A PARTIAL-WAVE ANALYSIS OF THE REACTION $\pi N \rightarrow \pi \pi \pi N$ IN THE c.m. ENERGY RANGE 1300 - 2000 MeV *

D. J. Herndon,[†]R. Longacre,^{††}L.R. Miller, A. H. Rosenfeld, G. Smadja,^{††} and P. Söding [‡] Lawrence Berkeley Laboratory, University of California Berkeley, California 94720

R. J. Cashmore[§] and D.W.G.S. Leith Stanford Linear Accelerator Center, Stanford University Stanford, California 94305

October 1974

ABSTRACT

A partial-wave analysis of the reaction $\pi N \rightarrow \pi \pi N$ has been carried out in the energy region 1300-2000 MeV. Two continuous solutions have been found; they are very similar in regions where data exists, but differ in the continuation of amplitudes through a gap between our low and high energy data. The second solution ("B") gives a much better fit to the data. These new partial wave amplitudes provide important information on the inelastic couplings of the nucleon resonances to the N ρ , N ϵ , and $\Delta \pi$ channels. A new resonance, D₁₃(1700), long predicted by the quark model, has been observed coupling to two inelastic channels-- ϵN and $\Delta \pi$, and the existence of a P₁₃(1700) state is corroborated. Our preferred solution indicates a second new resonance, P₃₃(1700), coupled strongly to the $\Delta \pi$ channel.

* Work supported by the U. S. Atomic Energy Commission.

(Submitted for publication)

[†]Present address, Lawrence Livermore Laboratory, Livermore, California 94550.

[†]Present address, CEN, Saclay, (France).

[‡]Present address, DESY, Notkestieg 1, 2000 Hamburg-52.

Present address, Nuclear Physics Laboratory, Oxford, OX1 - 3RH.

A PARTIAL-WAVE ANALYSIS OF THE REACTION $_{\pi N \rightarrow ~\pi\pi N}$ in the c.m. energy range 1300-2000 MeV *

Contents

	1		Page
I.	Intr	oduction	1
II.	The	Data	3
III.	Exte	ended Isobar Model	4
,	A.	Ingredients of Isobar Model	5
	в.	The Final State Interaction	8
	с.	The Centrifugal Barrier, b_1	9
	D.	The Partial Waves Used in Our Fits	9
IV.	The	Fitting Program	10
	А.	Choice of Method	10
	в.	Likelihood Formulation	11
	С.	Unitarity, Agreement with Elastic Phase Shifts Predictions	14
	D.	Stepping to a Maximum	15
	E.	Errors in Amplitudes on Argand Plots	17
	F.	Relative Likelihood of Competing Solutions	18
	G.	Program Tests	20
	н.	Limits for the Observation of Partial Waves	21
v.	Fitt	ing Procedure, Tests, Quality of Final Solutions	22
	Α.	The 1972 24-wave Solution A	22
	в.	The 1973 28-wave Solution B	24
	с.	Tests and Quality of our Fits	25
		1. Four Dimensional χ^2 .	25
		2. Agreement with Inelastic Cross Sections	25
		3. Removing Waves, Monte Carlo Checks	26
		4. 60×60 Errors	27
	D.	Comparison of Solutions A and B	28
	Ε.	Summary	29

č

Page	
------	--

VI.	The	Partial-Wave Amplitudes, Description	Description and				
		Discussion	•	•	•	•	30
VII.	Con	clusions	•	•	•	•	36
VIII.	Ack	nowledgments	•	•	•	•	37
Append	lices		•	•	•	•	38
	Α.	Maximizing the Scale Parameter in t	he				
		Likelihood Fit	•	•	•	•	38
	В.	Example of Stepping Procedure when $\nabla \nabla^T f$ Matrix is Singular	•	•	•	•	41
•	C.	Choice of Angular Momentum Barrie: Factors and of the N [*] Radius	r	•			43

Supplement

Tables of Partial Wave Amplitudes. Tables and punched cards, for Solution B, including 28×28 and 60×60 error matrices, are available on request.

The Data-Summary Tape of the actual π^- events is also available from LBL, SLAC, or Saclay. The π^+ events for $\sqrt{s} = 1810$ MeV and above may be requested from the UCR-LBL Collaboration (see Table I).

I. INTRODUCTION

Elastic phase shift analyses have provided us with an impressive list of resonances, which is both the essence of our understanding of baryon spectroscopy and also the main testing ground for many of the ideas on the dynamics of hadronic processes. The agreement among the many independent groups is very impressive, 1-3 and gives confidence in the resulting scattering amplitudes.

Corresponding investigation of the inelastic scattering reactions has not kept pace with that of elastic reactions. This derives not only from the lack of data (with high statistics, and systematically spread in energy), but also from the complexity of the phenomenological analysis. However, the study merits the effort. As can be seen from Fig. 1, the inelastic cross section represents a very substantial fraction of the total πN cross section, even at 1.0 GeV/c, and it is therefore intrinsically interesting to understand the scattering process. In addition, the inelastic decays of N^{*} are a very specific signature of the state and its properties, and therefore an important study in their own right. Finally, for resonances with very small coupling to the elastic channel [e.g. $D_{13}(1700)$] these studies are the only effective means of investigating the resonance in a formation experiment.

In the resonance region the principle inelastic reaction is

$$\pi N \rightarrow \pi \pi N. \tag{1.1}$$

We have therefore made a detailed study of this channel in the c.m. energy range 1300-2000 MeV. In a previous analysis of this data in the range 1640-1760 MeV we attempted to isolate the reaction

-1-

$$\pi^{-}p \rightarrow \pi^{+}\Delta^{-}$$

$$\pi^{-}p \rightarrow \pi^{+}\pi^{-}n$$
(1.2)

from

by selecting only events with $1.14 < M(\pi^{-}n) < 1.320$.⁴ This study enabled us to extract values for the F_{15} and D_{15} coupling constants to the $\pi \triangle$ channel. Another group has used a similar technique to analyze⁵ the reaction

$$\pi^{+}p \rightarrow \pi^{0} \Delta^{++}$$
(1.3)

to obtain the isospin-3/2 amplitudes in the c.m. energy range 1820-2090 MeV. (They have also contributed their data to the present study.)

In reactions of type (1.1) there is the possibility of producing many resonances which overlap strongly in the final states, particularly at lower c.m. energies. The interference effects associated with these overlaps are not removed by the Δ -selection techniques described above, and hence are an inherent limitation of such analyses. At higher energies the increased phase space and the possibility of using the mass conjugation technique⁶ improve the situation. Nevertheless, the interference effects are still a problem. These effects led to fitting the reactions in their entirety using the isobar model and its extension;⁷ these take into account the effects associated with the many strong final-state interactions present. These methods have only been used currently at c.m. energies below 1560 MeV.⁸⁻¹⁰

We have extended this latter approach by including many more intermediate final states (and partial waves) and using the maximum likelihood technique in confronting the data with theory. These

extensions have allowed us to successfully apply this method throughout the energy range considered, 1300-2000 MeV. The data covers the regions 1300-1540 MeV and 1640-2000 MeV with a 100-MeV gap between the two regions. We presented one solution at the 1972 Batavia Conference.¹¹ The energy-independent partial wave analysis now yields two continuous solutions over the whole energy range. The solutions are very similar in the two regions where we have data, but have different continuations through the 100-MeV gap in the data. We favor Solution B, but no fundamental ambiguity exists in the partial wave analysis -- when data in the gap region (1540-1640) become available, a clear choice between our two solutions will emerge. We include plots of our earlier Solution A for historical reasons and also to demonstrate the stability of many of our conclusions concerning the partial wave amplitudes. This analysis provides for the first time information on 50 inelastic couplings of the nucleon isobars and essentially accounts for all of the $\pi N \rightarrow \pi \pi N$ cross section in this energy range.

II. THE DATA

In the energy range we consider, single pion production reactions can be unambiguously identified in the bubble chamber, resulting in effectively bias-free data. We have gathered data from several large bubble chamber experiments $^{8-10, 12, 13}$ leading to a total sample of 200,000 events covering the reactions

-3-

$$\pi^{-}p \rightarrow \pi^{-}\pi^{0}p,$$
 (2.1)

$$\pi \bar{p} \rightarrow \pi^{\dagger} \pi \bar{n},$$
 (2.2)

$$\pi^{+}p \rightarrow \pi^{+}\pi^{0}p, \qquad (2.3)$$

$$\pi^+ p \rightarrow \pi^+ \pi^+ n, \qquad (2.4)$$

at energies 1300-2000 MeV. These experiments are listed in Table I.

The major features of Reactions (2.1)-(2.3) can be observed in Figs. 2 and 3. The Dalitz plots of Fig. 2 demonstrate the presence of \triangle (1236) production in all cases although its contribution decreases at the higher energies. Indeed, at these higher energies the major final state interaction is due to the ρ meson and its effects clearly should not be ignored even at the lower energies. The presence of these obvious resonance bands was the motivation for the quasi-two-body analyses of Refs. 4 and 5, but while the present solutions contain their qualitative features, they differ by many standard deviations from the earlier quantitative conclusions.

The variations in the structure of the production angle, θ , of the nucleon (see Fig. 3) are indicative of the presence of rapidly varying transition amplitudes. We can therefore anticipate that many partial waves will be necessary and that these will change rapidly with energy as expected from the presence of the structure in the inelastic cross sections of Fig. 1.

III. THE EXTENDED ISOBAR MODEL

In this section we summarize the ingredients of our extended isobar model and give the final formulae and partial waves we use in our fits. A detailed discussion and derivation of all formulae may be found in Herndon, Söding, and Cashmore.¹⁴

A. Ingredients of Isobar Model

(i) We assume that the reaction proceeds through three quasitwo-body channels

$$\pi N \rightarrow \pi \Delta (1236)$$

$$\rightarrow N \rho (760) \qquad (3.1)$$

$$\rightarrow N \epsilon$$

where ϵ represents the strong s-wave $\pi\pi$ final state interaction at around 650 MeV.

(ii) The reaction can proceed through a large number of partial waves. We then have a transition amplitude for each angular momentum and isospin state which we write as $T_{qu}^{c}(\omega)$, where

- c represents the charge channel, e.g. $\pi^+\pi^-n$, $\pi^-\pi^0$ p, etc.;
- a is the group of quantum numbers (F, L, L', I, J) describing the reaction. These are summarized in Fig. 4, and the notation is spelled out below Eq. (3.2);
- μ represents μ_i , μ_f , the initial and final nucleon helicities;
- ω describes the four kinematical quantities necessary to describe an event: we choose these to be ω_1^2 , ω_2^2 -the Dalitz plot variables-and

 $\cos \theta$, ϕ -where θ , ϕ are the angles of the incident π in our final-state coordinate system.¹⁴ Our z-axis lies along the direction of the outgoing nucleon, and the y-axis is perpendicular to the production plane.

We note at this point that different charge channels differ only in isospin Clebsch-Gordan coefficients. (iii) We can now explicitly develop some of the factors contained in $T^{c}_{a\mu}(\omega);$

$$T_{a\mu}^{c}(\omega) = \mathbf{A}_{a} D_{a\mu}(\omega) B_{a}(\omega) W_{F}(\omega) C_{a}^{c} \equiv \mathbf{A}_{a} X_{a\mu}^{c}, \qquad (3.2)$$

where $D_{a\mu}(\omega)$

contains all spherical harmonic factors (D-functions) associated with the angular momentum decomposition;

$$B_{a}(\omega)$$
 contains the centrifugal barrier factor b_{L} , associated with the decay of the intermediate J^P state;

$$W_{F}(\omega)$$
 represents the Watson factor for the final state inter-
action;

$$A_a$$
 represents the amplitude for the particular wave and
is assumed to be only dependent on the total mass of
the system and not on any of the submasses. It is
these complex parameters A_a which we vary during
a fit;

(iv) The final transition amplitude to a given final state is then obtained by making a coherent sum of these individual amplitudes,

$$T^{c}_{\mu}(\omega) = \sum_{a} T^{c}_{a\mu}(\omega) . \qquad (3.3)$$

This summation implies some double counting of the amplitudes, which had been thought to be a small effect.¹⁵ However, prompted by Aaron and Amado and others,¹⁶ the Illinois group¹⁷ and we are both estimating corrections to the amplitudes.¹⁸ (v) The differential cross section is then given by

$$d\sigma^{c}(\omega) = \chi^{2} \sum_{\mu} |T^{c}_{\mu}(\omega)|^{2}, \qquad (3.4)$$

where we sum over initial and final nucleon helicities as we are neither working with polarized targets nor observing the final polarization.

This construction of the final state amplitude and cross section allows easy fitting to all single-pion production channels and hence allows the partial-wave decomposition of the scattering amplitude.

(vi) Cross sections are expressed in terms of the conventional T-matrix elements T_{α} (called $T_{\pi N}$ for elastic scattering, $T_{\Delta \pi}$ for Δ production, etc.). The unitary circle has unit diameter, and if there were only a single channel present, the total cross section would be

$$\sigma_{\alpha} = 4\pi \lambda^2 \left(J + \frac{1}{2} \right) \left| T_{\alpha} \right|^2.$$
(3.5)

Note that by convention T carries no subscript μ as in Eq.(3.4); i.e.,

$$\left| \mathbf{T}_{\mathbf{a}} \right|^{2} = \int \sum_{\mu} \left| \mathbf{T}_{\mathbf{a}\mu} \right|^{2} d\Omega.$$
 (3.6)

The nucleon helicity states are uniquely related by Clebsch-Gordan coefficients, i.e. $T_{a\mu} \propto C(J, L', \mu)T_a$ and so the actual amplitude T_a is well defined.

In practice however a single incoming partial wave can feed several values of a (i.e. several channels, like $\pi\Delta$, ρN , ϵN). This may result in substantial interference effects which are observable in the integrated cross section [see Eq. (3.7)]. The cross section is written as in (3.4),

$$\sigma_{in}(J^{P}) = \chi^{2} \int d\Omega \sum_{\mu} \left\{ \sum_{\alpha} \left| T_{\alpha\mu} \right|^{2} + \text{interference terms} \right\},$$

which in the spirit of Eqs. (3.5) and (3.6) we define as

$$\sigma_{in}(J^{P}) = 4 \pi \lambda^{2} (J + \frac{1}{2}) \left\{ \sum_{a} |T_{a}|^{2} + \text{overlap integrals} \right\}.$$
(3.7)

Equation (3.7) defines the normalization of the Argand plots. The overlap integrals are important and are taken into account at all stages of the program.

Different incoming partial waves never interfere, so we can write

$$\sigma = \sum_{JP} \sigma(J^{P}).$$
 (3.8)

B. The Final State Interaction, WF

This could be parametrized as a Breit-Wigner factor. However, rather than attempting to represent the Δ , ρ or ϵ by Breit-Wigner forms we chose to use the Watson Final State Interaction to describe the effects of these strong interactions by a factor

$$W_{F} = \frac{e^{i\delta}F \sin\delta}{q^{\ell+1}}.$$

Here δ_F is the appropriate elastic phase for the strongly interacting particles, and q is the momentum of each particle in the isobar rest frame.

The actual values of δ_F are summarized in Fig. 5. The only uncertain phase shift was for the ϵ (I = 0, J = 0 $\pi\pi$) but our parametrization is in close agreement with recent analyses¹⁹ except near 1000 MeV which fortunately is at the extreme limit of phase space for our highest beam energy. For more discussion, see Herndon.²⁰

C. The Centrifugal Barrier,
$$b_{L'}$$

We should include centrifugal barriers in both the incident state and the quasi-two-body intermediate state. However, the first of these is constant for a given partial wave at a given energy and hence we have ignored it. (It's inclusion would just result in a rescaling of A_a , which is unimportant--see below).

The barrier factor in the intermediate state has been introduced as

$$b_{L'} = Q^{L'}$$
(3.10)

where Q is the isobar momentum in the c.m. and L¹ the orbital angular momentum.

Equation (3.10) is only the low-QR limit of the standard Blatt-Weisskopf factor,²¹ which we meant to use. We inadvertently started with (3.10) and caught the mistake only after it was inconvenient to change. In Appendix C we show that (3.10) is adequate for our purpose, but urge the use of the correct form for all future partial-wave analyses.

D. The Partial Waves Used in Our Fits

As discussed above we only considered three final state interactions in our analysis

(i)	the \triangle (1236)	- intermediate state ·	πΔ
(ii)	the p(760)	- intermediate state I	Νρ
(iii)	the I=J=0 $\pi\pi$ interaction	- intermediate state l	Νe.

Since our decomposition of the amplitude is essentially an LS representation [where $\underline{S} = \underline{S}$ (diparticle spin) + \underline{S} (bachelor spin)], in the case of the ρ meson we have two transition amplitudes. These are obtained because

$$\frac{S_{\rho}}{S_{\rho}} + \frac{S_{N}}{S_{N}} = 1/2 \text{ or } 3/2,$$
 (3.12)

and are denoted as ρ_1 or ρ_3 waves.

In order to make the fitting problem tractable we have limited ourselves to orbital angular momenta in the incident and final states, $l \leq 3$ and total angular momentum to $j \leq 7/2$. In Table II we list the 60 waves with which we began the analysis. As described in the later sections the actual number of waves required increased with c.m. energy, the maximum being 28 at our higher energies.

IV. THE FITTING PROGRAMS

A. Choice of Method

The choice of fitting procedure is clearly dictated by the number of events available in a given experiment. To exploit the correlations that exist in the data in the case of limited statistics the most powerful approach is that of the maximum likelihood technique.²²

At the time we began our analysis, none of the existing maximumlikelihood fitting programs could handle either the amount of data or the number of parameters (up to 120) in a reasonable amount of computer time, so we developed a new program (RUMBLE)²³ which handles any problem in which the parameters appear bilinearly in the probability density (see below). It took the equivalent of 400 hours on the CDC 7600 to perform the analysis described in this paper, including random starts, studies of uniqueness, etc.

-10-

B. Likelihood Formulation

1. Likelihood in Each Charge Channel

The full expression of $\frac{d\sigma^{c}}{d_{\omega}^{4}}$ (in charge channel c) in terms of the search parameters, A_{a} , is given by (3.2) through (3.4) as

$$\frac{\mathrm{d}\sigma^{2}}{\mathrm{d}^{4}\omega}\left(\omega_{i}\right) = \lambda^{2} \sum_{\alpha} \left| \mathbf{T}_{\alpha\mu} \right|^{2}$$

 $\frac{\mathrm{d}\sigma^{\mathrm{c}}}{\mathrm{d}^{4}\omega}(\omega_{\mathrm{i}}) = \chi^{2} \sum_{\mu} \left| \sum_{\alpha} A_{\alpha} X_{\alpha\mu}^{\mathrm{c}}(\omega_{\mathrm{i}}) \right|^{2}.$ (4.1)

For this formulation we rewrite $\frac{d\sigma}{d\omega}$ as $p(A_a)$ to emphasize that it is a cross section predicted by the A_a , i.e.,

$$p^{c}(\omega_{i}, A_{a}) = \lambda^{2} \sum_{\mu} |\Sigma_{a} A_{a} X_{a\mu}^{c}(\omega_{i})|^{2}.$$
(4.2)

We write the predicted total cross sections as

$$R^{c}(\mathbf{A}_{a}) = \int d^{4} \omega p^{c}(\omega_{i}). \qquad (4.3)$$

The normalized probability for each event is then

$$P(\omega_{i}, A_{a}) = \frac{p^{c}(\omega_{i}, A_{a})}{R^{c}(A_{a})}, \qquad (4.4)$$

and the likelihood L^C describing the <u>shape</u> of the distribution is

$$L_{\text{shape}}^{c}(\omega_{i}, A_{a}) = \prod_{i=1}^{N^{c}} p^{c} = \frac{1}{(R^{c})^{N^{c}}} \prod_{i=1}^{N^{c}} p^{c}(\omega_{i}, A_{a}). \quad (4.5)$$

If we dealt with only <u>one</u> charge channel, common sense would tell us to adjust the scale of the A_a by setting $R^{C}(A_a)$ equal to the measured channel cross section σ^{C} , but for several channels the correct scaling is more complicated. Hence we must next formulate the generalized likelihood L^c more precisely.

