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I. INTRODUCTION 

.Over the past few years it has been shown that the use of an “infinite 
momentum’7 Lorentz frame1 has remarkable advantages for calculations 
in elementary particle physics and field theory, especially in the areas of 
current algebra sum rules, 2 parton models, 3, 4 and eikonal scattering.5,6 
One important advantage is that it allows a straightforward application of 
the impulse and incoherence approximations famil.iar in nonrelativistic 
atomic and nuclear physics to relativistic field theory and bound state 
problems. 

The central idea is this: Suppose we choose a. Lorentz frame such 
that a bound system has momentum F in the z-direction. We shall 
assume that for P chosen large enough, (P -c ~0) all of its constituents will 
be moving in the positive z-direction; more specifically, we assume the 
existence of a wave function in the infinite momentum frame: 
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For example, for a bound state with momentum F, mass M and N con- 
stituents, the characteristic ener,gy denominator of the wave function is 
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Since cE1 Xi=l, finite contributions are obtained only if 0 <xi < 1 for all i. 
Note that the P-+m limit also has the effect of linearizing relativistic 
square-root phase-space,factors, Similarly, one finds that in time- 
ordered perturbation theory, all diagrams in which intermediate particles 
are moving backward (xi < 0) can be effectively set to zero, leaving only 
the relatively few diagrams with forward moving intermediate particles 
to be considered. 1 [ See Section II for examples, ] The structure of the 
p-00 wavefunction is formally very similar to nollrelativistic theory; the 
quantity kfl /Xi plays the role of the kinetic energy. (More generally the 
relativistic wavefunction con’tiins arbitrary numbers of constituents, but 
we may treat each N-particle component state as above.) 

Thus the intuition and approximation procedures used in the nonrela- 
tivistic problems now becomes applicable to high energy physics and 
rigorous methods for bound states other than the Bethe-Salpeter formal- 
ism now present themselves, Conversely, these techniques indicate a 
new systematic procedure for handlin, m the relativistic and recoil cor- 
rection to atomic and nuclear physics problems. 

In Section II, we discuss the application of the infinite momentum 
method to quantum electrodynamics, and the implementation of the re-. 
normalization procedure in old-fashioned perturbation theory. In Section 
III, several applications to problems in atomic physics arc? outlined. 
These include inelastic electron-atom scattering, high encr,gy scattering, 
and rearrangement collisions in atom-atom scattering. 
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II, QUANTUM ELECTRODYNAMICS AND RENORMALIZATION THEORY 
IN THE INFINITE MOMENTUM FRAME 

(The manuscript for this section was prepared in collaboration 
with Ralph Roskies) 

Recently Ralph Roskies, Roberto Suaya and I have found that titie- 
ordered perturbation theory for quantum electrodynamics evaluated in an 
infinite momentum reference frame represents a viable, instructive, and 
frequently advantageous calculational alternative to the usual Feynman 
diagram .approach. The renormalization procedure can be implemented 
in a straightforward manner. We have calculated the electron anomalous , 
magnetic moment through fourth order in agreement with the 
Sommerfield-Petermann results, 7 and have calculated representative 
contributions to the sixth order moment. Our results agree with those of 
Levine and Wright* and represent the first independent confirmation of 
their result for these contributions. 

An outline of our techniques follows; LL more complete discussion will 
be published separately. g 

The electron vertex jn quantum electrodynamics may be computed in 
perturbation theory using the standard time-ordered momentum space 
exptinsion of the S-matrix. Although the final results are independent of 
the choice of Lorentz frame, it is very convenient to choose a limitinc 
reference frame in which the incident electron momentum P is large. hn 
a general fra.me, a Feynman amplitude of order en requires the evalua- 
tion of n? time-ordered contributions, but in a frame chosen such that 

p=(,lfJ2+,2 , CA,,P) -+(P+$, 93) 

q= y=jG 
( *‘O ) 

Pa) 

(2q.p= -q2 =TF) only the relatively few time-ordered graphs, in-which the 
momenta of all the internal (on-mass-shell) particles pi =XiP -t kil have 
positive components along P(0 <Xi < 1)) have a surviving contribution in the 
limit P *co. In general, the limit P --+co is uniform with respect to the 

d3p. 

