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I. INTRODUCTION 

Mueller~s Regge analysis is, at the moment, one of the most interesting 

frameworks to understand inclusive interactions. Due to the belief that the 

photon behaves in many regards like a hadron, it is hoped for that this analysis 

will also provide a valid framework for inclusive electroproduction. It is, 

however, clear from the beginning that the Q2-dependence of the single particle 

distribution has to be found by considerations outside Mueller’s analysis. This 

is also true for the Q2-dependence of the Regge residues in deep inelastic 

electron nucleon scattering. In the latter case, the dependence is determined 

from the scaling behavior of the structure functions. 2 In the case of inclusive 

electroproduction, the problem is partially solved by assuming factorization 

for the Regge residues. This will fix the Q2-dependence in the proton frag- 

mentation region and in the central region. 394 To go further and determine 

the Q2-dependence in the photon (or current) fragmentation region, we kppeal 

to the generalized scaling laws of the parton model. 5 We will show that these 

assumptions imply that the 7r+/x- asymmetry will increase as Q2 becomes larger 

for fixed v and all other relevant variables fixed. The behavior of the multi- 

plicity will not be determined by our considerations because the integral over 

the photon fragmentation still involves an undetermined function. 

In Section II we define our notations and conventions. In Section III we 

present the Mueller analysis of inclusive electroproduction and determine the 

Q2-dependence in the three different regions. In Section IV we discuss the 

7r+/*- asymmetry and look at the behavior of the average multiplicity for 

large values of Q2 and w. 
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II. KINEMATICS AND NOTATIONS 

The kinematics for inclusive electroproduction are depicted in Fig. 1. The 

metric we choose is (-t---- ). All our states will be normalized as: 

<FlI> = (27r)” 2E S3(c- 3) 

We introduce the following variables: 

v zE.5-l 
mP 

PI’ q P.PI 
5 =y- K1= - 

mP 
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&k!l 
Q2 

2Pl.4 
01=Q2 

where mp(ml) is the mass of the nucleon (particle 1) and, as usual, Q2=-q2. 

The Lorentz-invariant structure functions 9&I and w2 are defined as: 

+ -$ (p 

mP 
P v 

-yq,), 9h2(q2,Z’,Vl, K1) 

q 

(2~)~ S4@+q-k-P,) <PI Jp(0) IP~,P~><P~,P~I JvK9 lP> (3) 

In terms of G#i and 95, the differential cross section is: 

d4g 47ra2 E’ =- - 
2 dQ dvdKIdVl 4 E C 

2 sin2g9til(q2,.,vl,K1) 
q 

+ COS2 $ qk2(q2, V , VI, Kl)] (4) 

-3- 



where 8 is the angle between the incoming and outgoing electron momenta in 

the laboratory system of the nucleon. 

The longitudinal and transverse differential cross sections are defined as: 

d20T 
2 

2 - 8rmPa! 
dvldKl q2+2m u 

9tltCl J’,J’lJ1) 

P 

(5) 

d2k 8n2m a! 2 2 
Z-2 

2 d uldK 1 q2 + 2mpv 
, V, vl> Kl) + %j- oru,(S2d’, vl, K1) 

q 1 
(6) 

A useful relation is: 

o do 
PI -?j--- = 

(v2+Q2)1/2 & 

d Pl ml dvldKld$ 

The momentum of the final state hadron p1 will be parametrized as follows: 

P; = “11 
/ ‘lx 9, sinhy I cash yl, 111 \ 
\ 11 ’ “11 7 

where 
2 2 2 2 

mll=Plx+Ply+ml~ 

We also introduce the photon’s rapidity Y by: 

qF =Q(sinh Y, 0, 0, cash y) 

In terms of the rapidities y1 and Y, the invariants (1) can be written as: 

v = Q sinh Y 

Qm 
‘1 ml = 2 sinh (Y-yl) (11) 

=m 5 1. 1 cash y1 . 
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In the Bjorken limit (Q2 - ~0, w fixed) one has, approximately: 

Qe Y c! 2u 
(12) 

-Y M Qe =; 

From energy and momentum conservation, it follows that the rapidity yI of the 

observed hadron is bounded by the following limits: 

2mllv In s <yl<l!n= 
“11 

(13) 

The total length, Ltot, of the rapidity plot will thus be given by: 

(14) 

i.e., as in the purely hadronic case. We notice that L tot shrinks when the mass 

of the virtual photon increases. 