The path length l^{c} may differ from channel to channel. If each experiment reports N^c events and a cross section σ^{c} , then

$$\ell^{c} = \frac{N^{c}}{\sigma^{c}} (\text{events/}\mu\text{b})$$
 (4.6)

and the predicted number of events ν^{c} is given by

$$\nu^{c} = \ell^{c} R^{c}(A_{a}) = \frac{N^{c}}{\sigma^{c}} R^{c}(A_{a}).$$
(4.7)

The Poisson probability of observing ν events when N are expected is

$$P(\nu, N) = \frac{\nu^{N} e^{-\nu}}{N!} . \qquad (4.8)$$

Using (4.7) this becomes $P(\nu, N) = \frac{1}{N!} \left(\frac{N}{\sigma}\right)^N R^N e^{-\frac{NR}{\sigma}}$, i.e., inserting the superscript c,

$$P(\nu^{c}, N^{c}) = \frac{1}{N^{c}!} \left(\frac{N^{c}}{\sigma^{c}}\right)^{N^{c}} \left(R^{c}\right)^{N^{c}} e^{-\frac{N^{c}R^{c}}{\sigma^{c}}}.$$
 (4.9)

We now form the generalized channel likelihood,²⁴ $L^{c} = P(v^{c}, N^{c})L_{shape}^{c}$ where P is given by (4.9) and L_{shape}^{c} by (4.5). The R^c factors cancel, to give

$$L^{c} = \frac{(N^{c}/\sigma^{c})^{N^{c}}}{N^{c}!} \cdot \exp\{-\frac{N^{c}R^{c}}{\sigma^{c}}\} \cdot \frac{N^{c}}{1}p^{c}(\omega_{i}, A_{a}).$$
(4.10)

Finally the multichannel likelihood L is the product of each L^{C}

$$L = \prod_{c} \left[\frac{(N^{c}/\sigma^{c})}{N^{c}} \right]^{N^{c}} \exp \left\{ -\frac{N^{c}R^{c}}{\sigma^{c}} \right\} \prod_{i}^{n} p^{c}(\omega_{i}, A_{a}).$$
(4.11)

2. Analytic Scaling of the A_a

We have already said that if we had only one charge channel we could set $R^{C} = \sigma^{C}$. Let us check this for single channel Eq.(4.10) by introducing a scale factor, s, e.g.

$$A_a = s A_a^0$$
. (4.12)

Dropping factors which do not contain s, Eq. (4.10) becomes

$$L^{c}(sA_{a}^{0}) = \exp\left\{-\frac{N^{c}s^{2}R^{c}(A_{a}^{0})}{\sigma^{c}}\right\}(s^{2})^{N^{c}}\prod_{1}^{N^{c}}p^{c}(\omega_{i}, A_{a}^{0})$$
(4.13)

$$\ln L^{c} (s A_{a}^{0}) = - \frac{N^{c} s^{2} R^{c} (A_{a}^{0})}{\sigma^{c}} \cdot + N^{c} \ln s^{2} + constant \qquad (4.14)$$

$$\frac{\partial \ln \mathcal{L}^{C}(sA_{a}^{0})}{\partial s} = -\frac{2N^{C}sR^{C}(A_{a}^{0})}{\sigma^{C}} + 2N^{C}\frac{1}{s} . \qquad (4.15)$$

Setting this to zero gives

$$\frac{1}{s^2} = \frac{R^{c}(\mathbf{A}^0_{a})}{\sigma^c}, \qquad (4.16)$$

which as we guessed earlier indeed gives

$$R^{c}(A_{a}) = s^{2} R^{c}(A_{a}^{0}) = \sigma^{c}$$

and
$$L^{c}(s^{\max} A^{0}_{a}) = e^{-N^{c}} \left[\frac{\sigma^{c}}{R^{c}(A^{0}_{a})}\right]^{N^{c}} \prod_{1}^{N^{c}} p^{c}(\omega_{i}, A^{0}_{a}).$$
 (4.17)

This expression is manifestly independent of the magnitude of the vector A_{α}^{0} .

Next we can apply the same procedure to the multichannel L of Eq. (4.11). Details are given in Appendix A. This time the equivalent of (4.16) is easily found to be

$$s^{2}|_{L_{\max}} \equiv s^{2} = \frac{\Sigma N^{c} \equiv N}{\Sigma \frac{R^{c} N^{c}}{\sigma^{c}}}.$$
 (4.18)

It is also shown in Appendix A that inserting this into (4.11) yields a multichannel likelihood

$$L(s_{\max} A_{a}) = B e^{-N} N^{N} \left[\sum_{\sigma^{c}}^{N^{c} R^{c}} (A_{a}) \right]^{-N} \prod_{\substack{\alpha \\ c i=1}}^{N^{c}} p^{c}(\omega_{i}, A_{a}).$$
(4.19)

The quantity which we actually maximize is the average log of (4.19) premaximized with respect to the scale of A_{α} ,

$$\mathbf{F} = \frac{1}{N} \quad \ln \mathbf{L} = \text{constant} - \ln \left[\sum_{c} \frac{N^{c} R^{c} (\mathbf{A}_{a})}{\sigma^{c}} \right] + \frac{1}{N} \sum_{c} \sum_{i=1}^{N^{c}} \ln p(\omega_{i}, \mathbf{A}_{a}). \quad (4.20)$$

C. Unitarity and the Agreement with Elastic Phase-Shift Predictions

Using unitarity and the elastic amplitude from elastic partialwave ("phase shift") analysis (EPSA), one gets upper bounds for σ (N $\pi\pi$, IJ^P). The partial waves used were those available in 1970, when we started this analysis.²⁰ For most of our fits we did not need (or impose) these constraints. Even in those cases in which we predicted more cross section than allowed, we were within two standard deviations of the upper bound. To correct this, we added to $F(A_{a})$ the χ^{2} -like terms F_{EPSA}

$$\mathbf{F}_{\text{EPSA}} = -\frac{1}{N} \sum_{\text{IJP}} \alpha_{\text{IJP}} \left[\frac{\sigma^{\text{IJP}} - \sigma^{\text{IJP}}_{\text{EPSA}}}{\delta \sigma^{\text{IJP}}_{\text{EPSA}}} \right] \theta \left(\sigma^{\text{IJP}} - \sigma^{\text{IJP}}_{\text{EPSA}} \right), \quad (4.21)$$

where σ^{IJP} is defined by (3.7) and σ^{IJP}_{EPSA} is an average over the different EPSA, and $\delta\sigma^{IJP}_{EPSA}$ are the external errors on σ^{IJP}_{EPSA} .

By using the step function, θ , F_{EPSA} only affected the likelihood when the fitting parameters predicted <u>more</u> cross section than allowed. These additional terms had very little effect on the fitted parameters. Of those amplitudes affected, the modulus was slightly reduced but the phases never changed.

D. Stepping to a Maximum

Maximizing procedures are of three general categories. At each step they evaluate

(i) only the function F, or

(ii) F and the first derivative vector ∇F or

(iii) F, ∇F , and the second derivative matrix, $\nabla \nabla^T F$. For convenience we define the variance matrix $\underline{V} = (\nabla \nabla^T F)^{-1}$.

We have found the most efficient fitting technique is a combination of types (ii) and (iii).

In both types of fitting programs, one "step" in the parameters is given by $\Delta A = -\underline{V}' \cdot \nabla F$ where \underline{V}' is a negative definite approximation to \underline{V} (for some cases $\underline{V}' = \underline{V}$). We use two methods of updating \underline{V}' , the Davidon method²⁵ and a modified form of the Newton-Raphson method.²⁶

1. The Davidon Method

The Davidon method belongs to category (ii). The initial $\underline{V}' = \underline{V}'_1$ is chosen to be diagonal, and at each subsequent step V'_1 is modified by the addition of a rank-one matrix. A rank-one matrix is one having just one eigenvector with a nonzero eigenvalue. A typical example is the outer product of a vector with itself, $M_{ij} = v_i v_j$ or in matrix notation $\underline{M} = \overrightarrow{vv}^T$. If \overrightarrow{v} has unit magnitude, then \underline{M} is called a projector.

Davidon showed that at the ith step \underline{v} ' should be modified by

$$\underline{\mathbf{V}}_{i+1}' = \underline{\mathbf{V}}_{i}' + \lambda \left[\underline{\mathbf{V}}_{i}' \cdot \nabla \mathbf{F}_{i} \right] \left[\underline{\mathbf{V}}_{i}' \cdot \nabla \mathbf{F}_{i} \right]^{\mathrm{T}} .$$
(4.22)

The number λ is calculated from $\underline{V}'_i, \nabla F_i$, and ∇F_{i-1} . To ensure that the step is towards a maximum, rather than a minimum or saddle-point, λ is adjusted if necessary to keep \underline{V}'_i negative definite. This adjustment to V'_i reflects the additional knowledge about the curvature of F gained from knowing the new first derivative ∇F_i . If the 2n-dimensional \overrightarrow{A} space is quadratic, Davidon showed that after 2n steps $\underline{V}'_{2n} = \underline{V}'$.

2. The Original Newton-Raphson Method

This method chooses $\underline{V}' = \underline{V}$ and recalculates the entire matrix at each step. The modified method, which we use, calculates a negative definite approximation to $\nabla \nabla^T F$ and takes \underline{V}' to be the inverse of this approximate matrix. The approximation is such that if our model exactly predicts the event distribution for some vector \overrightarrow{A}' , then $\underline{V}' = \underline{V}$ at \overrightarrow{A}' .

3. Our Procedure

Our fitting procedure was to calculate and invert the approximate second derivative matrix every twenty steps. In between these steps we used the Davidon technique to update the matrix. We also found it more efficient to take a few (in our case 5) Davidon-type steps initially before inverting the second derivative matrix.

4. Redundant Parameters

Since F is invariant to scale changes in \vec{A} and to an overall phase change in \vec{A} , there are two redundant parameters, and the second derivative matrix is singular. These singularities are usually eliminated in problems similar to ours by permanently freezing the phase and modulus of one A_a and reducing by two the dimension of $\nabla \nabla^T F$. We find, however, that the maximizing procedure takes less than one-third the number of steps to reach a maximum if <u>all</u> the A_a are permitted to vary. In this case, the second derivative matrix has two eigenvectors with zero eigenvalues. The desired V' is the inverse of $\nabla \nabla^T F$, restricted to the space spanned by the set of eigenvectors with nonzero eigenvalues. For details on how the fitting program calculates the proper V', see Ref. 23. A two-dimensional example is given in Appendix B.

E. Errors in Amplitudes on Argand Plots

The error matrix E is given by

$$\mathbf{E} = \langle \delta \vec{\mathbf{A}} \cdot \delta \vec{\mathbf{A}}^{\mathrm{T}} \rangle = \frac{1}{N} \cdot V'$$
(4.23)

where $V \approx \nabla \nabla^T F$ as described above, and the factor $\frac{1}{N}$ arises because ln L = NF.

In the neighborhood of any local maximum at A^{\max} with likelihood L^{\max} , we can expand L as

L = L^{max} exp {
$$-\frac{1}{2}\chi^2$$
 } (4.24)

and an error hyperellipsoid may be defined by a hypersurface in A space labelled by $\Delta \chi^2 = 1$, i.e. by $L = L^{max} e^{-1/2}$.

To plot error ellipses on our Argand plots we project this hypersurface on the complex plane representing a single $T_a(\text{or } A_a)$. However, the probability that a result will be within this ellipse is only 40%. In order to increase this probability we have conservatively doubled our estimated error, thereby raising the χ^2 contour to 4, and enclosing 87% of the probability. In summary, all the errors plotted or tabulated in this paper and in our previous publications are twice those calculated by the program RUMBLE which uses (4.23).

F. Relative Likelihood of Competing Solutions

We were bound to encounter two different sorts of competing solutions:

i) The number of parameters (waves) is the same for both solutions, as in the case where two starting values lead to competing maxima ii) The number of parameters differs, as when we have cast out a wave from solution A with likelihood L_A , found a new maximum B, and wonder if the new L_B is significantly worse than L_A .

For the discussion below, assume that hypothesis A is the right one and that after a fit we find a likelihood ratio L_A/L_B which we call L_{AB} . A standard approach is then to say that solution B is ruled out to 3σ if $\ln L_{AB} = NF_{AB}$ is greater than 4.5 (or 2σ of $NF_{AB} > 2$). We now carry this test one step further and take into account the error δF_{AB} in F_{AB} . Specifically we wish not to eliminate solution B unless $F_{AB}/\delta F_{AB}$ is safely larger than unity. (More sophisticated versions of this test are discussed by P. H. Eberhard, A. H. Rosenfeld, and M. Tabak).²⁷ We apply the same numerical test to both sorts of competing solutions i) and ii) mentioned above.

Of course without generating Monte Carlo events we do not know δNF_{AB} but we can <u>estimate</u> it from the 10,000 events in hand at each energy. For each event i we form F_{AB}^{i} and can then evaluate.

$$(\delta' F_{AB})^2 = \frac{\Sigma (F_{AB}^i)^2}{N} - (\frac{\Sigma F_{AB}^i}{N})^2.$$
 (4.25)

Figure 6 is a scatter plot of typical values of $\delta' F_{AB} \underline{vs}$. F_{AB} . The ln-likelihood-ratios are of course NF_{AB}, not F_{AB} , but we plot F_{AB} so that we can show that all points scatter about the dashed line, even though the number of events differs from energy to energy. For easy interpretation we label the scale as 10,000 δF_{AB} and 10,000 F_{AB} , corresponding to ln-likelihood-ratios for typical 10,000-event samples. The points seem to scatter around the dashed line independently of:

- i) the number of events (as just mentioned),
- ii) the number of parameters,
- iii) whether the events are real or Monte Carlo.

We have erected a vertical line at a ln-likelihood ratio of 3, and the standard test would say that to the right of this line solution B would begin to be ruled out. But consider the "X" plotted as far right as 4.5; its error 10,000 δ ' F_{AB} is estimated to be 8.5, so that the value 4.5 is not an adequate reason for eliminating one hypothesis.

Our extra test agrees well with our studies (in Section V.C.) of actually casting out waves and refitting. Thus on Table V we show the results of removing a wave (PP₁₃) whose amplitude |T| appeared to be only 2 to 3 standards deviations from zero. After refitting, χ^2 went up only 11 (for Monte Carlo events) or 14 (for real events) but ln-L decreased by 30 for both sets of events. We do not believe that the solution with the PP₁₃ wave is e^{30} more likely than the solution without. But Fig. 6 shows that when $\Delta \ln L$ is 30, its error is about 10, and the significance test $F_{AB}/\delta' F_{AB} = 30/10 = 3$ seems quite reasonable. In any case this extra test $(\delta F_{AB} < F_{AB})$ offers a convenient numerical way to relate the result of several studies to the frequentlyoccurring question "can we throw out this solution?" and it is sufficiently conservative that we use it with considerable faith.

Finally we should point out the large <u>circles</u> plotted higher on Fig. 6. They are <u>not</u> δF_{AB} , but just δF_A or δF_B . These fluctuations in the ln-likelihood are of course much larger than the fluctuations in its ratio, but it is reassuring to note that as hypotheses A and B become significantly different, δF approach δF_{AB} . We plot these δF dots for two reasons:

i) We know that some older programs have used δ 'Frather than $\delta^{\prime}F_{AB}$ to compare competing solutions, and we want to warn that δF is too coarse.²⁸

ii) Sometimes one knows that the two competing solutions are really very different, and it is of course easier to calculate δ 'F rather than δ 'F_{AB} since a program does not need to know about both hypotheses at the same time. In this case it is convenient to know that δ 'F is an upper limit to δ 'F_{AB}.

G. Program Tests

We made several checks on our programs:

1) To insure we were calculating that $X_{\alpha\mu}^{c}$ correctly in Eq.(3.2), we obtained the programs from three other analyses.^{7,9,10} In all cases we got agreement ²⁹ among the different programs.

2) To test the fitting program itself, we generated artificial data from eleven "known" amplitudes and then fit for the amplitudes. We generated 7583 events $(4733 \text{ N}\pi^+\pi^- \text{ and } 2850 \text{ p}\pi^-\pi^0)$ at $\sqrt{s} = 1690$ MeV. To obtain a set of reasonable starting values, we generated

2000 sets of random amplitudes and kept the 20 sets with the highest likelihood. These 20 sets coalesced to five distinct solutions after fitting. Any wave among the 60 for which the modulus was within one standard deviation of zero in at least three solutions, was considered statistically insignificant and eliminated. After elimination, we refit with fewer waves and again eliminated waves. This was repeated a total of four times until no further waves could be removed. All five solutions coalesced into one solution and the number of waves dropped from 60 to 24. These 24 waves consisted of the original 11 waves and another 13 waves, each of which had |T| < 0.05. Figure 7 shows the initial 11 waves (as dots) and the corresponding 11 fitted amplitudes. The agreement is very reassuring, and gives us confidence that we can select the important waves for an original 60-wave hypothesis. However, in the case of real data, we are concerned with the extra uncertainties of fitting with an imperfect model, so we prefer to quote a "sensitivity" of T = 0.1.

We also tried to break up the 7583 events into smaller samples of the order of 1000 events, but we found we needed all the events generated to get a good 60-wave fit. From this we decided to work with at least 10,000 events at each energy in order to make fits to 60 waves.

This completes our discussion of program tests made before we started fitting real events. More tests of realistic amplitudes (from fitting real events) are described in Sec. VC.

H. Limits for the Observation of Partial Waves

From the tests above, and from our experience to be described in Sec. V, we estimate that we are sensitive to any inelastic partial wave for which

$$T_{a} > 0.1,$$
 (4.26)

or, in terms of branching fractions $X_{\alpha} = \Gamma_{\alpha}/\Gamma$,

$$T_{a} = \sqrt{X_{e1}X_{a}} > 0.1.$$

V. FITTING PROCEDURES, TESTS, AND QUALITY OF THE FINAL SOLUTIONS

A. Obtaining The 1972 24-Wave Solution "A"

The number and distribution of the events used in the analysis are given in Table III. The continuous distribution of events was binned into c.m. energy intervals of 30 or 40 MeV, except between 1560 and 1630 MeV, where no data were available. In this section, we give an outline of the procedure used in obtaining our final solution. This procedure involved several distinct stages.

The data were fitted in three parts: below 1560 MeV, 1630-1830 MeV, and above 1830 MeV.

i) 1310-1560 MeV

In this region (9 bins) we reduced our 60 waves to 36 by removing all waves with $J \ge 5/2$. In each of the six bins between 1380 and 1560 MeV, we generated 2000 random sets of amplitudes to use as starting values to the fitting program and kept the top ten.

Any wave within two standard deviations of zero was considered statistically insignificant and removed. In this manner we were able, at each energy, to reduce to one solution. To look for continuity in energy we used each solution as a starting value for the neighboring energy bins. This new starting value always converged to the existing solution at that energy. Moreover our $\overrightarrow{A}(E)$ varied smoothly with energy providing a continuous solution. Below 1380 MeV, there were too few events for the fitting program to be able to distinguish between different solutions. In this region we propagated the solution from the bin above, removing all unnecessary waves.

ii) 1630-1830 MeV

In each of these five energy bins, we again generated 2000 random sets of amplitudes and this time kept the 20 with the highest likelihoods. From these twenty sets, we fit with as many sets (10-15) as necessary to generate five distinct 60-wave solutions. We then made a list of all waves whose modulus was within 2.0 standard deviations of zero in three of the five solutions. These waves were removed and the solutions were refit. This continued until no further waves could be removed. At this point, the five original solutions at each energy had reduced to two or three at that energy. However, the removed waves were different at each energy !