2E; 

d2kildx. 
1 = 

2xi 

phase space integrations for all renormalized amplitudes. Thus the order 
01 correction to the anomalous moment a- F2(0) is obtained from only one 
forward-moving time-ordered graph5,6, lo (see Fig. l), up to 3 time- 
ordered graphs yield the Feynman amplitude for the order a2 corrections; 

-3- 



/ 

between 1 and 15 forward-moving time-ordered graphs contribute to 
various Feynman amplitudes at order ~3. 

Fig, l--The six time-ordered contributions of the Feynman amplitude for 
the proper electron vertex Fp in order cz. For the components p=O or 
~=3, only the contribution of the diagram (a) survives in the infinite mo- 
mentum limit P ---co of Eq. (1). In addition, the “Z-graph” contribution 
for the p=l, 2 components which arises from diagram (b) is automatically 
included by usin, = the modification of the spinor sum for diagram (a) given 
in Eq. (2). 

As emphasized by Drell, Levy, and Yan, 4 time-ordered graphs with 
backward-moving (xi < 0) internal fermion lines can give surviving P2/P2 
contributions in the P -00 limit if the line extends over only one time 
interval. These additional contributions (which correspond to contact or 
ffseagullll interactions analogous to the e2@+@A2 interactions in boson 
electrodynamics) can be automatically included by making a simple modi- 
fication in the forwar d-moving contribution: if a forward-moving electron 
(Xi> 0) extends over a single interval I then instead of the usual spin sum 

C u(pi) ii@.) = pS. + m , 
1 1 

p2 = m2 
spin 

1 i 

we write 

pi + YO(EO-EI) + m 

(W ” 

(2b) 

where E. is the total incident energy and EI is the sum of the energies of 
all of the particles occurring in the intermediate state I. It is easy to 
check that this replacement (which corresponds to using energy 
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conservation between the initial and intermediate energies to determine 
pP rather than the mass-shell condition) automatically accounts for the 
contribution of the corresponding negative moving (Xi < 0) positron line. 
A similar modification for the energy of a forward-moving positron 
(spanning one time interval) accounts for the corresponding negative mov- 
ing electron line. With these changes all “Z-graph” contributions are 
accounted for, and one need only consider time-ordered diagrams where 
all internal lines have Xi> 0. 

The renormalization GrocedLtre for quantum electrodynamics using 
old-fashioned perturbation theory closely parallels the explicitly covari- 
ant Feynman-Dyson procedure. Reducible amplitudes with self-energy 
and vertex insertions may be renormalized using subtraction terms cor- 
responding to 6m, Z2 and Zl counter terms. The integrand for the sub- 
traction term is similar in form to the integrand for the unrenormalized 
amplitude, except that the external energy used for the denominator for 
the subgraph insertion is not the external (initial) ener,gy E. of the entire 
diagram but is the energy external to the self-energy or vertex subgraph 
only. For example, the renormalization of the scattering amplitude 

. shown in Fig. 2a requires 6m and Z2 subtractions (Fig. 2b and Fig, 2~). 

’ 

, 

I I I 
I 2 3 

(a> lb) ( c > 1,.7A1 

Fig. 2--Illustration of the renormalization procedure in old-fashioned 
perturbation theory. (a) A representative time-ordered diagram for the 
self-ener,gy modification of the Compton amplitude. (b) and (c) The cor- 
responding 6m and Z2 counterterms. 
proportional to (El-E2)-l. 

The integrand for the 6m term is 

The integrand of the renormalized amplitude for +3 theory is constructed 
from 

(Eo-El)(EolE2)(Eo-E,) - (Eo-E+(E,~E,)(E,-E,?+ (EO-El)(El~E2)(El-E21 (3) 

where Ei is the total energy of the on-shell particles occurring at interval 
i. Upon integration over the loop m.omentum variables (xi, FiI,, the sec- 
ond and third terms yield, by definition, the correct 6m and Z2 counter 
terms (assuming covariant regularization). On the other hand, if scalecl 
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variables _, .__ .)... - - _. .-_ .-- 

are chosen to’parametrize the momenta of the internal particles,. then 
CL. c cross terms are eliminated and the integration for the renormalized 
amplifidde from +&he sum of the three terms is point-wise convergent. In 
the QED case, the appropriate Dirac numerator must also be constructed 
such that the (covariantly-regulated) subgraph integration defines the car- ’ 
rect counter terms. This procedure leads to finite, renormalized 
pointwise-convergent (and numerically inte 

9 3 
able) amplitudes for the case 

of all self-energy or vertex insertions. ) The analysis of infrared 
divergences (via a photon mass regulator) may be carried out in parallel 
with standard treatments. 