III. MUELLER ANALYSIS 

The extension of the original Mueller analysis from hadronic reactions to 

inclusive electroproduction gives us the following expressions for6 

2(2p*q+q2) 0 da 
47ro! Pl 3 

d Pl 

in the three different regions7 (see Fig. 2): 

1. Nucleon fragmentation region (V - co, v 1/~ finite, K~ finite): 

2. Central region (V -Q), V~K~/V finite, K1- co, VI- m) 

c 7 5 
i,j 

“1 K1 By,jQ2) P 
J 

(15) 

(17) 



I’ 

3. Photon fragmentation region (V - 00, K~/V finite, VI finite) 

c 
i 

Ppa 
i 

(18) 

Here, ‘Y~, is the intercept of Regge trajectory (Yi(t) at t=O, while the p’s are 

residue functions. The requirement of scaling for the deep inelastic structure 

functions mpWl(q2, v ) and v W2 (q2, v ) leads to the following Q2-dependence of 

the photon-Reggeon coupling2: 

Q. 
pra tQ2) CC --+ 

0 
l- 

i 
Pra 

i 
(19) 

where p is constant. 
Yai 

We can thus rewrite the contributions (16) and (17) as (absorbing some 

constant factors in F yy): 

Nucleon -fragmentation: 

Central region: 

c 
i, j i 

(20) 

(21) 

2 The factorization of Regge residues, thus, does not determine the Q - 

dependence of the inclusive cross section over the whole phase space. A com- 

plete arbitrariness subsists in the photon fragmentation region. If we would 

like this last region to behave in a way similar to the nucleon fragmentation 

region, we would impose’: 

K1 
pai -9 vl, Q2 l “ypl v Q2- co 

(22) 
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This is however arbitrary and even incompatible with other approaches to 

inclusive electroproduction. 5 Instead of (22) we will impose a behavior con- 

sistent with the generalized scaling laws of the parton mode15: 

w fixed 
w 1 fixed 

K1 7 fixed 

This is obtained if we require: 

(23) 

(24) 

which has an extra factor l/Q2 compared to the nucleon fragmentation function. 

We thus obtain finally: 

Photon fragmentation region: 

In the next section we will look at the consequences of this behavior for 

the ,‘/7r- asymmetry and the average multiplicity. 

IV. CONSEQUENCES 

(a) ,‘/7r- Asymmetry: If we fix the value of the incoming energy v and 

increase Q2, we see from (25) that the Pomeron contributions will decrease 

more rapidly thanthe contributions coming from lower-lying Regge trajectories. 

This implies that the 7r’/7r- asymmetry, which is due to the isospin carrying 

lower lying Regge trajectories, will increase as a function of Q2 for fixed 

values of WI and K~/V . This is supported by preliminary experimental results. 8 
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(b) Multiplicities: The average multiplicity n(v , q2) is defined as: 

/ 
d3p1 du 
‘10 d3plhlo 

= n(v , S2) utv 3 S2) 

In order to be able to insert directly the Mueller and Regge expansion 

respectively in right- and left-hand sides, we multiply (26) by the flux factor 

2(q2+2q. p) and divide by the coupling constant 43~~. We will also make use of 

relation (7) and integrate implicitly over Cp (only Pomeron contributions are 

being considered). 

We thus first write (26) as: 

2(q2+2q. p) du 
47ro! 

d3PI/P;l 
0-h ,s2) 1 (27) 

Changing variables to v,. and inserting the Mueller and Regge expansions, 

we arrive at: 

J 
dy d~-$ w ijypP;p 

IV1 

1 
(y-9 K1 

+ J dvld/cl -+ -II? 
UP 

vQ ?Ipl 

- n(bq2) b$&Ppp (28) 
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Or, equivalently: 

- nthq2) F&Ppp (2% 
The first term on the left-hand side of (29) represents the contribution coming 

from the nucleon fragmentation region. Since this term occupies only a finite 

portion of phase space, we assume, in analogy with the purely hadronic inter- 

action case, that this term gives a finite contribution to the multiplicity. In 

the second term, V~K~/U is directly related to rn; while dK1/K1 becomes dy 

in the central region. Making the additional assumption that the integral over 

V~K~/V is finite, we see that the contribution of the second term to the multi- 

plicity is proportional to the length of the central region Lc. There is no 

a priori reason to expect the third term in (29) to give a finite contribution and 

no definite conclusion can be drawn for it. 
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FIGURE CAPTIONS 

1. Kinematics for inclusive electroproduction of hadrons. 

2. (a) Mueller diagram for the nucleon fragmentation region 

(b) Idem for the central region 

(c) Idem for the photon fragmentation region. 
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