We then returned to the 60-wave solution and removed all those waves which had been eliminated in at least three energy bins. Then we remaximized. We continued to remove waves that were unnecessary in at least three bins. In this way we reduced from 60 to 30 waves, but still had several competing solutions at each energy.

iii) 1830-1990 MeV

Instead of using the full 60 waves, we started with the 30 waves from the lower energies together with the eight F_{35} and F_{37} waves which had been removed at lower energy. We generated 2000 random starts in this 38-wave set and kept only enough of the highest sets to give four separate solutions after fitting. Where possible we again removed the unnecessary waves.

-23-

iv) Continuity in Energy Above 1630 MeV

To look for continuity, we now used each solution as a starting value in the energy bin above and below its own. In more than half the cases, these starting values led to already existing solutions. If a new solution had a comparable likelihood $(\Delta F/\delta\Delta F < 1)$, we not only kept it, but also used it as a starting value above and below its energy; and of course we checked that waves needed at $\sqrt{s} = 1540$ were present above the energy gap. In looking for smooth energy behavior, we found that some waves had discontinuous (almost random) behavior. We removed these waves even though the fitting program felt they were necessary. In 1972 we found only one chain of solutions over the entire energy range 1620-1999 MeV. This chain consisted of 20 waves from 1620 to 1710 MeV, 23 waves from 1710 to 1750 MeV, and 24 waves from 1750 to 1990 MeV. Figure 8 gives the waves needed at each energy. This is the point at which our analysis stood at the end of 1972 and this solution will be referred to as solution A.

B. The 1973 28-Wave Solution B

As we will discuss in Sec. VI C, the 1972 solution had some 'undesirable' theoretical properties. In an effort to see if this solution was completely stable to the inclusion of new partial waves, we added some further amplitudes to our 1972 set (those marked "*" in Fig. 8), and repeated the fitting process. We found a new continuous solution in each energy range which differed dramatically from our previous solution only in the P_{11} waves and the new waves. However, as we shall see this has allowed us a further degree of flexibility in relating the partial-wave amplitudes in our two regions of analysis. In this case the final set contained 28 waves and we will refer to this as solution B.

C. Tests and Quality of our Fits

1. Four-dimensional χ^2

To compare our fits with the data, we consider four-dimensional (or less) binning of our data. A <u>theoretical</u> bin population can be calculated by binning Monte Carlo events weighted by $p(\omega_i, \vec{A})$. The solid lines in Fig. 9 were generated for Solution A in this manner. From these theoretical bin populations we can also calculate various χ^2 for the fit. Results are given in Table IV; 24 Dalitz plots corresponding to Fig. 9 are given in Ref. 20.

The purpose of using the maximum likelihood technique is to take advantage of the many correlations that exist in the data and thus the real test of our solutions lie in the ability to account for such correlations. As can be seen from Fig. 9 and the χ^2 values, we observe excellent reproduction of those correlations. This constitutes a major justification for our solutions.

2. Agreement with Total and Partial-Wave Inelastic Cross Sections

In Fig. 10 we demonstrate that the single-pion production cross sections in the channels we fit are well reproduced. However, we can compare our prediction for

 $\pi^{-}p \rightarrow n \pi^{0} \pi^{0}$ $\pi^{+}p \rightarrow n \pi^{+} \pi^{+}$

which are not included in our analysis. This is done in Fig.11 where we observe excellent agreement for $\sigma(n\pi^0\pi^0)$ but a large discrepancy for $\sigma(n\pi^+\pi^+)$. This latter fact may well have a simple physical interpretation and we return to this point in Sec. VII. We can make even more stringent tests by comparing our inelastic partial-wave cross sections with the predictions from EPSA. At the lower energies where single-pion production is the major inelastic channel we find excellent agreement as demonstrated in the next section. However, at high energies, other inelastic channels begin to appear and the prediction from EPSA only becomes an upper bound on the single-pion production cross section and this bound is satisfied at all energies.

3. Removing Waves, Monte-Carlo Checks

At 1530 MeV we tested the final fit to see if our model was adequately describing the data. From the final amplitudes (R for "Real") we generated an equivalent number of Monte Carlo events. By fitting these Monte Carlo events, we determined a set of amplitudes T_{MC} which gave the best fit (within the errors we indeed found $T_{MC} = T_R$). From both fits T_R and T_{MC} we then removed a wave, refit, and compared the changes in the likelihoods and in χ^2 . The χ^2 was calculated by binning each variable into four bins ($4^4 = 256$ bins total). We did this for the four waves shown in Table V. The top wave listed, DS_{13} (ρ_3N) is a "large" wave having $|T|/\delta|T| \approx 10$ and its removal caused the other fitted T to move by many standard deviations. The $\text{PP}_{33}(\,\Delta\,\pi)$ and $\text{PP}_{13}(\rho_1N)$ are medium waves with $|T|/\delta|T| \approx 6$ and 3 respectively. The $DS_{33}(\rho_3 N)$ is a "small" wave with $|T|/\delta |T| \approx 1/2$. Table V shows the results of these changes, which seem reasonable, and suggests that our program behaves properly. Since the results are the same for both the real and Monte Carlo events we believe our model fits the data adequately.

We also removed waves at higher energies: the $DD_{15}(\Delta \pi)$ wave at 1650 and the $FP_{15}(\Delta \pi)$ wave at 1690. The $DD_{15}(\Delta \pi)$ is the only D_{15} at 1650 and is quite large. Indeed ln L dropped by 584 when it was removed. The $FP_{15}(\Delta \pi)$ wave however, is one of three F_{15} waves at 1690 and is only "medium" in size. Here $\Delta \ln L$ was 186. So again the program seems adequately sensitive to "medium" waves.

4. Checks with a 60×60 Error Matrix

After finding a best fit at each energy, we found it useful to calculate the full 60×60 error matrix, even though a satisfactory fit had been obtained with only, say, 20 waves.

The idea behind inspection of the full error matrix is as follows: Suppose some untried wave, e.g. No. 59, is highly correlated with a wave used in the fit, e.g. No.19. Then we had better try No. 59: we will probably find a new maximum with No. 59 as large as No. 19, and with No. 19 considerably changed. The clue that <u>some</u> wave is highly correlated with No. 19 can already be found in the diagonal elements of the error matrices, i.e., by comparing the error in a 19 as computed in the 60×60 error matrix and in the 20×20 matrix. If the 60×60 error is, say, twice as big as the 20×20 one, we should look among the off-diagonal elements for large correlation coefficients like $\langle \delta x \ \delta y \rangle_{19, 59}$, where x and y can each be either amplitude or phase. A geometrical interpretation of the relation between the off-diagonal correlation and the increase in the diagonal error can be found in Fig. A1 of Appendix 1 of Ref. 20.

A 60×60 error matrix is too large to reproduce here (it is available in the supplement), however, the diagonal elements only,

for both 20×20 and 60×60 matrices, are compared in Table VI. We see that the 60×60 errors are only 30% larger than their 20×20 counterparts, reassuring us that no highly correlated waves have been omitted.

Another use for the 60×60 error matrix is in making the transformation from partial-wave amplitudes, e.g. $\rho_1 N(FF_{15})$, $\rho_3 N(FP_{15})$, to helicity amplitudes, i.e., $\rho N(F_{15})$, $\lambda = 1/2$, and 3/2. One or two of the ρN partial waves may not have been needed in the fit, but clearly in making the transformation, the errors in these untried waves must be propagated along with the errors in the waves actually used.

D. Comparison of Solutions A and B

In the above sections we have discussed the origin of Solutions A and B and demonstrated that either corresponds to a good representation of the data available to date. We now make a quantitative comparison of the two solutions.

In Table VII a summary of the differences in likelihoods of Solutions A and B is given at nine energies between (1640-2000) MeV (evaluated for a standard sample of 9000 events). For each energy, Solution B gives the higher likelihood, and the difference is around 100. Since Solution B involves four additional partial waves compared to Solution A, we must determine whether this increase of 25 per wave in the likelihood function is significant. Reference to Table V, where we discuss the sensitivity of our solutions to the removal of waves, indicates that such a change in likelihood corresponds to that expected for the inclusion of three or four waves with $|T|/\delta T \sim 3.0$ (i.e., quite significant, moderately large waves). Thus we conclude that the four new waves are really required and that Solution B provides a substantially better representation of the data than the original solution A.

E. Summary

We find two solutions which possess all the following properties:

- At each energy the solution parameters correspond to a maximum in the likelihood function and have a high likelihood (usually the highest of the competing solutions).
- (ii) The solution at each energy propagates to the solution at the adjacent energies above and below.
- (iii) Qualitatively it has no discontinuous motion between adjacent energies.
- (iv) It possesses good agreement with the EPSA predictionsfor the inelastic cross sections.

The crucial step was the selection of a good subset of waves. Our two final subsets were the only ones we found that had solutions satisfying all the above requirements. Due to cost of computer time we cannot be certain that we have found the only two subsets. But we believe that the larger waves are uniquely determined. We cannot be as certain in the case of the smaller waves, the amplitudes of which are never more than two or three standard deviations from zero. Furthermore, with 30-40 MeV energy bins, our emphasis on continuity clearly biases us against very narrow resonances.

VI. THE PARTIAL WAVE AMPLITUDES-DESCRIPTION AND DISCUSSION

At each energy the solution of any fits to inelastic data are only defined up to an overall phase. Thus, in order to give Argand diagrams of the partial-wave amplitudes we must determine this phase. Of the variety of methods by which this can be achieved, we have linked the inelastic amplitudes to published elastic amplitudes (which have known phase) via a K-matrix fit at energies where both elastic and inelastic amplitudes are large, 30 - this turns out to be in the region of a prominent resonance. This has been done for both Solutions A and B.

In Figs. 12 and 13 we present summary Argand diagrams for Solutions A and B and, in Fig. 14 both Argand diagrams and partialwave cross sections for Solution B. The equivalent complete figures for Solution A are contained in Ref. 11. A summary of the major characteristics of each partial wave is given in Table VIII, together with comments on resonance interpretations.

Next we discuss the unambiguous results in our two solutions and contrast the differences between them. Before entering into too great detail we should note that the major difference between the two solutions lies in the relative orientation of the low-energy (1300-1540 MeV) and high-energy (1630-2000 MeV) amplitudes. This flexibility is due solely to the fact that we have not been able to analyze data in the "gap", and clearly the correct solution will be identified when this is done reliably. It is important to point out that within each energy regime, Solutions A and B are essentially identical, except in the P_{11} waves and the new waves added. All of the major features remain the same providing one does not try to link the two energy regions.

-30-

A. I =
$$\frac{1}{2}$$
 States

The considerable amount of motion in these plots is not surprising since most of the structure observed may be associated with the existence of already established resonant states.

1. P₁₁

In both solutions, the $P_{11}(1470)$ is clearly observed decaying strongly into $\pi \Delta$ and N ϵ . A higher-mass P_{11} is also present in both solutions although there are distinct differences in shape in this case.

2. No Couplings

We observe strong Np couplings of the $P_{13}(1700)$, $D_{13}(1520)$ and $F_{15}(1680)$ resonances. This is not surprising, as the last two resonances are strongly seen in photoproduction and application of the Vector Dominance Model would imply this result. In the case of the new $P_{13}(1700)$, Np is the major decay channel.

3. $D_{13}(1700)$

This state is observed in our solutions. Its presence is predicted³¹ by the L excitation quark model and is the last remaining N* or \triangle state of the (70,1⁻) supermultiplet of negative parity baryon states to be identified. It decays into the $\pi \triangle (DS_{13})$ and $N \in (DP_{13})$ channels, but its mass and width are difficult to estimate and probably differ between our Solutions A and B.

4. D_{15} and F_{15}

These two resonances are strongly observed in our analysis. This verifies our previous result that the D_{15} couples exclusively (within errors) to the πN and $\pi \Delta$ channels. Moreover, we have now determined unambiguously the relative sign of the F_{15} and $D_{15} \Delta \pi$ couplings and accounted for all the F_{15} inelasticity. Thus we have made a significant improvement over our previous analysis.⁴

5. N ϵ Decay Modes

In our analysis the ϵ is a slowly varying effect over the Dalitz plot. Hence N ϵ decays may also be interpreted as direct three-body $\pi\pi N$ decays of a given J^P.

B. I = 3/2 States

1. For E < 1540, all of the I = 3/2 amplitudes are small, whereas for E \ge 1650 MeV (where we again have data) the S₃₁, D₃₃ and P₃₃ amplitudes are already large. This means that we cannot observe the complete anti-clockwise motion in these channels.

2. The presence of two low-energy P_{11} states (~ 1410 and ~ 1730 MeV) implies the need for two P_{33} states in most schemes, while the (56, L = 2⁺) supermultiplet requires yet a third. In terms of partial-wave analyses, the situation is confused--the two EPSA's disagree; likewise our Solution A and B. We compare the CERN and Saclay parameters:

	Mass (MeV)	Г (MeV)	Υ	Author's own "Crude" estimate of resonance quality
CERN ¹	1680	220	0.1	ייDיי
Saclay ²	1900	204	0.19	!!***!!

Our Solution A does not show these resonances, but our preferred Solution B is consistent with the existences of both.

3. F₃₅

In both Solutions A and B we have evidence for an F-wave $\pi\Delta$ system, as do Mehtani et al., ⁵ although one might expect, on kinematical barrier-factor arguments, the P-wave would dominate. In our solution the decay into Np dominates, and this final state allows us to saturate the EPSA inelastic cross section prediction. 4. $\frac{F_{37}}{1}$

This resonance is observed both in the $\pi\Delta$ and Np channels. However, these two channels do not saturate the predicted inelastic cross section (only ~ 60% is accounted for). The strong Np decay might well be expected again as this resonance is a dominant feature of photoproduction.

5.
$$P_{31}, D_{35}$$

These waves fall short of the EPSA predictions. In particular we find no need for any D_{35} interactions i.e.,

$$\sigma_{in} (D_{35}) = 0.$$

Thus, if there are any low-lying D_{35} resonances they do not couple to the $\pi \Delta$ or Np channels. However, EPSA does predict a large inelastic cross section from the wave (~4 mb) and this is a shortcoming of our results, although it probably has a simple interpretation. [See E(i) below.]

C. The Origin of Solution B and the New Waves Added

We were motivated to study the stability of Solution A by the observation that some of the relative coupling signs between resonances in our lower energy region and resonances in our upper energy region (in Solution A) conflicted with the predictions of broken $SU(6)_W^{32}$ and Melosh transformations, ³³ although within each energy region there was consistency with theory. Thus we studied several ways in which another continuation of the partial-wave amplitudes across the energy gap might be achieved. A second solution--our
Solution B--was found in the following manner. We added many new waves (admittedly suggested by theory) and re-performed our whole fitting process. This led to the new solutions in the two energy regions which allow a different continuation through the energy gap and hence the new Solution B. This solution is an even better fit to the data than Solution A, and furthermore the signs of the $DD_{13}(1520)$ and $DD_{15}(1660)$ are now in good agreement with the theoretical expectations.

The four new waves are: SD_{11} in $\pi \triangle$, DD_{33} in $\pi \triangle$, FF_{15} in $\pi \triangle$, PP_{11} in $N\rho_1$.

From the previous discussion of this section it is clear that within the energy regions in which we have data there is little difference between these solutions. The important test lies in the "gap" through which we have to make a K-matrix extrapolation. Thus this result emphasizes the need for the free availability of complete data sets or at least a reliable partial-wave analysis in the energy region 1540-1630 MeV.

D. Resonance Parameters

We have resisted the temptation to quote any resonance parameters in the paper. The problem of extracting these quantities is difficult and is the subject of the companion papers. ^{30,34-37}

E. Further Comments

We would like to call attention to some conclusions we may draw from the absence of certain waves (D_{35}) , the failure to reach EPSA predictions (P_{31}, F_{37}) , the poor fits to the $\pi^{+}\pi^{+}n$ state, and the general deterioration of the fits at the higher energies. 1. $\pi^+\pi^+$ n and $N_1^*/2$ final state interactions

Our predictions for $\sigma(\pi^{+}\pi^{+}n)$ are a factor of 2 too small (~2-3 mb unaccounted) at the higher energies. This is not surprising as only the $\pi\Delta$ intermediate states of our isobar model connect with this final state and from inspection of the $\pi^{+}n$ mass spectra it is clear that $N_{1/2}^{*}$ isobars (P₁₁, D₁₃, F₁₅, D₁₅) may be present. Furthermore, if one considers low angular momenta in the $\pi N_{1/2}^{*}$ system one finds:

$$\pi N^{*}(D_{13})$$
 in a P wave
 $\pi N^{*}(F_{15})$ in an S wave \uparrow are derived from D_{35}
 $\pi N^{*}(P_{11})$ in an S wave would be derived from P_{31}

which suggests that our previously-noted failure to reach the P_{31} and D_{35} predictions is associated with not including N^{*} final-state interactions. This suggestion can be further substantiated if we note the

$$\sigma_{\text{missing}} (P_{31} + D_{35} + F_{37}) \simeq \sigma_{\text{missing}} (\pi^+ \pi^+ n) + \sigma(\pi \pi \pi N).$$

Finally, the inclusion of these waves would have an appreciable effect in the $\pi^{+}\pi^{+}n$ final state whereas Clebsch-Gordan coefficients reduce their effect in the other single-pion production reactions so that our analysis of those channels would probably show little change.

2. Peripheral nucleon

The deterioration of the fits at higher energies is generally associated with being unable to entirely account for the onset of peripheral processes. This probably indicates the necessity for inclusion of π exchange in the production of the Np final state, so that higher partial waves are generated.

VII. CONCLUSIONS

Elastic phase-shift analyses only relate to one aspect of the πN interaction, and the analysis described here represents a substantial progress in providing complimentary information on the inelastic channels.

This analysis has demonstrated that isobar-model partial-wave analyses of inelastic final states can reproduce the detailed nature of the data. This then allows the observation of resonances in inelastic channels.

We have evidence for the existence of a $D_{13}(1700)$, long predicted by the quark model. The existence of a $P_{13}(1700)$ is corroborated through a strong ρN coupling. Our preferred solution, B indicates a $P_{33}(1700)$ resonance. Furthermore we have strengthened the interpretation of many resonances due to our observation of them in the inelastic channels $N\rho$, $N\epsilon$, and $\pi\Delta$.

Earlier analyses have produced limited $\pi\Delta$ Argand plots, but this analysis presents the first full Argand plots for all three channels, N ρ , N ϵ , and $\pi\Delta$. These begin to allow a complete picture of the π N interaction accounting for almost all of the inelastic cross section.

Finally, we are at present using these amplitudes to study resonance parameters and couplings and their relations to other theories of hadron interactions. $^{30, 34-37}$

VIII. ACKNOWLEDGMENTS

We wish to thank the Oxford, UCR-LBL, and Saclay groups, especially A. Jones, D. Saxon (Oxford), S-Y Fung, G. Kalmus, A. Kernan, W. Michael (UCR-LBL), B. Deler, Nguyen Thuc Diem, J. Dolbeau (Saclay), for use of their data in this analysis. We also thank J. P. Berge, A. D. Brody, B. Deler, A. Kernan, B. Levi, L. R. Price, and B. Shen for their contributions to the early phase of the experiment.

We further wish to thank D. Faiman and F. Gilman and M. Kugler for their interest and suggestions.

