{b} \rightarrow \mathrm{a})
\end{aligned}
$$

$$
\begin{align*}
\mathrm{C}= & \beta_{\mathrm{R}}^{\mathrm{a}} \beta_{\mathrm{R}}^{\mathrm{b}} \mathrm{~F}_{\mathrm{RR}}^{\mathrm{c}} \\
\mathrm{C}^{\prime}= & -\beta_{\mathrm{R}}^{\mathrm{b}} \beta_{\mathrm{P}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{PR}}^{\mathrm{c}} / \Delta \alpha+\int_{\mathrm{y}_{\min }}^{0} d y \beta_{\mathrm{R}}^{\mathrm{b}} \mathrm{~F}_{\mathrm{R}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y}) \mathrm{e}^{\Delta \alpha y} \\
& +\int_{0}^{\infty} \operatorname{dy} \beta_{\mathrm{R}}^{\mathrm{b}}\left[\mathrm{~F}_{\mathrm{R}}^{\mathrm{a}: \mathrm{c}}(\mathrm{y})-\beta_{\mathrm{P}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{PR}}^{\mathrm{c}}-\beta_{\mathrm{R}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{RR}}^{\mathrm{c}} \mathrm{e}^{-\Delta \alpha \mathrm{y}}\right] \mathrm{e}^{\Delta \alpha \mathrm{y}}+(\mathrm{b} \leftrightarrow \mathrm{a}) \tag{8}
\end{align*}
$$

The coefficient A is simply the height of the central plateau. The difference between the scaled distribution and the central plateau extended down to $\mathrm{y}=0$ gives the coefficient B . We may think of C as the height of the central plateau due to terms in the double Regge expansion which have non-Pomerons in both links. The coefficient $\mathrm{C}^{\prime}$ is due to the non-scaling term with the leading terms for large $y$ extracted out. The most notable feature is the absence of a term proportional to $\exp (-Y / 2)$, i.e., $s^{-1 / 4}$. This general result of course obtains as well in multiperipheral models.

Since we have ignored cuts throughout, and since we have assumed the $b \bar{b}$ channel in (a:c lb) has Reggeized even for small missing masses, Eq. (7) is best regarded as a formal result. It does provide an appropriate starting point for phenomenological analysis. ${ }^{4}$

## REFERENCES

1. A. H. Mueller, Phys. Rev. D2, 2963 (1970).
2. H.D.I. Abarbanel, Phys. Rev. D3, 2227 (1971).
3. A portion of these results appeared in: R. N. Cahn, Lawrence Berkeley Laboratory report LBL-1007 (unpublished).
4. D. Tow, Stanford Linear Accelerator Center report SLAC-PUB-1110 (1972).

[^0]:    *Work supported by the U. S. Atomic Energy Commission.