In general, we have found that the p-00 limit is uniform (i, e. , can 
be taken before the d2k,dx loop integrations) for the renormalized ampli- 
tudes, and there are no subtleties involved at the boundaries of the Xi 
integration. On the other hand, the evaluation of the (divergent) renor- 
malization constants themselves requires caution. Since covariance is 
not explicit in this approach, one must be careful. to regularize using a 
covariant procedure, such as the Pauli-Villars method or spectral con- 
ditions v The standard covariant expressions for the renormalization 
constants are obtained if regularization is performed before the P --cc. 
limit is taken. 9 

With the above considerations, it is straightforward to calculate re- 
normalized amplitudes for quantum electrodynamics directly from time- 
ordered perturbation theory and the interaction density e:$ ycL@Jl:. The 
covariant Feynman amplitude is obtainecl from the corresponding 
(forward-moving) time-ordered graphs with the same topology. The 
Dirac numerator algebra is the same for each of the time-ordered ampli- 
tudes and is identical to the corresponding Feynman calculation. Our 
techniques also show that quantum electrodynamics may be calculated on 
the light-cone in the Feynman gauge, rather than the Coulomb gauge. 

For the calculation of the lepton vertex, the FI and F, amplitudes 
can be obtained simply from standard trace projection ope::ators. I2 The . 
integrand in the variables Xi, Xii is then obtained from the product of 
phase space, the numerator trace, and the energy denominators charac- 
teristic of old-fashioned perturbation theory. l3 One important feature of 
this method, besides providing a new and independent calculational 
technique, lies in the fact that the resu$ing integrand appears to be much 
smoother function of the variables Xi, kil than the corresponding Feynman 
parametric integrand obtained by the usual techniques. As a result, the 
numerical integrations (which are often the most difficult part of higher 
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order calculations in quantum electrodynamics) converge-considerably 
faster. 

As an indication, the numerical integration of the contribution of the 
sixth order ladder graph (Fig. 3a) to the electron’s anomalous magnetic 
moment from old-fashioned perturbation theory required lo5 evaluations 
of a smooth well-behaved six-dimensional integrand to obtain a 1% level 
of accuracy. l4 In contrast, the standard Feynman technique, which in- 
volves a five-dimensional integral, required 2x lo6 evaluations of the 
integrand for comparable accuracy. Our result is 

_ “.. ,..- _ , 

Fig. 2a = (1.77 Zt 0.01) 2 
w3 

in precise agreement with the result of Levine and Wright. 8 Our results 
for the fourth order magnetic moment using P-+co techniques agree with 
the Sommerfield and Petermann calculations;7 again, the integrands were 
found to be smooth and rapidly integrable by numerical techniques. 

The sixth order ladder graph is a highly reducible graph requiring 
several vertex renormalizat.ion counter terms, but only one time-order 
survives in the infinite momentum limit. We have also calculated a 
representative irreducible graph, Fi.g. 3b, which has eight surviving 

(0) (b) 
Fig, 3--Representative reducible and irreducible contributions to the 
sixth order magnetic moment of the electron or muon. The ladder graph 
(a) is obtained from a single time-ordered contribution at infinite mo- 
mentum (out of a possible 7!), but requires renormalization of the fourth 
order and second order vertex insertions. The Feynman amplitude for 
irreducible graph (b) receives contributions from the eigh.c time-ordered 
graphs with positive moving internal lines. 

time orders. In this case there is an eight-dimensional nontrivial inte- 
gration to be performed and the algebraic work is much more complex. 
Our result for this graph is 2(1.11 f 0.23) a3/$ which is consistent 
with Levine and Wright’s result 2(0.90 i 0.02) cy3/r3 obtained from a 
seven-dimensional Feynman parametric integration. Work is continuing 
to improve the accuracy of our result. 
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The validity of the infinite momentum reference frame method as a 
renormalizable calculational procedure in quantum electrodynamics gives 
field-theoretical parton model calculations a rigorous basis provided that 
a covariant regularization procedure is used. Our work also demonstrates 
that the infinite momentum method provides a useful calculational alter- 
native to standard covariant techniques. The P-co method is closely 
related to field theory quantized on the light cone. 6,&Y Our method shows 
how to renormalize the theory and work in the Feynman gauge. I5 

III. THE ATOM IN THE INFINITE MOMENTUM FRAME 

Although the infinite momentum method was developed to treat highly 
relativistic problems, there are interesting applications to problems of 
the atom. 