APPENDIX A

MAXIMIZING THE SCALE PARAMETER IN THE LIKELIHOOD FIT

In Eq. (4.11) remember that $N^{C}R^{C}/\sigma^{C}$ is the number of events ν^{C} predicted by the parameters \vec{A} , so write

$$\Sigma \frac{N^{c}R^{c}}{\sigma^{c}} = \Sigma v^{c}(\vec{A}) \equiv v(\vec{A}) .$$

For this discussion the first product in Eq. (11) is only a constant B which does not depend on \overrightarrow{A} , so Eq. (4.11) becomes

$$L = B e \prod_{i=1}^{-\nu(\vec{A})} p_i(\vec{A}) .$$
 (A1)

Introducing the scale factor of Eq. (4.12),

$$\vec{A} = s \vec{A}^0$$
(A2)

we have

$$\nu(\overrightarrow{sA}^{0}) = \overrightarrow{s}^{2}\nu(\overrightarrow{A}^{0}) \equiv \overrightarrow{s}^{2}\nu^{0}$$

and

$$\Pi_{P_i}(\vec{sA^0}) = \vec{s^{2N}} \Pi_{P_i}(\vec{A^0}) .$$

Equation (A1) becomes

$$L(\vec{sA^{0}}) = Be^{-\vec{s^{2}\nu^{0}}} \vec{s^{2N}} \Pi_{P_{i}}(\vec{A^{0}})$$
, (A3)

and the last factor Πp_i is independent of s. Combining it with B, we have

$$L(s\vec{A}^{0}) = B' e^{-s^{2}\nu^{0}} s^{2N}$$
 (A4)

Then

$$\ln L(s\vec{A}_0) = \ln B' - s^2 v^0 + 2N \ln s$$

and

$$\frac{\partial}{\partial s} \ln L(s\overline{A}_0) = -2s\nu^0 + \frac{2N}{s} . \qquad (A5)$$

To find $s^2 \Big|_{L \max} \equiv s_m^2$, set (A5) = 0, and we get Eq. (4.18), i.e.,

$$s_{m}^{2} = \frac{N}{v_{0}} = \frac{N}{\sum \frac{N^{c} R^{c} (\vec{A}_{0})}{\sigma^{c}}}$$
 (A6), (4.18)

Equation (A6) is derived in Miller's thesis, 23 but then s^2 is written by mistake as s. We now insert our result (A6) into (A4),

$$L(s_{m}A^{0}) = B' e^{-N} \left(\frac{N}{v_{0}}\right)^{N}$$
, (A4_m)

and this in turn into (A3)

$$L(s_{m}\vec{A}^{0}) = Be^{-N} \left(\frac{N}{\nu^{0}(\vec{A}_{0})}\right)^{N} \prod_{i=1}^{N} p_{i}(\vec{A}^{0}).$$
(A3_m)

Now that s is maximized, we see that $(A3_m)$ is independent of the overall magnitude of \overrightarrow{A}^0 , and we can drop its superscript zero and call it \overrightarrow{A} . For the purpose of hunting in \overrightarrow{A} space for L_{max} we emphasize factors containing \overrightarrow{A} :

$$L(s_{m}\vec{A}) = Be^{-N} N^{N} \left[\sum \frac{N^{c}R^{c}(\vec{A})}{\sigma^{c}} \right]^{-N} \prod_{i=1}^{N} p_{i}(\vec{A})$$
(A5)

$$\ln L(s_{m}\vec{A}_{\alpha}) = \text{const.} - N \ln \left[\sum \frac{N^{c}R^{c}(\vec{A})}{\sigma^{c}} \right] + \sum_{i=1}^{N} \ln p_{i}(\vec{A}) \quad .$$

We actually work with the average of this premaximized L, which we call $F(\vec{A})$

$$\mathbf{F}(\mathbf{A}) = \frac{1}{N} \ln \mathbf{L} \left(\mathbf{s}_{m} \quad \mathbf{A} \right), \tag{A6}$$

$$F(\vec{A}) = \text{const.} - \ln \left[\sum_{c} \frac{N^{c} R^{c}(\vec{A})}{\sigma^{c}} \right] + \frac{1}{N} \sum_{i=1}^{N} \ln p_{i}(\vec{A})$$
(A7)

The factor 4/N in (A6) makes F roughly independent of N, so it is easier to compare fits at different energies where there are different numbers of events. Equation (A7) is the same as Eq. (4.20) of the text.

APPENDIX B

EXAMPLE OF STEPPING PROCEDURE WHEN $\nabla \nabla^T f$ matrix is singular

As an example of the method discussed in Section IV. D. 4, consider the function $f(z) = -z^2 + 2z + 1$, but let z = x + y, i.e.,

$$f(x, y) = -(x + y)^2 + 2(x + y) + 1$$
, (B1)

where f has a maximum at z = x + y = +1. In this case, we clearly have a redundant parameter. Now

$$\nabla \mathbf{f} = 2 \begin{bmatrix} 1 - (\mathbf{x} + \mathbf{y}) \end{bmatrix} \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \end{pmatrix} \quad \text{and}$$
$$\nabla \nabla^{\mathrm{T}} \mathbf{f} = \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix}. \quad (B2)$$

The two normalized eigenvectors of $\nabla \nabla^{T} f$ are $\vec{v_{1}} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$ and $\vec{v_{2}} = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$, with eigenvalues -4 and 0. Note that ∇f (hence $\nabla \nabla^{T} f$) = 0 along $\vec{v_{2}}$. Now

$$\nabla \nabla^{\mathrm{T}} \mathbf{f} = -4 \overrightarrow{\mathbf{v}}_{1} \overrightarrow{\mathbf{v}}_{1}^{\mathrm{T}} + 0 \overrightarrow{\mathbf{v}}_{2} \overrightarrow{\mathbf{v}}_{2}^{\mathrm{T}} .$$
 (B3)

Let

$$\underline{\mathbf{M}} = \nabla \nabla^{\mathrm{T}} \mathbf{f} - \vec{\mathbf{v}}_{2} \vec{\mathbf{v}}_{2}^{\mathrm{T}} = -4 \vec{\mathbf{v}}_{1} \vec{\mathbf{v}}_{1}^{\mathrm{T}} - \vec{\mathbf{v}}_{2} \vec{\mathbf{v}}_{2}^{\mathrm{T}} , \qquad (B4)$$

Clearly

$$\underline{\mathbf{M}}^{-1} = -\frac{1}{4} \overrightarrow{\mathbf{v}}_1 \overrightarrow{\mathbf{v}}_1^{\mathrm{T}} - \overrightarrow{\mathbf{v}}_2 \overrightarrow{\mathbf{v}}_2^{\mathrm{T}} \qquad (B5)$$

Now let

$$\underline{\mathbf{V}} = \underline{\mathbf{M}}^{-1} + \overrightarrow{\mathbf{v}}_{2} \overrightarrow{\mathbf{v}}_{2}^{\mathrm{T}} = -\frac{1}{4} \overrightarrow{\mathbf{v}}_{1} \overrightarrow{\mathbf{v}}_{1}^{\mathrm{T}},$$

- 41 -

$$= -\frac{1}{4} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = -\frac{1}{8} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
(B6)

Assume a starting value $x_0^{}$, $y_0^{}$. Then the first step is

$$-\underline{V} \cdot \nabla F_0 = +\frac{1}{8} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot 2[1 - (x_0 + y_0)] \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 1 - (x_0 + y_0) \\ 1 - (x_0 + y_0) \end{bmatrix} .$$

Thus

$$\begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{y}_{1} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{0} \\ \mathbf{y}_{0} \end{pmatrix}^{-} \frac{\mathbf{V} \cdot \nabla \mathbf{F}_{0}}{\mathbf{W} \cdot \nabla \mathbf{F}_{0}}$$
(B7)

$$= \begin{pmatrix} \frac{1/2}{2} \\ \frac{1/2}{2} \end{pmatrix} + \begin{pmatrix} \frac{x_0 - y_0}{2} \\ \frac{y_0 - x_0}{2} \end{pmatrix} ,$$
(B8)

and $x_1 + y_1 = \frac{1}{2} + \frac{x_0 - y_0}{2} + \frac{1}{2} - \frac{x_0 - y_0}{2} = 1$ and we are at the minimum in one step, as we should be since F is quadratic.

Thus the problem in a multidimensional case reduces to finding the eigenvectors with zero eigenvalues, subtracting the rank-one matrices generated by these eigenvectors, inverting the resulting matrix, and finally adding back the rank-one subtractions.

In the case of likelihood problems such as ours, the eigenvector for scale changes is \underline{A} and the eigenvector for phase changes is $i\overline{A}$. Thus for us, we automatically had the necessary two eigenvectors.

APPENDIX C

CHOICE OF ANGULAR MOMENTUM BARRIER FACTORS AND OF THE N^{*} RADIUS

Unfortunately three different forms of barrier-penetration factors $B_L(QR)$ are now common in partial-wave analyses. This appendix compares them in Fig. C1, points out that for $L \ge 2$ they may differ, and makes a plea for using the standard Blatt-Weisskopf factors, which have recently been given considerable support by von Hippel and Quigg.

In the text, Eq. (3.10), we used the notation b_{L} for the barrier factor for the amplitude T; here we use the more standard notation $B_{L} (= |b_{L}|^{2})$ for the barrier factor for the intensity $|T|^{2}$. The "industry standard" for B_{L} is taken from Eq. 5-8, page 361, of Blatt and Weisskopf²¹ (where they are called v_{ρ})

$$B_0 = 1, B_1 = \frac{x^2}{1+x^2}, B_2 = \frac{x^4}{9+3x^2+x^4}, \cdots$$
 (C1)

where x = QR. These B_L have the property that their inflection point is at about QR = L. For $x \ll L$, they start off as

$$B_{L} \xrightarrow{x \to 0} \frac{x^{2L}}{\left[(2L-1)!!\right]^{2}}$$
(C2)

and for x >> L, $B_L \rightarrow 1$. Figure C1 gives B_L vs QR for L = 1 to 7.

There is general agreement that the B_L should start out as x^{2L} and should approach unity for large L; but before the 1972 paper of von Hippel and Quigg,³⁹ the detailed form C1 was regarded with some skepticism by particle physicists because it was derived by assuming that the region of interaction was a square well. This is

reasonable when the intermediate state is a nucleus, which is what Blatt and Weisskopf had in mind, but less convincing when it is an N^* . Accordingly many physicists just used the low-QR form (C2), or perhaps a form somewhat like that for L=1, which has the correct limiting properties at both ends

$$B_{L} \approx \frac{x^{2L}}{Const + x^{2L}}, \qquad (C3)$$

but in general does not have its inflection point near QR = L.

Von Hippel and Quigg have now shown that form C1 can be rederived using only the properties of the radial wave function $U_L(x) \propto xh_L(x)$ where h_L is a Hankel function. For more discussion and an approximate form, see Ref. 40.

Figure C1 shows not only the Blatt-Weisskopf form of B_L , but the small-QR approximation for L=1 to 3. As one expects, both approximation fail badly by QR = L. This brings us to our plea. Now that the Blatt-Weisskopf form has been well justified, why not use it? Then, once most analyses use the same barrier, we can go on to gather experience on the best value for the radius R.

Next we take up the question of what value to chose for the radius parameter R. Barbaro-Galtieri⁴¹ has done a thorough analysis of the $\Delta(1336)$ peak and finds that R should be about 1F. Yet when R is used in a far more indirect way to do SU(3) fits, it turns out that values of 0.2 F, ⁴¹ or even zero, ⁴² work best.

The radius question, specifically as it applies to our reaction $\pi N \rightarrow \pi \pi N$, has recently be studied at Saclay by J. Dolbeau⁴³ in his isobar analysis in the \sqrt{s} range 1390-1740 MeV. These fits are very sensitive to the radius, particularly near ρ threshold around 1700 MeV. Dolbeau finds a best radius of ~ 1/4F, i.e., in between the large value

favored by the $\Delta(1236)$ and the small value favored by SU(3). Specifically he finds that 1/R should be 750 ± 250 MeV/c.

Finally a comment on what we ourselves did. Because of a programming mistake, we started our fits using the small-QR approximation C2, and did not catch the mistake until so late that it was expensive to refit. But now Dolbeau's finding that the best value of R is only 1/4 F keeps QR so low that it does not pay for us to refit. Specifically, consider the kinematics of our reaction at our highest energy $\sqrt{s} = 1970$ MeV, and set R = 1/750 MeV/c. Then for

$$\pi N \rightarrow \Delta (1236)\pi, \ Q_{\Delta} = Q_{\pi} \equiv Q = 393 \ MeV/c, \ QR = 0.52$$

 $\rightarrow \rho (770) N, \ Q_{\alpha} = Q_{N} \equiv Q = 500 \ MeV/c, \ QR = 0.67.$

This means that near the resonance bands of our Dalitz plots, where we find most of our data, the small-QR approximation is quite good, and we have decided not to refit. In our K-matrix programs for energy-dependent fits we have always used the standard Blatt-Weisskopf form C1.

FOOTNOTES AND REFERENCES

*Work supported by the U. S. Atomic Energy Commission.

[†]Present address, Lawrence Livermore Laboratory, Livermore, California 94550.

^{††}Present address, CEN, Saclay, (France).

[‡] Present address, DESY, Notkestieg 1, 2000 Hamburg-52.

[§] Present address, Nuclear Physics Laboratory, Oxford, OX1-3RH.

- 1. S.Almehed and C.Lovelace, Nucl. Phys. <u>B40</u>, 157 (1972). For earlier references, see our Ref. 3.
- R. Ayed and P. Bareyre, paper presented at the Second Aix-en Provence International Conference on Elementary Particles (1973).
- 3. Particle Data Group, Rev. Mod. Phys. 45, (April 1973, Part II).
- 4. A.D. Brody et al., Phys. Lett. 34B, 665 (1971).
- 5. a. U. Mehtani et al., Phys. Rev. Lett. 29, 1634 (1972);
 - b. Y. Williamson et al., Phys. Rev. Lett. 29, 1353 (1972);
 - c. A. Kernan et al., LBL Report No. LBL-2017, or Proc. Baryon Resonance Conference, (Purdue, 1973), p. 113.
- 6. P.Eberhard and M. Pripstein, Phys. Rev. Lett. 10, 8 (1963).
- 7. B. Deler et al., Nuovo Cimento 45A, 559 (1966).
- M. DeBeer etal., Nuclear. Phys. <u>B12</u>, 599, 617(1969). Further analyses may be found in the theses of B. Deler (CEA-R-3579, 1969), G. Smadja (OrsaySeries A, No. 556, 1969), M. P. Chavannon (D. Ph. P. E. Saclay, 1971), Nguyen Thuc Diem (CEA-N-1602, 1973); and in the recent papers by J. Dolbeau and F. Triantis, submitted to the 1973 Aix-en-Provence Conference;² and P. Chavannon, J. Dolbeau, and G. Smadja, Nucl. Phys. <u>B75</u>, 157 (1974).
- 9. M. G. Bowler and R. J. Cashmore, Nucl. Phys. <u>B17</u>, 331 (1970).
- W. Chinowsky, J. M. Mulvey, and D. H. Saxon, Phys. Rev. D2, 1790 (1970).

- D. J. Herndon et al., LBL Report No. LBL-1065/SLAC-PUB-1108, presented to the XVI International Conference on High Energy Physics, Chicago-Batavia, Ill. (1972).
- 12. A.D.Brody et al., Phys. Rev. D 4, 2693 (1971).

- 13. U.C.Riverside-LBL collaboration, see Ref. 5a and b.
- 14. D.J.Herndon, P.Söding, and R.J.Cashmore, SLAC-PUB-1385,
 LBL Report No. LBL-543 (1973), submitted to Phys. Rev. D.
- 15. G. Smadja, "Resonances that Overlap", LBL Report No. LBL382, 1974 (unpublished). We have found a mistake in this paper which greatly underestimates the problem.
- 16. R.Aaron and R.D.Amado, Phys. Rev. Lett. <u>31</u>, 1157 (1973);
 G. Gustafson, Nucl. Phys. <u>B63</u>, 325 (1973).
- 17. The preliminary conclusions of R.Ascoli (private communication, February 1974) are that the corrections will not be very significant.
- Y.N.Goradia, T.A.Lasinski, G.Smadja, M.Tabak, LBL Report No.LBL-3011 (1974).
- S.D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973); B. Hyams et al., Max-Plank preprint MPI-PAE/Exp. 28 (1973); P. Baillon et al., Phys. Lett. <u>38B</u>, 555 (1972).
- D.J.Herndon, Ph.D. Thesis, (University of California, Berkeley, 1972), LBL Report No.LBL-544, 1972 (unpublished).
- J. Blatt and V. F. Weisskopf, <u>Theoretical Nuclear Physics</u> (John Wiley, 1952).
- 22. In our case, four kinematic variables are needed for each event: two Dalitz plot variables, and two angles, θ and φ. The Dalitz plots of Fig. 2 require 10-100 bins. The cosθ distributions of Fig. 3 need ~20 bins and the φdistribution needs another 10 bins. The total number of bins is then ~2,000-20,000, while the

experiment has only ~10,000 events at each momentum. Under these circumstances, the event population in each bin would be too small to allow the assumption of a Gaussian distribution. It follows that the maximum likelihood technique would be the most appropriate fitting method to apply in our experiment.

- L.R. Miller, Ph.D. Thesis (University of California, Berkeley),
 LBL Report No. LBL-38, 1974 (unpublished).
- 24. F.T. Solmitz, Ann. Rev. Nucl. Sci. 14, 379 (1964), Eq. 36.
- 25. W.C.Davidon, Computer J., 10, 406 (1967).
- P.Eberhard and W.O.Koellner, "Optime System for Fitting Theoretical Expression," LBL Report No. UCRL-20159, 1970, (unpublished).
- P.H.Eberhard, A.H.Rosenfeld, and M.Tabak, Group A Memo.
 Private communication, 1974.
- 28. Some of the numbers and conclusions in this paragraph differ from those of Miller's thesis (Ref. 22), which we now think are wrong.
- 29. Eventually!
- 30. R. Longacre, Ph.D. Thesis (University of California, Berkeley, 1973), LBL Report No. LBL-948, 1974; R. Longacre <u>et al.</u>, LBL Report No. LBL-2636/SLAC-PUB-1389, (to be submitted for publication).
- R.H.Dalitz, "πN Scattering", Proc. of 1967 Irvine Conference, edited by G. L. Shaw and D. L. Wong (Wiley, N.Y., 1969),
 p. 187.
- 32. D. Faiman and J. Rosner, Phys. Lett. 45B, 357 (1973).
- 33. F.J. Gilman, M.Kugler, S. Meskov, Phys. Lett. <u>45B</u>, 481 (1973) and SLAC-PUB-1286, Phys. Rev. D (Jan. 1974, in press).

- R.J.Cashmore, in Proc. Conf. on Baryon Resonances, edited by Earl Fowler (Purdue, 1973), p. 53.
- 35. A.H.Rosenfeld, Lectures at International School of Subnuclear Physics, Erice, Sicily (1973) and LBL Report No.LBL-2098 (unpublished).
- 36. R.J.Cashmore, D.W.G.S.Leith, R.S.Longacre, and A.H.
 Rosenfeld, LBL Report No.LBL-2635/SLAC-PUB-1388, 1974,
 (to be submitted for publication).
- 37. R.S.Longacre et al., LBL Report No. LBL-2637/SLAC-PUB1390, submitted for publication.
- E. Flaminio, J. D. Hansen, D. R. O. Morrison, N. Tovey,
 CERN-HERA Report Nos. 70-4 and 70-7, 1970 (unpublished).
- 39. F. von Hippel and C. Quigg, Phys. Rev. <u>D5</u>, 624 (1972).
- 40. A. H. Rosenfeld, in Proc. of the 1971 Irvine Conference (AIP Conf. Proc. No.6, Particles and Fields subseries No.2).
- A. Barbaro-Galtieri, in Proc. of the 1971 Enrice Summer
 School and LBL Report No. LBL-555. See particularly Table V.
- 42. D. E. Plane et al., Nucl. Phys. <u>B22</u>, 93 (1970).
- 43. J. Dolbeau, Ph.D. Thesis, 1974, D. Ph. P. E., Saclay.

