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ABSTRACT

It is shown that the Mueller picture of inclusive reactions, in its
naive form, leads to a value of the mean multiplicity for a species ¢

in the process a+b — ¢ + anything of the form

1/ 1/2

<n >0 =Alogs+B+Cs” 2logs+C's_

ab

+ higher order in s

Formal expressions for A, B, C, and C' are given. No terms pro-

1/4 r S—1/4

portional tos ™/ " o log s occur.
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INTRODUCTION
It is well known that the Mueller picture of inclusive reactions leads to a
mean multiplicity for species ¢ in a+b — c+anything of the form A log s+B. 1
In this note we isolate unambiguously the coefficients A and B and the coefficients

of the next two terms. Since the approach to asymptopia in the central region

-1/ 4, 2 a priori it might be anticipated that the first cor-

rection to the mean multiplicity beyond the constant term would be s-l/ 4 or

s_l/

is expected to go as s

4 log s. As shown below, this is not the case. 3

FORMAL CALCULATION OF MEAN MULTIPLICITY

We shall calculate <n,> 0 by integrating the cross section from a lab

tot
rapidity of Y min = log (ma/mc) up to Y/2 where Y is the lab rapidity of particle
b, and then adding a piece with a and b interchanged. For simplicity we shall
consider only two trajectories: a Pomeron with aP(0)=1, and‘ a non-Pomeron
with ¢(0) < 1. The cross section integrated over transverse momentum for the

fragmentation of particle a into particle ¢, which process we denote by (a:c |b),

can be expressed as
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where Aa=1-«(0). For large values of y we can use a double 0(2, 1) expansion,

i.e., the aa channel Reggeizes as well as the bb channel. Thus we have
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In particular we have the limiting expressions
do _ i, 4O _ b paze
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and

do |, s . do _ b .a_c
a’i("o’w) —;inoo Y];inoo y (y’Y) _BPBP FPP (3b)
We next write a formal identity:
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The six integrals are easily evaluated in terms of Eqs. 1 - 3. For the integrals

Ii (i=1, 6) we have
0
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The final integral in I6 from Y/2 to infinity is of higher order than the two

preceding ones. We have then for 16
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It is easy to see that the integral in (6) converges. To find <n,> X Tyt W add
the other half of the rapidity distribution. This contribution is given by inter-

changing a and b in Eq. (6). When this is done, 15 cancels against a term in I6

and we have

<> 0, . =AY + B+CY e BaY 4 i BT, higher order (7
with
_a b .c
A=FpfpTpp
0 b La:c % b [La:c a ..C
B={f ay ey ) ay B [FEw - BpFRp| 1+ 0 a)
Ymin 0



a b ..C
C=BgPrTRR
0 b F:C Axy
o= - B Fgp/aar [ ay yFRCm e

min

+./0-°ody & [F%’c(y) B AN 5 e"my] 2V s pa) (8)

The coefficient A is simply the height of the central plateau. The difference
between the scaled distribution and the central plateau extended down to y=0 gives
the coefficient B. We may think of C as the height of the central plateau due to
terms in the double Regge expansion which have non-Pomerons in both links.
The coefficient C' is due to the non-scaling term with the leading terms for
large y extracted out. The most notable feature is the absence of a term pro-
portional to exp (-Y/2), i.e., s_1/4. This general result of course obtains as
well in multiperipheral models.

Since we have ignored cuts throughout, and since we have assumed the bb
channel in (a:c |b) has Reggeized even for small missing masses, Eq. (7) is
best regarded as a formal result. It does provide an appropriate starting point

for phenomenological analysis. 4
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