An important quantity is the normalized probability distribution 

f,(x) = -J- 
167r3 

d2k 
x(1 7 x) lici(f;i,x) I2 

1 

‘S fe(x) dx = 1 

0 

which is the probability for finding an electron moving with momentum xl? 
along the F-direction in a reference frame in which the atom is moving 
with momentum P -co. , The electron wavefunction $(x1, x) may be found 
from the solution of the wave-equation of the atom in the infinite momen- 
tum frame (see Weinberg1 and Feldman, Fulton, and Townsendl6) or by 
a Lorentz boost of the center-of-mass wavefunction. [For corrections 
in Q, higher particle number (photon, electron-positron pair) states must 
be included, as in the QED case, see Section II. 1 Note that fe(x) is 
peaked at the value x = E,/MT where MT is the total atomic mass and E, 
is the bound electron energy, and that fe(x) - 6(x - me/MT) if the binding 
energy is taken to zero. 

A standard result, derived from parton - constituent field theoretic 
models4 - is that the bound electron contribution to deep inelastic wide- 
ancle electron-atom scattering (i. e. , v = ELab - EL 
-3 2 

>: R.E., 
q R >> 1) is given simply by the Mott cross section 9 or el.astic e-e 
collisions) times f,(x), with x taken at the value 

x==Q2/2M,u , . Q2=<2-v2 . 
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Derivations and formulae are given in Ref. 4. This result extends the 
validity of the impulse and incoherence approximations to the relativistic 
domain. 

A surprisingly simple result can also be obtained for the bound elec- 
tron contribution to high energy (V >> B. E. ) forward photon-atom scat- 
tering . One finds 17 that the (spin-averaged) forward Compton amplitude 
f(v) is asymptotically constant and real: 

2' 
fbJ 1 -----s--Z% J 

1 f,(x) 2 

v>>B. E. MT 0 
-+&k- 

“eff 

Note that XMT plays the role of the effective electron mass; meff contains 
corrections from atomic binding and finite nuclear mass corrections. The 
above result is derived in field theory from the electron-positron z-graph 
contribution to the electron Compton amplitude, which is effectively a 
*fseagul171 diagram in the infinite momentum frame. This result may be 
compared with the beautiful treatment of high energy photon scattering 
from an electron bound in a potential that has been given by M, Goldberger 
and F. Low. 18 

Given the infinite momentum wavefunction we may also determine the 
electron current contribution to atomic (elastic or inelastic) form factors. 
Ignoring spin complications, one obtains 

F(q2) = A- 
167r3 s 

where < is a vector transverse to F with magnitude zf = Iq2 I. Drell 
and Yan’[Ref. 4) have shown that the large q2 behavior of the elastic form 
factor F(q2) is related to the x near one behavior of f ,(xX>. 

A very simple expression may also be given for rearrangeygnt (inter- 
change) collisions in elastic or inelastic atom-atom scattering. The 
scattering amplitude for elastic H - H rearrangements collisions is 
proportional to 
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where , _ .- .-_ 

A=E -E 
-0 intermediate 

= 2M; - 
(‘;; - GL)2 + (rl+ (l-x) T1)’ + 2(xMi+ (l-x) rnz) 

x( l-x) 

The vectprs <; and T1 are-chosen transverse to F, with magnitudes 
_ _ .--. 

q; = 25-z m (l- cos 0 . * cm)=-t . . 

-2 
‘1 = 2$ m . . (1 + cos Bc nl ) = -u _ . ._ _ ..-_._ _. 

This result ignores the Coulomb interactions between the electrons and 
between the atoms, but includes the binding forces correctly (including all 
recoil and relativistic terms). Spin corrections are discussed in Ref. 19. 

The corresponding parton-interchange contributj.on has been shown to 
agree well with measurements of high energy, large angle, proton-proton 
scattering (where the proton is regarded as a quark bound state). I.9 It 
would be interesting to measure hard, large angle atom-atom (elasLic or 
inelastic) in the region where the electron exchange contribution is 
dominant. 

Finally, we note that a very hopeful area of application of the infinite 
momentum method is the spectra of bound states, especially that of posi- 
tronium and muonium; the infinite momentum old-fashioned perturbation 
theory approach provide s a rigorous alternative to the Bethe-Salpeter 
formalism, and does have calculational advantages. The work of Feldman, 
Fulton, and Townsend, Xi who have treated the spin zero bound state prob- 
lem in the infinite momentum frame, is an important step in this direction. 
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