Beam particle	Laboratory (reference)	c.m. Er (C	nergy range GeV)	Number	of events
-		Low	High	π ⁺ π ⁻ n	π ⁻ π ⁰ p
	SLAC-LBL	1.47	1.50	1010	648
	(12)	1.64	1.97	41175	27946
π-	Oxford (10)	1.31	1,54	18502	5892
,	Saclay (8)	1.39	1.53	13340	7314
	Total	1.31	1.97	74027	41800
				$\pi^+\pi^0p$	$\pi^+\pi^+n$
	Oxford (9)	1.43	1.56	7262	1374
π^+	Riverside- LBL (13)	1.82	2.09	41412	17255
	Saclay (8)	1.64	1.97	11522	3382
	Total	1.43	2.09	60196	22011

TABLE I: Experiments used in this analysis.^a

^aThe events in this Table, in the form of 16 full BCD Data Summary Tapes, are available on request. The π^+ events at or above $\sqrt{s} = 1820$ MeV must be requested from the UCR-LBL collaboration, care of Prof. Anne Kernan, U.C. Riverside; the remainder from LBL, SLAC, or Saclay.

TABLE II: The 60 waves with angular momenta L, L', l each
S There are two nucleon-rho terms in the isobar model, indica-
ted by on and or, where the subscript indicates the coupling between
the spin of the $o(l = 1)$ and the spin of the outgoing nucleon. See Fig.
4 for more complete explanation of the notation. We never used
4 IOI more complete ouplete ouplete

Isospin	Incident wave	πΔ	Νρ ₃	Νρ ₁	$\mathrm{N}\epsilon$
	s ₁₁	SD ₁₁	SD ₁₁	SS ₁₁	SP ₁₁
	P ₁₁	PP ₁₁	PP ₁₁	PP 11	PS ₁₁
Y	D ₁₃	DS_{13} DD_{13}	DS_{13} DD_{13}	DD ₁₃	DP ₁₃
I = 1/2	P ₁₃	$\frac{PP}{PF_{13}}$	$\frac{PP}{PF}_{13}$	PP ₁₃	PD ₁₃
	D ₁₅	DD ₁₅	DD ₁₅	DD ₁₅	DF ₁₅
	F15	$_{\mathrm{FF}_{15}}^{\mathrm{FP}}$	FP_{15} FF_{15}	FF ₁₅	FD ₁₅
	F ₁₇	FF ₁₇	FF ₁₇	FF ₁₇	
	s ₁₃	SD ₃₁	SD ₃₁	SS ₃₁	
	P ₃₁	PP ₃₁	PP ₃₁	PP ₃₁	
	D ₃₃	DS ₃₃ DD ₃₃	DS DD ₃₃ DD ₃₃	DD ₃₃	
I = 3/2	2 P ₃₃	PP PF ₃₃ PF ₃₃	PP PF33 PF33	PP ₃₃	
	D ₃₅	DD ₃₅	DD ₃₅	DD ₃₅	
	F ₃₅	FP FF ₃₅ FF ₃₅	FP_{35} FF_{35}	FF ₃₅	
	F ₃₇	FF ₃₇	FF ₃₇	FF ₃₇	

c. 1	m. energy	Range (MeV)	$\pi^- p \rightarrow \pi^+ \pi^- n$	$\pi^- p \rightarrow \pi^- \pi^0 p$	$\pi^+ p \rightarrow \pi^+ \pi^0 p$
i	1310	1300-1330	1069	151	
	1340	1330-1360	1664	11	
	1370	1360-1380	2471	2	
	1400	1380-1410	5049	964	78
	1440	1430-1460	4918	1802	359
1	1470	1460-1480	3252	1629	175
	1490	1480-1510	5555	3197	1523
	1520	1510-1530	3241	2588	795
	1540	1530-1560	3905	3285	1114
ii	1650	1630-1670	6061	3757	2467
	1690	1670-1710	5901	3689	1139
	1730	1710-1750	3455	2630	4061
	1770	1750-1790	3214	2352	2853
	1810	1790-1830	2447	1541	3855
iii	1850	1380-1870	3931	3183	6372
	1890	1870-1910	5072	3170	12690
	1930	1910-1950	5817	4080	4298
	1970	1950-1990	5277	3544	7744
	Total	1300-1990	72299	41575	49523

TABLE III: Number of events for the energy bins used in the fits. For availability of these events, see note at bottom of Table I.

TABLE IV: χ^2 at each energy based on four-dimensional bins. The four-dimensional space is subdivided into $4^4 = 256$ bins, but some have no population, hence the number tabulated below is <250.

√s(MeV)	$x_{n\pi^{+}\pi^{-}}^{2}$	Bins	x ² pπ ⁻ π ⁰	Bins	$x_{p\pi^{+}\pi^{0}}^{2}$	Bins
1370	279	228				
1440	243	235	216	233	90	160
1530	328	229	253	236	209	216
1690	526	237	378	236	182	208
1970	864	236	601	233	907	235

101 Monte-Carloj	, and the same	101 mat motus 101 Δ	· ^ .
		<u>ln L</u>	$\frac{\chi^2/D.F.}{}$
Original 18-	Real	0.2817	790/681
wave fit	Monte Carlo	0.3198	624/788
	т /бт	Δįn L	$\triangle x^2$
18 waves minus	11	-320	173
DS ₁₃ (_{P3} N)	10	-390	215
18 waves minus	6	-60	53
PP ₃₃ (Δπ)	6	-80	102
18 waves minus	2	-30	11
$PP_{13}(\rho_1N)$	3	-30	14
18 waves minus	1	-1	3
$DS_{33}(\rho_3\pi)$	1/2	-1	2

TABLE V: Effect of removing waves of varying importance at $\sqrt{s} = 1530$ MeV, 9000 events. Each box is arranged [$\Delta \ell n L$ for real events/ $\Delta \ell n L$ for Monte-Carlo], and the same format holds for ΔX^2 .

<u>Δ</u> π Wave	Error 20	Error 60	 Wave	Error 20	Error 60	P ₁ N Wave	Error 20	Error 60	€N Wave	Error 20	Error 60
ΔSD_{11}		.083	ρ ₃ SD ₁₁		.079	ρ ₁ SS ₁₁	.054	.069	ϵSP_{11}	.066	.087
ΔPP_{11}	.061	.076	$\rho_3 PP_{11}$.077	$\rho_1^{PP}_{11}$.080	ϵPS 11	.067	.084
ΔPP_{13}		.083	$\rho_3 PP_{13}$.056	ρ ₁ PP ₁₃	.038	.053	ϵPD_{13}		.064
ΔPF_{13}		.053	$\rho_3^{\rm PF}_{13}$	~ ~	.048	$\rho_1 DD_{13}$.057	ϵDP_{13}	.042	.054
ΔDS_{13}	.045	.063	$\rho_3 DS_{13}$.040	.053	$\rho_1 DD_{15}$.041	$\epsilon_{ m DF}$ 15		.047
ΔDD_{13}	.044	.058	ρ ₃ DD ₁₃		.056	$\rho_1^{\rm FF}$ 15		.040	ϵFD_{15}	.027	.032
ΔDD_{15}	.052	.068	ρ ₃ DD ₁₅		.050	^ρ 1 ^{FF} 17		.033			
ΔFP_{15}	.042	.054	ρ ₃ FP ₁₅	.033	.042	ρ ₁ SS ₃₁	.067	.081			
ΔFF_{15}		.052	ρ ₃ FF ₁₅		.043	^ρ 1 ^{PP} 31		.090			
ΔFF_{17}		.052	ρ ₃ FF ₁₇		.041	^ρ 1 ^{PP} 33		.060			
ΔSD_{31}	.062	.075	ρ ₃₅ D ₃₁		.075	$\rho_1^{DD}_{33}$.057			
ΔPP_{31}	.063	.086	ρ ₃ PP ₃₁		.083	$\rho_1 DD_{35}$.045			
ΔPP_{33}	.062	.096	ρ ₃ PP ₃₃		.069	^ρ 1 ^{FF} 35		.040			
ΔPF_{33}		.052	$\rho_3 PF_{33}$.047	ρ ₁ FF ₃₇		.038			
ΔDS_{33}	.049	.075	$\rho_3 DS_{33}$.042	.057						•
ΔDD_{33}		.052	$\rho_3 DD_{33}$.060						
ΔDD_{35}		.065	$\rho_3 DD_{35}$	_ ~ ~ ~	.053						
ΔFP_{35}		.048	ρ ₃ FP ₃₅		.041						
ΔFF_{35}		.050	ρ ₃ FF ₃₅		.046						
ΔFF_{37}		.053	ρ ₃ FF ₃₇		.046						

TABLE VI: Square roots of diagonal elements of a 60×60 and a 20×20 (Solution A) error matrix at 1690 MeV.

tion B 1s	always better.
s (MeV)	Δl_{nL} (9000 events)
1650	113
1690	122
1730	139
1770	107
1810	84
1850	57
1890	15
1930	153
1970	19

TABLE VII: Difference in likelihood, L(Solution B) - L (Solution A) for a standard sample of 9000 events. Solution B is always better.

	M~1710 X _{inel} ~0.9	Clear resonant motion in $\in \mathbb{N}$ and $\pi \Delta$, but distinctly broader than EPSA width of 100 MeV	$\pi N, \epsilon N, \pi \Delta$ First unambiguous ob- servation of resonant behavior in this region
D ₁₅	M = 1660	The $\pi\Delta$ channels show strong resonant - behavior, saturating the unitary bound	πΝ, πΔ
	^x inel ~0.6	near the accepted resonant mass	
F ₁₅ -	M = 1680 $\chi_{inel} \sim 0.4$	This resonance is observed in ϵN , ρN , and $\pi \Delta$ with comparable strength	πΝ, εΝ, ρΝ, πΔ
s ₃₁	M = 1620	We lack the experimental data which would reveal the behavior of this wave in the reso- nance region. The present points above 1650 show a smooth behavior which is compatible with the accepted resonance mass	πΝ, πΔ, ρΝ
	^inel ~0.70		
P ₃₁	M = 1790 $\chi_{inel} \sim 0.85$	No evidence for resonant behavior	πΝ
P33	Suggestion of resonance with M ~ 1900 X _{inel} ~ 0.8	Fast Δ_{π} motion across gap suggests resonance near 1700, i.e., below EPSA value of 1900. (See discussion under B(2) below.)	πΝ, πΔ
D ₃₃	M ~ 1720 X _{inel} ~ 0.85	Our analysis is consistent with a resonance interpretation for $\pi \Delta$ and ρN .	πN, π <u>Δ</u> , ρN
F ₃₅	M ~ 1870 X _{inel} ~ 0.85	Strong resonance behavior seen in ρN channel smaller coupling to $\pi \Delta$	πΝ, ρΝ, πΔ
F ₃₇	M=1930 X _{inel} ~0.6	Clear resonance behavior is apparent in ρN and $\pi \Delta$ channels	πN, ρN, πΔ

20° .

FIGURE CAPTIONS

- Fig. 1. Total and inelastic $\pi^{-}p$ cross section vs energy. The σ (inelastic) curve comes from Ref. 2 ("EPSA") as in Eq. 4.21; the σ (tot) data comes from Lovelace <u>et al.</u>, LBL Report No. 63.
- Fig. 2.(a) Dalitz plots for the state $n\pi^{-}\pi^{+}$ at four c.m. energies: 1490, 1650, 1770, 1930 MeV. The side of the little squares is proportional to the predicted density of our fits. On the projected distributions, the dotted line is the experimental data, while the solid histogram is the result of the fit. The scales are linear in (mass)², but the tiny numbers are actually in MeV.
- Fig. 2.(b) Dalitz plot for the state $p\pi^{-}\pi^{0}$. For details see caption to Fig. 2.(a).
- Fig. 2.(c) Dalitz plot for the state $p\pi^{\dagger}\pi^{0}$. For details see caption to Fig. 2.(a).
- Fig. 3. Distribution of the angle of the final nucleon with respect to the incident pion in the center of mass. The histograms are given at four c.m. energies: 1490, 1650, 1770, 1930 MeV for the same channels as in Fig. 2. The dotted line is the data, the solid histogram the result of the fit.
- Fig. 4. Schematic representation of the isobar model and definition of the partial-wave notation. F describes the final-state particles, $\Delta \pi$, etc.

- Fig. 5. Phase shifts and modulus of Watson factor $|W| = \sin \delta/q^{\ell+1}$ for Δ , ρ , and ϵ diparticles. Dashed line on the ϵ plot corresponds to the later analysis of Protopopescu;¹⁹ all phase shifts used are given in Herndon's thesis.²⁰
- Fig. 6. Scatter plot of δF_{AB} vs F_{AB} used when trying to reject one of two competing local maxima A or B. F_{AB} is the average log likelihood ratio; $\delta' F_{AB}$ is its error. More precisely, $F_{AB} = (1/N) \ln [L(A)/L(B)]$, and $\delta' F_{AB}$ is calculated using Eq. (4.25). Key to symbols:
 - +, competing 18-wave fits to the 9000 Monte-Carlo events of Table V;
 - X, 60-wave fits to 21,000 real events at 1890 MeV; dots, 20-wave fits to 10,700 events at 1690 MeV. For comparison, we have also plotted, as symbols with circles, the errors in the ln+likelihoods themselves, δF .
- Fig. 7. Results of a fit to 7583 Monte Carlo events generated at 1690 MeV to test TRIANGLE/RUMBLE. The small square covers the area where we indeed reconstructed the four smallest waves, but also 13 "noise" waves. So we are insensitive to the area inside the square.
- Fig. 8. Waves used in 1973 Solution B. In Solution A waves not used are indicated with an *, and D_{15} started later(at $\sqrt{s} = 1650$ MeV).

- Fig. 9. Solution A fits to the reaction $\pi^- p \rightarrow \pi^+ \pi^- n$ at a c.m. energy of 1690 MeV. The figure contains $\cos \theta$ vs ϕ plots for individual regions of the Dalitz plot where $\cos \theta$ and ϕ are the angles of the incident pion in a coordinate system defined by the final state. The z axis lies along \overrightarrow{P}_N and the y axis lies along $p_{\pi^-} \times p_{\pi^+}$. The plots outside the Dalitz plot are the sums of the corresponding plots within the boundary.
- Fig. 10. Solution B cross sections for the fitted channels $n\pi^{-}\pi^{+}$, $p\pi^{-}\pi^{0}$, and $p\pi^{+}\pi^{0}$. Crosses correspond to our fits; tiny dots with vertical error bars are experimental, from Ref. 38.
- Fig. 11. Solution B cross sections predicted for the channels $n\pi^0\pi^0$ and $n\pi^+\pi^+$. Crosses are predicted from our fits to the other channels of Fig. 10; dots with vertical bars are from Ref. 38.
- Fig. 12. Summary Nππ Argand plots for Solution A (1972). Nominal resonance energies come from the CERN 1972 EPSA (Ref. 1).
 For more details see caption to Fig. 14.
- Fig. 13. Summary $N\pi\pi$ Argand plots for Solution B (1973). Nominal resonance energies come from the Saclay 1973 EPSA (Ref. 2). For more details see caption to Fig. 14.
- Fig. 14(a-e). Argand diagrams and partial-wave cross sections for the elastic and inelastic channels. The elastic solutions are from CERN 1972 (Ref. 1). The inelastic channels are our 1973 solution B.

On the Argand plots the nominal resonance energies come from Saclay 1973 (Ref. 2). Arrowheads are spaced every 20 MeV, with a wider arrowhead at integral hundreds of MeV. Lower- ℓ waves are plotted starting at $\sqrt{s} = 1400$ MeV, higher- ℓ start where introduced into the fit. Last arrowhead is always at 1940 MeV. To show the gap in our data the straight line joining the five arrows in the gap has been deleted.

The + or - signs at the upper left of each circle show how to transform from our sign conventions to the "Baryon-first" convention. "New" indicates one of the four waves used in solution B only. Nine ρ_4 and ϵ signs were changed 5 July 1974.

Facing each inelastic Argand diagram of T_{α} , we plot $|T_{\alpha}|^2 \text{ vs } \sqrt{\text{s}}$. Facing the top (elastic) Argand plot, the total $\sigma_{\text{inelastic}}(\alpha \ 1-\eta^2)$, derived from EPSA, is compared with the sum of the σ_{in} from each isobar-model channel plotted below. The small interference terms between channels are taken into account, see Eq. (3.7). Note that σ , as plotted, are labelled by I-spin, not charge, so to get $\sigma(\pi^-p \rightarrow N\pi\pi)$ one must use $2/3 \sigma(I = 4/2) + 4/3 \sigma(I = 3/2)$.

Fig. C1. Blatt-Weisskopf barriers (Eq. C1) for L=1 through 7, compared with their approximate forms (Eq. C2) for low QR.

FIG. 1

XBL742-2331

XBL742-2332

FIG. 2c

FIG. 3

Notation for wave α : F,LL' IJ

XBL 741-2301

FIG. 4

FIG. 5

FIG. 6

.

FIG. 7

XBL741-2141A

XBL742-2334

- 4

XBL 741-2080

FIG. 10

XBL 741 - 2079

FIG. 11

۱

XBL 745-778A

FIG. 12

1

XBL 745-777A

XBL 745-944 A

FIG. 14b

۰,

FIG. 14c

FIG. 14d

i.

FIG. 14e

FIG. Cl

LBL-1065 Rev. SLAC-PUB-1108 Rev. Supplement

Tables of Partial Wave Amplitudes*

D. J. Herndon,[†] R. Longacre, ^{††} L. R. Miller, A. H. Rosenfeld, G. Smadja,^{††} and P. Söding [‡] Lawrence Berkeley Laboratory, University of California Berkeley, California 94720

R. J. Cashmore[§] and D.W.S.G. Leith Stanford Linear Accelerator Center, Stanford University Stanford, California 94305

October 1974

CONTENTS

I.	Listing of Argand Amplitudes from Punched Cards	•••	• • •	• • •	• • • • • • •	2	
II.	Solution at Four Energies: (Computer Printout)	1490,	<u>1520</u> ,	<u>1690</u> ,	and <u>1890</u> MeV	10	
	A. Amplitudes and Errors	11	15	19	24		
	B. Small Error Matrix ($\leq 28 \times \leq 28$)	11	15	20	25		
	C. 60 × 60 Error Matrix	13	17	22	27		
III.	Documentations of Data Tapes of 160,000 $N\pi\pi$					•• 33	

^{*}Work supported by the U. S. Atomic Energy Commission.

[†]Present address, Lawrence Livermore Laboratory, Livermore, California 94550.

^{††}Present address, CEN, Saclay, (France).

[‡]Present address, DESY, Notkestieg 1, 2000 Hamburg-52.

[§]Present address, Nuclear Physics Laboratory, Oxford, OX1-3RH.

INTRODUCTION

A deck of 367 punched cards and a library of 16 magnetic tapes are both available to supplement Herndon et al., LBL-1065 Rev. This printed supplement documents those cards and tapes and also reproduces some computer printout of partial wave amplitudes at four representative energies.

Convention on Scaling Errors

We quote here a paragraph from Section IV.E of the main text:

"An error hyperellipsoid may be defined by a hypersurface in \vec{A} space labelled by $\Delta \chi^2 = 1$, i.e. by $L = L^{\max} e^{-1/2}$. To plot error ellipses on our Argand plots we project this hypersurface on the complex plane representing a single T_{α} . However, the probability that a result will be within this ellipse is only 40%. In order to increase this probability we have conservatively doubled our estimated error, thereby raising the χ^2 contour to 4, and enclosing 87% of the probability.¹¹ In summary, all the errors plotted or tabulated in this paper and in our previous publications^{11,20,22} are twice those calculated by the program RUMBLE,¹¹ which uses Eq. (4.23)."

Accordingly, the cards with the data on amplitudes and errors (Sect. I of this Supplement) are not the original cards punched by RUMBLE, but have had their errors expanded by two. On the other hand the reproductions of RUMBLE printout in Section II of this Supplement have their errors unscaled.

I. ARGAND AMPLITUDES ON PUNCHED CARDS

We have prepared a deck of 367 punched cards, which is available from A. H. Rosenfeld on the Particle Data Group at LBL or M. Neveu, Saclay. The cards are listed below, and there should be enough comment cards that they can be understood with only the following remarks:

At each energy there are listed 28 waves (complex numbers occupying two words, i.e. two columns of printout); but of course at the lower energies some of these amplitudes are written as 0,0.

To read the data cards use the following formats:

Amplitude cards: 8F10.5

Error Matrix cards: 9F8.X [They were written 3(2F8.5, F8.2).]

The <u>phases</u> of the Argand amplitudes have been rotated by a K-matrix fit and correspond to our published Argand plots (Fig. 13 of the document of which this is a supplement) or Fig. 2 of Rosenfeld et al., LBL-2633 submitted to Phys. Rev. Letters.

	AR GAND	PLOT	AMP	LITUC	ES	GIVEN	A A	S 1-1	REAL	A NO	1-	IM	AG	ER	ROF	ES A	RE G	IVEN	AS	
	ERROR 1	F-REA	L, E	RROR	T - 1	EMAG.	AN	D COI	RR.	ANGL	ε.	IF	= A H	AVE	. WA	AS N	οτ υ	SED 1	IN FIT	
	* AT A GI	[VEN	ENER	GY, T	AN	ND ERF	ROS	ARE	PRI	NTED) ZE	R0	. LI	ST	0F	ORD	ER O	F WAY	VES AS	
	FOLLOWS	5.																		
	+ DELTA -	- PP 1	1,50	11,05	13	0013	FP.	15,0	015,	FF15	,PP	31	SD31	,05	33,	PP3	3,00	33,Ff	F35,FF37	
	* RHO 3/2	2 - 0	S13,	FP15	05	33.FP	35.	FF 37					-	-			-	-		
	* RHO 1/2	2 - 5	S11.	PP11	PP :	13,55	31.	PP31												
	# EPSILON	4 - P	S11.	SP11	DP 1	13.FD:	15													
	ARGAND	PLOT	19	70	<u> </u>	SAMPLE													•	1
							- n	FLTA												1
	- 21664	• -	. 111	24	. 1	04 726			65 A		463	174		191	130	~	. 125	84	. 69066	
	1137	,	0.84			11645			765		006	5.2		107	70	-	. 115	3.8	. 66531	
	- 03286	/ a _	. 10/	134	•	12042			647		020	30		078	172		. 046	77	- 11954	}
		J –		1.1.4	• •	02 310		• 1 7	u- <i>i</i>	T		ры	0 3/3	,						ļ
	4 2 6 6 6		+00	24		11.12				T _		- (, () () 4 - 4	0 372		126		455	76	- 06063	
	•13666			>24	• •	22412	_		474	1 - •	033	11		101	120	τ	+122	112	00952	
	KI		2	******						· 1		70				<u>1</u> -	RHU	1/2	0.274.0	
	0214	-	• 207	08	·** • i	07883		• 20	012	•	101	138	•	134	190	1	.400	59	. 03748	
		- KH () 1/2													-1				1
	22651	b -	• 096	ob /		46791		» Ü 4	626		197	41		1/9	105	-	.004	42	01/6/	1
					- E	PSILO	N -													_ 1
	.1800	3	.256	502	 •	12859		18	639		277	40	•	064	+50		.207	85	.09370	÷Ψ
	ERRORS	197	0	SAt	1PL E	E														\sim
						DEI	LTA													Ð
	.04030	• 04 4	+09	60.9	33	• 042	65	•04	389	64	+.36	5	0268	37	• 0 2	2957	5	8.78		
	.02908	• 030	190	58.4	+3	.025	18	•02	171	. 96	5.69	3	.0308	38	.0	2310	-5	1.09		2
	.02813	• 0 2 3	363	93.4	+9	.027	04	.02	755	- 68	3.98	3	.0313	39	. 03	3116	10	19.99		2
	.01886	.020	123 •	105.7	73	.015	97	.62	261	51	.92	2	.0222	9	.0:	1966	-5	3.96		6
												I			- RI	10 3	12 -			$\tilde{\mathbf{x}}$
	.01509	.019	990	48 .	50	.012	8 0	.01	742	56	5 . 8 () 1	.0265	51	. 0 :	2460	10	0.43		\sim)
		Rł	10 3/	12								I								1
	.01713	.02	539	54.4	91	.019	27	.01	695	-11	5.80	8	.0111	4	.0:	1656	-10	0.28		
						I				- RI	10 J	1/2								
	.01195	- 011	000	106.9	32	I.029	79	.03	062	6(6.76	5	. 0433	38	. 03	3353	; 7	9.75		
	RHO	1/2				I			•••	-		-			•••					
	.01184	.021	113	58.	26	. 034	40	.02	617	-126	5.36	5	.0313	38	. 0 2	2758	-17	0.73		
							FP	STLO	N			-								
	. 83746	. 030	846	114	85	. 042	90	.03	956	10	2.7	1	. 024	16	. 0	2866		51 . 84		
	.02258	. 0.21	0.21	87.	36			•••				•	••••		•••		• •			1
	ARCAND	PLO	T 1	310	<u> </u>															
	0 201	ຣິ	. 0.6		n	00000		6.00	000	-	. no /	6.0.4		0.04	52 0	_	. 122	25	.00644	
	0 0000	<u>`</u>	0 001	000	n.	00000		0.00	030	n	001			00.	000		022	224	.00701	
	0.0000	0			· ·	00000		- 07	7/ 5	v	000	100		ουυ: 	000		• 0 2 2	100	00000	
	0.0000	0 n	0.00	000		10000		0.00	000	U	.001	000 028		•⊌ย .ก-≀	847			100	a. 00000	
	0.0000	0	0.00		0 •	00000		0.00	000	•	001	0.20		. u .	041 600				0.000000	
	0.0000	0	0.00		U .	00000		0.00	000	U O	• UU 00:		ų. 0	• uu • • •		U	1+000	100	0.00000	
	0039	•	+U1	144	U e	00000		0.00	000	U	• 001	9 U U 9 0 7	U -	• U U I			•U21	212	0 0001001	
	0271	0	11:	173		00414		• 01	000		• UD i	591		•JÜ.	148	Q	I+,IJU^i	100	0.00000	
	- ERRCRS	13	10				• -			~		-			-			.		
	02829	• 00 •	859	90 -	82	0.000	00	0.00	000	- 9	0.0	0	.018	67	• 0	2292	: 11	19.75		
	.00980	• 01	048	116.	00	0.000	00	0.00	000	-9	ü.∎Q	0 0	.000	UU	0.0	0000) -9	90.00		
	0.00000	0.00	C 0 0	- 90 .	00	.029	8 Ĵ	•02	428	9	9.1	0 0	• 0 0 C	00	G.• O	6666) -9	90.00		
	.01863	• 00	978	96 •	71	0.000	Ŭ Ū	0.00	000	-9	0.0	0 0	.0001	00	0.0	0000	- 9	90.0G		
	0.00000	0.00	0 C O	-90.	Û Û	0.000	00	0.00	000	- 9	C • D	0	.014	33	• 0	1583	3 13	18.22		
	0.00000	0.00	000	-90.	00	0.000	ίÚ	0.00	000	-9	0.0	0 0	.000	0 G	0.0	0000) - (90,00		
	0.00000	0.00	000	- 90 •	00	0.000	00	0.00	000	-9	0.0	0	.017	56	• 0	1310	10	3.36	•	
	0.00000	0.00	000	-90.	00	0.000	00	0.00	000	- 9	0.0	0	.020	58	. 0	2317	7 1:	15.72		
	•01896	• 61	145	104.	68	.024	28	.01	681	-12	6.2	5	.028	54	• 0	1631	1 =1	32.16		
	0.00000	0.00	000	-90,	00															
-	ARGAND	PLO	T 1	340																
	.0481	4	.07	498	۵.	00000		0.00	000	-	. 06	789	-	.03	484	-	019	987	.00218	
	0.0000	0	0.00	000	٥.	00000		0.00	000	٥	. 00	0.00	8	.00	000		.03	581	.01135	
	0 0000					07767				-	0.0			0.0		,			0.0000	

	C		00		00		C		00	00	0		0.	. 0	00	0	0	0.	0	00	101	0		•	0	53	57 1 a	6 0		ŗ	•	0 4 11.0	32 00	0		0	• (00	00	0		0.	0	00	00
			00	161	79				02	57	3		0.	. 0	00	10	0	ů.	ů ů	00		0		0.	0	0 0	0	3		i		00	00	0		Ŭ		04 04	49	ğ			Ö	16	63
			0	37	13				1-2	98	2			Ō	31	12	2		Ō	23	34	5			0	37	13	3			•	01	96	4		0		0 0	00	0		0.	Ũ	00	60
Ŧ	Ε	ER	R	DR	s	1	34	+0																																					
	• (05	561	0 0		• 0	1. 1	17	6		88	3.	85	0	• (0 0	000	0.	0	0 (0	0	-	90).	0 (0	•	• 0	43	25	4	•	03	314	4 0			78	•	43				
	• [) 1	.98	34		• 0	11	14	1		92	•	66	0	• (00	000	0.	0	00	00	0	-	90	•	00	3	0.	• 0	00	00	0	0.	00		10		-	90	٠	00				
0	• [) (301	00	Q	• 0]0	0	-	90		00	•	•	J4	119	•	0	4 :	28); 201	1	_	80	5.	20) n	0,	• U 0	11	10	U a	U.	00	191	7 U 1 U		-	90	٠	00				
n	יי י	u a n r	000	יינ	n	• u 0	0.0 0.0	10	U N	-	04		23	0		10	000	0.	0	00	יטע ההר	0 n	-	an an	•	01	0		. U	3	30	8	V 4	00	יטי	, 0 3 6		-	20	•	34				
0.	. (0 C	10	00	n	. 0		ממ	n n	-	90) . (0		30	000	0.	. 0	0 0	10	٥.		90		01	0	0	. 0	0	00	ă	٥.	00	0	0 0		-	90		00				
ŏ	. (0	00	ŏ	. 0		0 O	õ	-	90).	00	0		00	000	0.	0	01	20	ō	-	90		0 0	3		. 0	32	26	9	•	04	4	78		1	22		10				
0	• (0 0	00	3 G	0	• 0	0	00	0	•	90).	0 0	0		00	000	0.	, Q	01	30	0	-	90).	01	0		. 0	51	06	4	•	03	327	72		-1	26	•	25				
	• (0 1	9	34		. 0	11:	18	9	1	05	5.	49		•	02	212	•	. 0	1	43	0		78	3.	8	0	÷	• 0	13	27	4	•	0 2	24	33			80	• ا	56				
0	• [00	00	00	0	• 0	101	0 0	0	-	90	• (00																																
Ø	1	AF	RGI	AN	0	ΡL	.0	T	1	37	0		~			• •	~	•			• •	^				2		E		_	_	04	07	E		_		n 6	77				0	20	70
	,	. 1	1	15	15			•	10	24 50	U A		0	• L 0	10 I	4 U 1 N	0	0.	. u	01	10	n n		0	. n	161	20 00	2			n_	01	00	2 0		-		00	58	10 10			. U	د ع 11 1	71
		0. 0.	. n	0 U 6 N	00		1	о. П.	00	00	0		-	• u - 0	17	5 Q	q		. n	5	34	8		n.	. 0) ខ	0 0 0 0	0			ο.	00	00	0		a		00	00	i n		0.	. a	00	100
		0.	. 0	00	00		ł	Ο.	00	00	Ō		0		0	οÓ	ó	0	. 0	G	00	ŏ			. 1	0 :	1.8	8			•	04	29	3		ō		00	100	0		Ō.	Ō	00	0.0
	(0.	. 0	0 0	00			0.	0 0	00	0		Ō	• 0	0	0 0	0	۵.	. 0	0	00	0		0.	. 0	10	0 0	0		i	٥.	00	00	0		0	•	0 0	0.0	0		0.	6	0 0	00
		-,	. 0	03	78			•	03	53	39		0	• (0 0	0 0	a	0.	. (10	00	0		0.	• (ŨŨ	0 0	0			٥.	0.0	60	0			٠	07	93	3 3	I	•	, 0	04	94
		-,	. 0	89	27		•		15	98	3		-	• 0	0	03	4		• (4	62	7			• 0	18	64	0			٠	ŨŨ	24	9		0	•	0 0	00	0 (0.	. 0	00	00
#	1	Ef	R	OR	S	1	13	70	-			-	-	,				_			• •			~	•	,	~					~			~ ^	7 -					• •				
	•	00	55	45		• [)1 12/	76 1. 4	5	_	87 . a :	7 • 7 ·	74 07). }	00	0000	0) ہ ز	10	00	0		. 91 - 91	U	0	U N	n	• •	14	11 66	לי. ח	n."	0.0	50	ა 5 ი ი	r 1	-	ar	L = 1 _	00				
n	•	ሀሪ በዓ	23 00	ი ი ი ი	n	• 1	32' 30	4 1 1 1	0	_	- 0 (- 0 (ŕ•' h.	93	Ľ		ሀሀ በፍ	662		• •	10	61	7		74			0 8	n 0	• •	10	00 00	0	0. 0.	01	10	ດ ດ		_	90) •) •	60				
U	•	01	43	79			34	26	5		6	8.	60	(00	000	0	. (10	٥ū	0		-91	0,	.0	ů.	ŏ	. (30	00	0	6.	0	00	00	, }		-91	ί.	00	-			
0		01	00	0 0	0	• (00	00	0	-	-90	0.	0 0	Ċ		00	000	Ĵ.	. (0	00	Õ	•	. 91	0.	.0	Q.		. (34	04	2	•	0 2	29	29)		75	5.	21				
0		0	0 0	0 0	0	• 1	00	0 0	0	-	-91	0 .	٥ ٥	1	. 0	0 0	000	0.	• () ()	0 0	0	-	9	0.	0	0	۵	. (0 (88	0	٥.	0 (0 0	0 0		-	90	۱.	00				
0	٠	01	0 0	0 0	0	• (0 0	00	0	-	-9(0.	00	0).	0 0	000	Ω,	• (0 (00	ŋ	•	-9(Q .	.0	0		• (15	52	1	•	1	04	30)	-	92	2.	40				
0	٠	0	00	00	0	• (00	00	0	~	- 91	0.	00	().	00	000	0	• (10	00	0	-	-91	0.	• 0	0		• ()4	27	5	٠	07	77	79)	-	•98	3.	92				
•	٠	0	20	52	2	•	01	58	1	1		8.	55		•	0 2	2817		• (12	64	2	- 1	123	2 .	• 8	U		• 1	15	07	ъ	•	0.	51	05	ŝ		66	·	19				
0	•	01	00	U U 8 N	េរូ ហ	+ D1	00	UU T	:U -1		•91 \ 0	U •	υu																																
•		m 1	.1	68	10 16 3	5	-0	١.	19	312	27		۵	. 1	00	00	0	0	. (30	00	a		-	•	21	23	39				05	29	4			• •	0 8	30(56	5		. 0	29	561
		0	• 0	0 0	0.0			٥.	0 0	00	0		0	• (00	0 0	0	0	• () Ó	0 0	0		0	• (00	0 0	0			٥.	00	00	0			•	05	599	9 8	1	- ,	• 0	38	385
		0	. 0	00	00			٥.	00	000	0 (-	• (38	73	0		• {	0 0	10	4		0	• (00	a a) Q			Ŭ.	30	00	0		C	•	00	00	3 Q)	0.	. Û	0 (100
		0	• 0	0 0	000	ļ		0.	0(000	0 (0	• !	00	0 0	0	0	• 1	00	0 0	0		_	• :	12	53	32			•	02	78	0		0	•	00	001		1	0.	• 0	01	100
		0	• 0	00	00			0.	00	000	0 (0	•	00	00	0	0	• [00	00	0		0	• {	00	00	0.0			ĝ.	.00	00	0		(•	0.0)	0	.0	0.	100
		•	• 0	24	88			•	04	+83	55		Q	•	00	00		0	•	10	00	0		0	• 1	45	00	10			U.	00	100 200	0		,	. *	0.0	11	מכ המ	> 1	-	ູບ	40	104
*		-	•1	10	21	•	41.	-•	1.	541	1		-	• 1	U S	35	1		•	12	19				• .	12	03	1			-•	42		5				00	101				• •		100
•		n.	34	94	(.)		14 01	100	, 		q	1.	70	f	α.	00	1000	0	. 1	0 0	00	0		- 9	٥.	. 0	۵			01	97	9		0	17	19	3		7	2.	54				
		0	11	85	5		01	47	3		5	<u>.</u>	47		0.	00	000	j Ö.	•	0 0	00	0		- <u>9</u>	Ō,	.0	٥	Ŭ		00	00) Q	û.	Q.	0 0	0 ()		-91	0.	00				
0		Ū	00	0 0	0 1		00	0 0	0	-	- 9	Ō.	0.0		•	0 2	2135	5	•1) 2	36	8		-7	5	• 2	4	0	•	0 0	٥٥	0 0	٥.	0	0 0	0 ()	-	- 9	0.	00				
	•	0	09	20	3	•	01	28	34		5	6.	59		۰ ۵	00	006	0	• {	0 0	00	0	•	- 9	0	• C	0	0	•	00	00	0	Q.	Q	0 0	01	3	•	-91	0.	00				
0		۵	C O	0 0) (•	0 0	00	0 (•	- 9	0.	0.0		0.	00	000) ()	•	0 0	00	0	•	- 9	٥.	• 0	0		•	01	02	28		0	14	55	5		5	2.	.98				
0	•	0	00	00		•	00	00	0	•	-9	٥.	00		0.	00	1001	0 (• [00	0	1	-9	0.	•0	0	0	•	00	00	10	0.	. 0	00 4 E	01	3		-9	0. 7	.00				
0	•	0	00	00	. U		00	UL) U	-	- 9	0.	00		U •	110	3000	1 U 1 U	• !	00	00			- 7	ບຸ	u. ٥	U A		•	02	26	- U - T	•	0	10	50	2 6	4	ц. а	ວ. ເ	201				-
Û	•	U O	U V 2 E	UL R 1	3 U 2	•	บป ก+	10	10	•	- 9	U. 2	74		U •	01	2000	5 1	•	บย า⊀	9 U U	.7	-	- 7	ม ถ	•0	5			u C N 1	35	51		. ຍ . ຄ	ムゴ 1マ	0	2		ีว เก	2 I 6 -	. 31				
л	•	n	00	00	- с п	•	00	01	30		- 9	۰.	0.0		•	vc		-	• 1	**	94	•			-	+ 6	1			-		•	•				-	-	- •	- 1					
		Ă	RG	AN	10	P	ιõ	Ť	1	144	4 Ó	- •																																	
-			• 1	20	199)			27	703	36		0		00	0 0	0 0	0	•	0 0	00	0		-	•	14	91	L 3				. 04	01	9		•		01	79	9 :	5	-	. 0	4	157
		C	. 0	0 0	000)		٥.	. 0 (0 0 1	0 0		Q	•	00	00	0 0	0	•	0 0	00	0		0	•	00	0 (0 0			Û.	. 0 0	0	0 (•	0	77	7 (5	-	• ()6	811
-		0	• 0	00	000	1		0.	01	00	0 0		-	•	11	99	36		•	0 0	19	7		0	•	00	01	0 0			0.	. 80	00	0			٥.	0	00	01	0	0	• (0.0	000
		0	• 0	00	000			0.	.00	000	00		0	•	00	00	00	0	•	00	00	0			•	19	3	>2			, ۱	. 05	> 07	8		1].	00	00	0 (c ·	3	Q	• ί	10.	100 774
		0	• 0	00	100	1		0.	.01		00		0	•	U Ü	00	10 10	Ű	٠	υÜ	00	ιn. ΙŪ		U	•	UŬ n4	7/	いい			U.	່ ຢູ່ . ດາ	191 191	1 U 1 4			•	0	c∠ ₹+	oi a	ย 2	_	ه ا ر	14	97 0 30 2
			• 0		122	2		_•	1 U I 4 4	07) 951	> (₹ 4		U	•	0 U n 4	01	.7	U	٠	00 07	04	10 19			•	17 17	. 4 4 : 4 4	47 50	1		_`	. 04	7 70 (41	2 I.			n .	. U .	0 N 1 L) i 0	с П	n	• •	10	000
		-	• 4		101	<i>i</i>		- ·	۰т.	32.	υL			•	u 0		T F		٠	ر پ	36	, u			•	<u> </u>	-	- 3									••			ΨI	-			•••	

* ERRORS 1440

-4-

	0	47	755	5	٠	01	65	8		88	3	53	. (٥.	0 0	00	0	θ.	Ç () (80	-	90	• 0	0		• 0	12	82	8	•	01	.7() 4		8	35 .	12				
	0	1.5	345	5	•	01	32	6		75	•	10	(э.	00	00	0	0.	00	0 1	ü ü	-	90	•0	8	0	• 0	00	00	0	٥.	0 0	0	0		- 9	90,	00				
0.	. 0	0 0	000	}	0.	0 ()	00	0	-	90	• (0 0			01	.96	1	•	Ó 2	24	36	-	92	•3	8	0	• (0 0	00	0	0.	0 0	0	0 0		~ 9	30,	.00				
	0	11	94	۲.	٠	01	13	5	-	66	•	39	- (• 0	00	00	0	С.	Ç (0 (00	-	90	•0	Û	U	• 6) ù	60	3	٥.	0 0	0	0 0		- 9	00.	60				
0.	• 0	0 (3 O C	3	ο.	00	00	0	-	90	3.	00	1	• 0	0 0	00	0	0.	0 0	0 i	a o	-	90	• 0	0		• (11	79	0	•	01	. 21	70		- 5	53.	91				
0.	. 0	0 0	000)	• 0	00	00	0	-	90) a	0 0	(٥.	0 0	0.0	0	Ο.	0 (0 0	6 0	-	90	• 0	0	0	. (00	0 0	0	۵.	00	0	0 0		~ 9	30	.00				
0.	. 0	0 2	00) (0.	00	00	6	-	90	۱.	0 0		•	02	88	34		0 1	7	5 Z	-	51	• 0	5		• 0	11	87	6	•	0 2	6	24		4	8	.75				
0.	• 0	6	000)	ο.	00	0 0	0	-	90	3.	60	L	•	0 2	237	8	•	0 1	16	06		95	•0	1		. (32	86	2		0 2	11	58		- 8	15	.09				
	• 0	3	354	•	•	02	39	1		75	ž.	33	5		03	311	5		0 2	2 8	90	-1	25	.0	2		• ()1	52	3		0 2	: 3	36		5	50.	.31				
0.	. 0	0 (000)	ο.	00	00	0	-	90		00																														
6	A	R	GAN	10	P	LO	T	1	47	0																																
•		• 1	105	541	8			27	13	2		0		0 0	00	0		٥.	00	0 0	00			13	97	70				10	73	8		-	• 1	22	227	7		09	301	12
	0	. (000	0	0		Ο.	00	00	0		0		a a	0.0	10		ΰ.	0 (0 0	00		0.	60	0	0 0			6.	0.0	00	0			• 0	98	391	۵		0	911	13
	0		0 0 0	0 0	Ō		Ó.	00	00	Ū.		_		14	05	5			0 :	10	22		ΰ.	00	0	0 0			G .	0.0	00	0		0	. 0	0	20	Ö	Ο.	. 07	00	0.0
	0	• {	3 O C	00	D		C.	0.0	00	۵		۵		0 0	0.0	0		Ο.	0.0	0 0	30			25	68	87			٠.	0.8	72	5		0	• 0	0.0	00	0	Ο.	01	300	0 C
	C		00	2 0	a		۵.	0 0	00	0		0	۱.	0 0	۵۵	a a		٥.	01	0 0	6 0		٥.	60	0	۵٥			۵.	00	00	a			. 1	29	591	4	-	0	1 0 5	55
	-	. 1	0 3 8	37	z			03	99	9		ā		00	ē c	0		0.	00	0 0	ō ū		-	02	6	73			٠.	08	63	5			.0	58	36	3	-	01	38/	46
	-		250	11	3			21	89	4		-		09	61	1			0 (33	51			11	7	15				0.0	27	3		0	. 0	0	0.0	0	с.	0 1	0 a C	DC
#	F	RF	ROP	25	-	14	78	~-	•••				•					-					•						•	•••		•		-				-	••	•		
	. ō	51	449	5		ō2	40	6		85	5.	04		٥.	00	100	0 0	0.	۵	0 0	۵ß	-	90	• 0	۵		. (34	<u>0</u> 8	a		0 2	5	+ 0		E	99.	.92				
	. n	21	432	>		ñ2	0.3	4		71		58		n .	n c	201	n n	Π.	01	המ	0.0	-	90	.0	n	n		0.0	00	ñ	٥.	00	חו	n n		- 0	10	00.				
n		0.0	0 0 1	'n	n.	00	0.0	ñ	-		n .	6.0	'n		0	31	36		n	34	55	-	97	. A	11	ō		a 0	0.0	ñ	0.	n c	1.6	n n		_	an i	. 0.0				
•	. 0	12	170	Ā	• •	01	97	n	-	6.3	3.	96		۵Ì	ົກເ	101	10	n.	n	המ	an	-	90	.0	i a	ō	. 1	0.0	0 n	ñ	0.	ถ (i n	n .		_ (- O .	.00				
0	. 0	10	a n i	ñ	n.	00	0.0	ñ	-	90	i .	6.0		n.	n	116	10	n.	0.0	n n	ññ.	-	90	.0	n.	-		02	٩n	3		0 1	5	67		- 6	54	.00				
ň	. 0	, C 1 G	00. 00.	ñ	ο.	0 U	ถึก	n	-	- q I	n .	00	ì	n.	00	300	0.0	n.	0	n n	0.0		90	0	ົດ	n		0 C	0.0	n	۵.	01	50	0 n		_	20	.00				
ň	- n	n i	וחר	ñ	n.	00	0.0	ñ	_	. 91		6.0			0.1	261	ΪL		ถ	24	8.8	-	59		4	v		02	83	1		n i	5	6 8		4	Í.A	. 4 1				
ň		10	n n i	0	ñ .	00	0.0	ñ	_	. 01		0.0			n 7	231		•	ñ.	2 2	35	1	11	.7	4			02	60	8	•	n -	26	ñā				.06				
U	. n	10	800	6	••	00	86	1		61	7	4 0	2	•	0.	221	17	•	0	30	35	- 1	44		: ā			12	53	à	•	0	25	6 0 6 0		_	5.8	. 22				
0	• •	10	00	2	^•	10	00	'n	_		•• ∩	0.0	2	•	u .	500		•	0		30	-					••		91	3	•	U		55			ų,u					
-	• U /	10	0 0 U G A I	น มก	v • 0		υυ 1	Ŭ 4	1.0	20	••	00	,																													
•		417.	1 01	54	ດ້	ιu		74	. 4 7 6 6	τΩ.		0		^ 0	0.0	م ا		ο.	n 1	• •	an			07		a 7			. .	1.2	, n n	4		_	4	2	26	۵	-		22	66
	n	, • ·	10. 10.	00	כ ח		•	0.0		0			•	00	21	10		••	0	00	0.0		<u> </u>	00	: 0	0 / n n			- • 0	10	1 0 0	<u>.</u>			• 1	. 2 . 1 7 8	20	7 A	_	<u> </u>	α 2'	27
		••	00	เจ	ບ ດ		-	00	. + 0	22			.*	15	2	- 0		•	0	20	10		0.	00		00				00	100	5		_	• •				-	, 0	7 L I 1 2	61
	0	•	00	0.0	2		~••	00	0.00	20		2		1.5	0	+U 0.0		^	0	20	1.2			20	: 7	0 0 6 7	•		v •	1 1	, UU , OC	2		-	• 0	120	101	4		, U.	7 J.	92 0 1
	0	1	000		0		0.	00		10			••	00	141	00		Q •	0	00				23	2 7	00	•			13	202	3		ų	• 0		50	U 4	10.4	. U 1	2 U I	20
		j a	00		0		U .	00				1		20	00	00		0.	0	00					10	u u 0 a			u •	00	100	0			• 1		20	••• /-	•	. U:	20.	63
		*	20	22	0		. •	03	000	,, 				00	191			4		u u 700	0.0		- •			, 70 / 7	,		•	0.5	5 *9 * 4	4		•	• 4	11	13	*	5			0.4
	2		20	64 DC	4			21	. 94	F L			٠	07	6	57		•	U	10	21		•	10	20	47			-•	90	514	3		u	+ U		00	U		. 01	4 0 1	ប្
Τ.	5	- KI	RUI	к 5 0		14	90	^		• •		~ 7	,	~	~	• • •	.	~	<u> </u>			_	~ 6					• •									n 7	70				
	• U	13	90	9	•	02	11	0		0.	* •	97		U •	01	000	00	U •	0	00	100	-	. 90		10		•	02	43	5	•	0.	19	19		1	15	• 32				
	• [12	524	4		01	44	5		81	••	13	5	u .	01	000		U .	0	U U	0.0	-	90	1.4	10		•	01	10	2	•	0:	1.6	95		1	57	•78				
0	• 1		00	0	υ.	UL.	100	U	-	. 91	u .		-	_•	0	11		. •	U	~ 1	20.	-	. 35		90		٠	01	04	3	•	υ.	10	12		- 1	52	• []				
	• 0	10	0.0	1	. •	01	. / U	0		-04	٤.	5	2	0.	0	000	u u	0.	. U	บบ		-	90		10		•	44	92	1	•	0.	10	29		-	04	• []				
0	• •	10	00	U	U +	00	00	U	-	- 91		00	1	ų.,	101		0.0	U •	. U	u u	เยย	-	. 90		10	~	•	01	24	9	_•	0.4	25	62		- 4	45	+54				
U	• [30	00	U	U •			U	•	- 91	U			U •	0	00	u u	0.		u u		•	- 91		10	0	•	00	u u	U	li e	0	u u			-	90	.00				
0	• (00	00	0	0.	00	00	0	-	- 91	υ.	01	1	•	0:	16	91	•	0	40	147		49	1.5	>1		٠	02	29	12	٠	8.	36	82			51	• 36				
0	• [00	00	0	ο.	00		0	-	- 91	ο.	. 0 (0	•	0:	16	11	•	0	16	562	1	14	•••	20		٠	01	.77	4	•	0:	19	01	•	1	27	.19				
	• 0	13	16	<u>(</u>	•	02	40	0		1	ь.	21		•	0	25	82	•	Q	36	:12	•	- 67	•	94		٠	01	51	7	•	0	24	Q 4	•		47	•77				
_0	• [00	00	0	0.	00	00	0	-	- 91	G .	0 ()																													
	F	٩R	GA.	ND	F	, r c) T	_ 1	154	20			_					_														_						_		-		~ ~
		•	08	81	4		•	31	174	+9			0 •	00	0	00		0.	0	00	100			02	26	14	•			1	200	7		-	• 0) 4	17	5	-	12	25	55
	1	•	00	00	0		0.	00	300	0			٠	09	19	59			, 0	23	570		Ο.	. 0(0 0	00)		0.	01		0			• 1	10	27	8	-	• 0	38	39
		•	12	Ľ 2	6		-	1	223	53		•	•	18	0	89		-	. 0	10	801			1	50	04	•		•	01	620	15		-	•	07	97	4	_	• 0	35	01
	(•	00	U Q	0		Ū.	00	100	0 נ		(•	00	0	00		0.	• 0	00	00		•	11	L 4	31	L		•	3:	153	51		Q	•	10	30	0	0	. 0	0.0	00
	1	٥.	00	00	0		۵.	0(000	0 0		- (0.	00	0 0	00		0.	. 0	00	100		0.	. 04	0 0	00)		٥.	0	000	0			• (80	65	2		• 0	46	24
		•	00	ь7	1		•	07	r 93	59				00	19	36		•	• 0	59	388			• 0:	10	96	Ś		•	1	U 25	7			• [12	62	6	-	• 0	54	93
	-	•	21	74	9		-	20	106	o 3		•	• •	00	1	06		•	•1	07	60		•	1:	17	88	3		- (01	0 04	15		0	• (00	00	Û	0	• 0	00	00
#	E	ER	RO	RS		15	520	1		-	_	~	_		~			-					~	_								~		_								
	• 1	U 5	19	b	•	02	:54	16		8	2.	2	2	٥.	0	00	U D	0.	. 0	00	100	•	- 91	U • I	U 0		٠	03	501	L 0	•	Q	32	94	ŀ	1	16	•49				
	• 1	03	39	8	•	02	215	3	5	10	٥.	.66	5	0.	0	00	0 0	0.	. 0	00	000	•	-91	0 .(0 0		٠	0 2	221	4	•	0	23	91	L	1	20	•61				
0	• 1	00	00	0	0.	. 0 (100	0	•	- 9	Q .	0	0	•	0	29	42		• 0	36	555	•	- 87	7 • i	75		٠	02	289	33	•	. 0	26	66	5 •	-1	15	• 89				
	• [01	87	8	•	02	249	86	-	- 74	4.	. 9!	5	•	0	25	60	•	0	26	521	- :	11	L •1	75		٠	01	.74	• 0	•	0	27	9.8	3	+	89	•11				
0	• 1	0 0	0 0	0	٥.	. 0 (000	0 (•	- 9	۵.	. 0 (۵	٥.	. 0	00	0.0	٥.	. 8	0 0	0.01	•	- 90		0 0			04	109	11		0	17	18	3		87	.94				

-5-

I

- 1-27

-

0.	00000 0.00000 -90.00 0.000	00 0.00000	-90.00 0.00000	0.06000 -90.00
0.	.00000 0.00000 -90.60 .040	14 .02446	78.64 .04744	.02841 88.16
,	• 02452 • 01704 77.33 • 03:	.39 .02360	90.94 .03468	.03119 98.22
	•03834 •03229 72•45 •038	16 .03317	-63.47 .02310	.02769 51.74
0.	.00000 0.00000 -90.00			
0	ARGAND PLOT 1540			
	.02486 .35062 0.03000	0.00000	• 07 01 3 -• 1	0673 .0261524485
	0.00000 0.00000 .1115	03969	0.00000 0.3	0000 .0775504309
	.12137127701994	01483		905809403 .00998
			•07495 •3	
	0,00000 C+00000 0,00000	1 0.00000		LIEG 07100 - 08507
	- 47977 - 22257 0267	• UO400		
¥		•12090	• 10 829 -• 0	
	.05261 .02329 .85.42 0.00		-90.00 .02687	. 03108 118.21
		0000010 000	-90.00 .01893	10100 110121
0		64 .02838	-122.39 .03112	.02345 -132.04
	.01523 .02683 -83.93 .02	01924	-132.69 .01714	.02399 -97.42
0.	.00000 0.00000 -90.00 0.00	00 0.00000	-90.00 .03372	.01634 84.48
ō.	.00000 0.00000 -90.00 0.00	00000.0 60	-90.00 0.00000	0.00000 -90.00
0	.00000 0.00000 -90.00 .03	.02405	74.31 .04219	.02804 81.91
	.02081 .01698 73.22 .02	.02253	96.29 .03207	.02726 94.43
	.03751 .03104 75.12 .03	383 .03882	-76.40 .03044	.02343 -50.37
0	.00000 0.00000 -90.00			
Ð.	ARGAND PLOT 1650			
	15112 .216590070	.06468	008530	5156 .22910 .02816
	1073815333 .1936	• • 34374	•04178 •0	406108158 .04038
	04870 .402191545	14529	-•20691 -•2	251670679806597
	0.00000 0.00000 0.0000	0.00000	07429 .2	245931205919120
		0.00000	0.00000 0.0	
		• • • • • • • • • • • • • • • • • • • •	*• 16 056 *• 1	
	• 02947 -• 30647 • 1534	10570	• UYU40 • L	140502150619230
	CD0000 16 50			
*	ERRORS 1650	102 04721	51 11	071+E 63 E2
*	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360	502 •04721 750 •03147	51.11 .02929 45.43 .02108	• 03115 63.52 • 02025 -66 77
*	ERRORS 1650 •03762 •03953 64.88 •03 •02465 •03360 •93.57 •01 •02573 •01943 •58.43 •03	502 •04721 760 •03147	51.11 .02929 45.43 .02108 55.20 .02400	6 .03115 63.52 8 .02025 -66.77 0 .03245 61.33
•	ERRORS 1650 •03762 •03953 64.88 •03 •02465 •03360 •93.57 •01 •02573 •01943 •58.43 •03 •02482 •02708 •70.44 •01	502 .04721 760 .03147 189 .03984	51.11 .02929 45.43 .02108 55.20 .02400 -73.57 .02611	5 .03115 63.52 8 .02025 -66.77 1 .03245 61.33 .02182 -61.67
* D	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 -90.00 0.00	502 .04721 760 .03147 189 .03984 +38 .02110	51.11 .02929 45.43 .02108 55.20 .02400 -73.57 .02613 -90.00 .03280	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
•	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02173 .02153 -69.08 .03	502 .04721 760 .03147 089 .03984 +38 .02110 000 0.00000 097 .02172	51.11 .02929 45.43 .02108 55.20 .02400 -73.57 .02612 -90.00 .03289 -132.52 0.0000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.00000 -90.00 .04	502 .04721 760 .03147 189 .03984 +38 .02110 100 0.0000 197 .02172 +30 .03104	51.11 .02929 45.43 .02108 55.20 .02400 -73.57 .02611 -90.00 .03289 -132.52 0.0000 79.65 .03560	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03	502 .04721 760 .03147 089 .03984 +38 .02110 000 0.00000 097 .02172 +30 .03104 882 .03653	51.11 .02929 45.43 .02108 55.20 .02400 -73.57 .02611 -90.00 .03289 -132.52 0.0000 79.65 .03560 -72.73 .03498	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.00000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03	502 .04721 760 .03147 189 .03984 +38 .02110 100 0.00000 197 .02172 +30 .03104 382 .03653 922 .05171	51.11 .02929 45.43 .02108 55.20 .02400 -73.57 .02611 -90.00 .03289 -132.52 0.0000 79.65 .03560 -72.73 .03498 -100.17 .02984	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 .00 .02073 .02153 -69.08 .03 .00000 0.00000 -90.00 .04 .02073 .02350 90.51 .03 .00000 0.02360 90.51 .03 .03882 .03774 -56.42 .03 .01709 .01067 .99.07	502 .04721 760 .03147 189 .03984 +38 .02110 500 .00000 197 .02172 +30 .03104 -382 .03653 -322 .05171	51.11 .0252 45.43 .02108 55.20 .02400 -73.57 .02612 -90.00 .03289 -132.52 0.00003 79.65 .03560 -72.73 .03498 -100.17 .02584	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 •	ERRORS 1650 03762 03953 64.88 03 02465 03360 93.57 01 02573 01943 58.43 03 02482 02708 70.44 01 00000 0.00000 90.00 0.00 02073 02153 69.08 03 00000 0.06000 90.00 04 02400 02360 90.51 03 03882 03774 56.42 03 01709 01067 99.07 ARGAND PLOT 1690	502 .04721 760 .03147 189 .03984 +38 .02110 100 0.00000 197 .02172 +30 .03104 382 .03653 922 .05171	51.11 .02529 45.43 .02108 55.20 .02400 -73.57 .02613 -90.00 .03289 -132.52 0.00000 79.65 .03560 -72.73 .03498 -100.17 .02566	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 •	ERRORS 1650 03762 03953 64.88 03 02465 03360 93.57 01 02573 01943 58.43 03 02482 02708 70.44 01 00000 0.00000 90.00 0.00 02073 02153 69.08 03 00000 0.06000 90.00 04 02400 02360 90.51 03 03882 03774 56.42 03 01709 01067 99.07 ARGAND PLOT 1690 08489 183070223	502 .04721 760 .03147 189 .03984 +38 .02110 100 0.00000 197 .02172 +30 .03104 382 .03653 322 .05171	51.11 .02529 45.43 .02108 55.20 .02400 -73.57 .02613 -90.00 .03289 -132.52 0.00000 79.65 .03560 -72.73 .03498 -100.17 .02564	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 •	ERRORS 1650 03762 03953 64.88 03 02465 03360 93.57 01 02573 01943 58.43 03 02482 02708 70.44 01 00000 0.00000 90.00 0.00 02073 02153 69.08 03 00000 0.06000 90.00 04 02400 02360 90.51 03 0382 03774 56.42 03 01709 01067 99.07 ARGAND PLOT 1690 08489 183070223 .1688822537 0065	502 .04721 760 .03147 189 .03984 +38 .02110 100 0.00000 197 .02172 +30 .03104 382 .03653 922 .05171 8 .16665 3 .44363	51.11 .0252 45.43 .02108 55.20 .02400 -73.57 .02612 -90.00 .03285 -132.52 0.00000 79.65 .03560 -72.73 .03498 -100.17 .02564 09056	5 .03115 63.52 3 .02025 -66.77 1 .03245 61.33 1 .02182 -61.67 3 .02245 86.20 0 .00000 -90.00 1 .04020 -90.46 3 .03931 -100.20 + .03288 -70.58 12180 .16570 .05700 19718 .12809 .04231
ະ ບ 0	ERRORS 1650 03762 03953 64.88 03 02465 03360 93.57 01 02573 01943 56.43 03 02482 02708 70.44 01 00000 0.00000 90.00 0.00 02073 02153 69.08 03 00000 0.06000 90.00 04 02400 02360 90.51 03 0382 03774 56.42 03 01709 01067 99.07 ARGAND PLOT 1690 08489 183070223 .1688822537 0065 14058 .355221123	502 .04721 760 .03147 189 .03984 +38 .02110 100 0.00000 197 .02172 +30 .03104 382 .03653 922 .05171 8 .16665 3 .44363 0 -18380	51.11 .0252 45.43 .02108 55.20 .02400 -73.57 .02612 -90.00 .03285 -132.52 0.00000 79.65 .03560 -72.73 .03498 -100.17 .02564 09056 .01655 .0 05388	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 •	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .1688822537 .0065 14058 .355221123 0.00000 0.0000 0.0000	502 .04721 $760 .03147$ $189 .03984$ $438 .02110$ $100 0.00000$ $107 .02172$ $430 .03104$ $382 .03653$ $922 .05171$ $8 .16665$ $3 .44363$ $0 .00000$	51.11 .02929 45.43 .02108 55.20 .02400 -73.57 .02612 -90.00 .03289 -132.52 0.00000 79.65 .03560 -72.73 .03498 -100.17 .02964 -01655 .0 -053883 -08668 .3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 •	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .1688822537 .0065 14058 .355221123 0.00000 0.0000 0.0000 18941 .00531 0.0000	502 .04721 $760 .03147$ $189 .03984$ $+38 .02110$ $100 0.00000$ $107 .02172$ $+30 .03104$ $88 .06653$ $922 .05171$ $8 .16665$ -18380 $30 18380$ $30 .00000$ $0 .00000$ $0 .00000$ $0 .00000$	51.11 .02929 45.43 .02108 55.20 .02400 -73.57 .02612 -90.00 .03289 -132.52 0.0000 79.65 .03560 -72.73 .03498 -100.17 .02964 090563 .01655 .0 053883 08668 .3 0.0000 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 •	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .1688822537 .0065 .14058 .355221123 0.00000 0.0000 0.0000 18941 .00531 0.0000 3085014934 .0675	502 .04721 760 .03147 189 .03984 +38 .02110 100 0.00000 197 .02172 +30 .03104 88 .0665 3922 .05171 8 .16665 3 .44363 0 -18380 0 .00000 0 .00000 3 .08888	51.11 .02229 $45.43 .02108$ $55.20 .02400$ $-73.57 .02612$ $-90.00 .03289$ $-132.52 0.00007$ $79.65 .03560$ $-72.73 .03498$ $-100.17 .02564$ 090562 $.01655 .00$ 053882 $08668 .2$ $0.00000 0.0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 •	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .16888 -22537 .0065 .14058 .355221123 0.00000 0.0000 0.0000 18941 .00531 0.0000 3085014934 .0675 .05215147880381	502 .04721 760 .03147 189 .03984 +38 .02110 000 0.00000 97 .02172 +30 .03104 382 .03653 922 .05171 8 .16665 5 .44363 0 -18380 0 .00000 0 .00000 3 .08888 9 .22711	$\begin{array}{c} 51.11 & .02229 \\ 45.43 & .02108 \\ 55.20 & .02400 \\ -73.57 & .02612 \\ -90.00 & .03289 \\ -132.52 & 0.00003 \\ 79.65 & .03560 \\ -72.73 & .03498 \\ -100.17 & .02564 \\ \hline & .01655 & .0 \\ -09056 &3 \\08668 & .3 \\08668 & .3 \\03325 &3 \\17779 & .3 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 •	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .16888 -22537 .0065 .14058 .355221123 0.00000 0.00000 0.0000 18941 .00531 0.0000 18941 .00531 0.0000 3085014934 .0675 .05215147880381 ERRORS 1690	502 .04721 760 .03147 760 .03984 +38 .02110 500 0.00000 97 .02172 +30 .03104 382 .03653 922 .05171 8 .16665 30 03000 92 .05171 8 .16665 30 03800 00 0.00000 00 .000000 00 .08888 01 .07854	$\begin{array}{c} 51.11 & .02229 \\ 45.43 & .02108 \\ 55.20 & .02400 \\ -73.57 & .02612 \\ -90.00 & .03289 \\ -132.52 & 0.00003 \\ 79.65 & .03560 \\ -72.73 & .03498 \\ -100.17 & .02564 \\ \hline & .01655 & .0 \\ -009056 &3 \\08668 & .3 \\08668 & .3 \\08668 & .3 \\03325 &3 \\ .17779 & .3 \\ 84.92 & 0.4406 \\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
* 0 ©	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.05000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .1688822537 .0065 -14058 .35522 -1123 0.00000 C.00000 C.0000 18941 .00531 0.0000 18941 .00531 0.0000 .05215147880381 ERRORS 1690 .04333 .04554 65.47 .06	502 .04721 760 .03147 760 .03984 +38 .02110 000 0.00000 097 .02172 +30 .03104 382 .03653 922 .05171 8 .16665 3 .44363 0 18380 0 .000000 3 .08888 3 .22711 348 .03851	$\begin{array}{c} 51.11 & .02229 \\ 45.43 & .02108 \\ 55.20 & .02400 \\ -73.57 & .02612 \\ -90.00 & .03289 \\ -132.52 & 0.0000 \\ 79.65 & .03560 \\ -72.73 & .03496 \\ -100.17 & .02566 \\ -009056 &3 \\ .01655 & .0 \\05388 &3 \\08668 & .3 \\ 0.00000 & 0.0 \\03325 &3 \\ .17779 & .3 \\ 84.92 & .04198 \\ 109.44 & .0213 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
* 0 ©	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .1688822537 .0065 .14658 .355221123 0.00000 C.00000 C.0000 18941 .00531 0.0000 18941 .00531 0.0000 18941 .00531 0.0000 18941 .00531 0.0000 18941 .00531 0.0000 18941 .00531 0.0000 .05215147880381 ERRORS 1690 .04333 .04554 65.47 .06 .03285 .03054 70.46 .02 .02515 .02477 67.90 .04	502 .04721 760 .03147 769 .03984 +38 .02110 900 0.00000 907 .02172 438 .03653 922 .05171 8 .16665 3 .44363 0 18380 0 0.00000 0 0.00000 3 .08888 9 .22711 348 .03851 781 .02566 180 .03464	$\begin{array}{c} 51.11 & .02229 \\ 45.43 & .02108 \\ 55.20 & .02400 \\ -73.57 & .02612 \\ -90.00 & .03289 \\ -132.52 & 0.00003 \\ 79.65 & .03564 \\ -72.73 & .03496 \\ -100.17 & .02564 \\ -09056 & .03668 \\ .01655 & .03668 \\ .00000 & 0.00 \\03325 & .03325 \\ .17779 \\ 84.92 & .04193 \\ 109.44 & .02133 \\ 90.73 & .0604 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 •	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .1688822537 .0065 .14658 .355221123 0.0000 0.0000 0.0000 .14941 .00531 0.0000 18941 .00531 0.0000 .18941 .00531 0.0000 .18941 .00531 0.0000 .18941 .00531 0.0000 .18941 .00531 0.0000 .3085014934 .0675 .05215147880381 ERRORS 1690 .04333 .04554 65.47 .06 .03285 .03054 70.46 .02 .02515 .02477 67.90 .04	502 .04721 760 .03147 769 .03984 +38 .02110 000 0.00000 097 .02172 +30 .03104 382 .03653 922 .05171 8 .16665 3 .44363 0 18380 0 .00000 0 .00000 0 .000000 3 .08888 9 .22711 348 .03851 781 .02566 180 .03450	$\begin{array}{c} 51.11 & .02229\\ 45.43 & .02108\\ 55.20 & .02400\\ -73.57 & .02612\\ -90.00 & .03289\\ -132.52 & 0.00003\\ 79.65 & .03564\\ -72.73 & .03496\\ -100.17 & .02564\\ -100.17 & .02564\\ -009056 & .03\\ .01655 & .03\\ -08668 & .33\\08668 & .33\\08668 & .33\\08668 & .33\\08668 & .33\\03325 & .33\\17779 & .33\\ 84.92 & .04193\\ 109.44 & .02133\\ 90.73 & .0604\\ 57.09 & .0305\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 •	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .1688822537 .0065 14058 .355221123 0.00000 C.00000 C.0000 .18941 .00531 0.0000 3085014934 .0675 .05215147880381 ERRORS 1690 .04333 .04554 65.47 .06 .03285 .03054 70.46 .02 .02515 .02477 67.90 .04 .02929 .03942 51.63 .01 .0000 0.0000 -90.00 0.000	502 .04721 760 .03147 760 .03984 +38 .02110 000 0.00000 097 .02172 +30 .03164 382 .03653 922 .05171 8 .16665 3 .44363 0 18380 0 .00000 0 .000000 3 .08888 9 .22711 348 .03851 781 .023566 180 .03358 000 .040300	$\begin{array}{c} 51.11 & .02229\\ 45.43 & .02108\\ 55.20 & .02400\\ -73.57 & .02611\\ -90.00 & .03289\\ -132.52 & 0.00003\\ 79.65 & .03560\\ -72.73 & .03496\\ -100.17 & .02586\\ -100.17 & .02586\\ -100.17 & .02586\\ -005388 &3\\08668 & .3\\ 0.00000 & 0.6\\03325 &3\\ .17779 & .3\\ 84.92 & .04198\\ 109.44 & .02133\\ 90.73 & .0604\\ 57.09 & .0305\\ -90.00 & .03405\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 •	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .1688822537 .0065 .14058 .355221123 0.00000 0.0000 0.0000 .18941 .00531 0.0000 .18941 .00531 0.0000 .3085014934 .0675 .05215147880381 ERRORS 1690 .04333 .04554 65.47 .06 .03285 .03054 70.46 .02 .02515 .02477 67.90 .04 .0229 .03942 51.63 .01 .0000 0.0000 -90.00 0.00 .02784 .01842 87.13 .02	502 .04721 760 .03147 189 .03984 +38 .02110 100 0.0000 107 .02172 +30 .03104 382 .03653 922 .05171 166655 -18380 0.000000 0.00000 0.00000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000 0.00000 0.00000000	$\begin{array}{c} 51.11 & .02929 \\ 45.43 & .02108 \\ 55.20 & .02400 \\ -73.57 & .02611 \\ -90.00 & .03289 \\ -132.52 & 0.00003 \\ 79.65 & .03560 \\ -72.73 & .03498 \\ -100.17 & .02984 \\ -100.17 & .02984 \\ -009056 &3 \\ .01655 & .0 \\05388 &3 \\08668 & .3 \\ 0.0000 & 0.0 \\ 0.03325 &3 \\ .17779 & .3 \\ 84.92 & .04198 \\ 109.44 & .02133 \\ 90.73 & .0604 \\ 57.09 & .0305 \\ -90.00 & .03400 \\ 121.79 & 0.0000 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 • •	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .1688822537 .0065 -14058 .355221123 0.00000 0.00000 0.0000 18941 .00531 0.0000 18941 .00531 0.0000 3085014934 .0675 .05215147880381 ERRORS 1690 .04333 .04554 65.47 .06 .03285 .03054 70.46 .02 .02515 .02477 67.90 .04 .02929 .03942 51.63 .01 .00000 0.00000 -90.00 0.00 .02784 .01842 87.13 .02	502 .04721 760 .03147 189 .03984 +38 .02110 100 0.0000 107 .02172 +30 .03104 182 .03653 922 .05171 188 .16665 3 .44363 0 .08888 0 .00000 0 .00000 0 .00000 0 .088888 9 .22711 348 .03851 781 .02566 180 .03940 780 .03358 0 .02160 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 0 .000000 0 .0000000 0 .0000000 0 .0000000 0 .0000000 0 .000000000 0 .0000000000000000000000000000000000	51.11 .02929 45.43 .02108 55.20 .02400 -73.57 .02612 -90.00 .03289 -132.52 0.00003 79.65 .03560 -72.73 .03498 -100.17 .02984 -090562 .01655 .02 -053883 08668 .2 0.0000 0.02 033252 .17779 .2 84.92 .04194 109.44 .02133 90.73 .06643 57.09 .03055 -90.00 .03404 121.79 0.0004	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 • • •	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 0.00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .03882 .03774 -56.42 .03 .03882 .03774 -56.42 .03 .01709 .01067 99.07 ARGAND PLOT 1690 08489 .183070223 .1688822537 .0065 14058 .355221123 0.00000 6.00000 6.0000 .18941 .00531 0.0000 .3085014934 .0675 .05215147880381 ERRORS 1690 .04333 .04554 65.47 .06 .03285 .03054 70.46 .02 .02515 .02477 67.90 .04 .02929 .03942 51.63 .01 .00000 0.00000 -90.00 0.00 .02784 .01842 87.13 .02 .00000 0.00000 -90.00 .04 .02892 .02686 95.87 .05	502 .04721 760 .03147 189 .03984 +38 .02110 500 0.00000 197 .02172 +30 .03104 182 .03653 922 .05171 188 .166655 -18380 0 .00000 0 .00000 0 .08888 9 .22711 348 .03851 781 .02566 180 .03940 780 .03358 0 .00000 978 .03256 180 .03940 780 .03358 0 .0214 198 .03711 998 .04014	$\begin{array}{c} 51.11 & .02929 \\ 45.43 & .02108 \\ 55.20 & .02406 \\ -73.57 & .02612 \\ -90.00 & .03289 \\ -132.52 & 0.00007 \\ 79.65 & .03566 \\ -72.73 & .03498 \\ -100.17 & .02966 \\ -100.17 & .02966 \\ -01655 & .07 \\ -05388 & -37 \\ -08668 & .07 \\ -08668 & .07 \\ -03325 & -37 \\ -17779 & .03498 \\ -109.44 & .02133 \\ 90.73 & .06043 \\ 90.73 & .06043 \\ 57.09 & .0305 \\ -90.00 & .03407 \\ 121.79 & .0000 \\ 104.58 & .0351 \\ -95 & .03165 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
• 0 • •	ERRORS 1650 .03762 .03953 64.88 .03 .02465 .03360 -93.57 .01 .02573 .01943 -58.43 .03 .02482 .02708 -70.44 .01 .00000 0.00000 -90.00 .00 .02073 .02153 -69.08 .03 .00000 0.06000 -90.00 .04 .02400 .02360 90.51 .03 .03882 .03774 -56.42 .03 .03882 .03774 -56.42 .03 .03882 .03774 -56.42 .03 .03882 .03774 -56.42 .03 .1688822537 .0065 -14058 .355221123 0.00000 6.00000 0.00000 -18941 .00531 0.0000 .3085014934 .0675 .05215147880381 ERRORS 1690 .04333 .04554 65.47 .06 .03285 .03054 70.46 .02 .02515 .02477 67.90 .04 .02929 .03942 51.63 .01 .00000 0.00000 -90.00 0.00 .02784 .01842 87.13 .02 .00000 0.00000 -90.00 .04 .02892 .02686 95.87 .05 .04311 .05643 55.52 .04	502 .04721 760 .03147 189 .03984 +38 .02110 500 0.00000 97 .02172 +30 .03104 88 .03653 922 .05171 8 .16665 3 .44363 922 .05171 8 .16665 3 .44363 0 .00000 0 .000000 0 .03358 0 .03711 938 .03214 316 .03711 938 .04014	$\begin{array}{c} 51.11 & .02229\\ 45.43 & .02108\\ 55.20 & .02406\\ -73.57 & .02612\\ -90.00 & .03289\\ -132.52 & 0.00003\\ 79.65 & .03566\\ -72.73 & .03496\\ -100.17 & .02566\\ -72.73 & .03496\\ -100.17 & .02566\\ -01655 & .0\\ -05388 & -3\\ -08668 & .0\\ -03325 & .0\\ -03325 & .0\\ -17779 & .0\\ 84.92 & .04196\\ 109.44 & .02133\\ 90.73 & .06043\\ 57.69 & .0355\\ -90.00 & .03406\\ 121.79 & .0406\\ 121.79 & .0406\\ 121.79 & .0406\\ 124.58 & .0351\\ 54.95 & .0316\\ 52.30 & .03406\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

-6-

.

0	ARGAND PLOT 1730			
e	00005 .24160 10063	.14288	07 007 15862 . 10669 .	06252
	-24543 - 15595 - 20575	.22366	.00968 .09860 .00900 .	01740
	-10415 .2210805136	18941	- 13573 - 30813 - 09718 -	08572
		~. 07882	01971 . 03540 . 19903	15386
	1828030104 -16180	00817	0.00000 0.0000007676	18522
	1574617313 .08936	.21162	049290671108826	18192
	847471586111784	.18617	.14296 .17743 .17824	20596
÷	ERRORS 1730			
	05879 .04580 90.79 .06050	.04886	-130.74 .03556 .03420 109.52	
	03321 .03552 116.91 .02957	.03123	+108.59 .02651 .03210 118.56	
	02992 .02834 109.80 .04025	.03407	101.98 .03688 .03509 109.93	
	02535 .02739 64.55 .01801	.01871	66.86 .02577 .02457 68.93	
	02196 .02064 69.96 .01030	.02239	49.98 .03254 .03323 -109.22	
	02682 .02403 -117.95 .02100	.03058	-90.95 .01661 .02005 -105.72	
0	.00000 0.00000 -90.00 .05062	.05116	-68.42 .04947 .04439 -45.00	
-	03113 .03444 -79.42 .03242	.03836	-87.82 .03678 .03615 -62.27	
	.05033 .05865 121.84 .06375	.05051	-131.61 .03584 .03276 76.81	
	02429 .01840 -54.80			
Ø	ARGAND PLOT 1770			
-	13279 .2296712947	.07669	0624918260 .09483 .	07932
	.268940448013477	.12642	.02676 .1291306187 .	01171
	17261 .1718804994	11401	149152800612817	05042
	055801030708156	14962	.08547 .00541 .16251	15162
	21052 .04866 .23464	.05088	.03382 .0082311202	25698
	1348013766 .12878	.30710	051541438104698	10894
	072872915222007	.14768	• 13426 • 23229 • 15450 - •	12015
#	ERR (RS 1770			
	.05820 .04520 89.75 .05134	.05893	131.34 .03581 .03604 66.60	
	.03883 .03734 72.20 .03087	.02735	-117.02 .03086 .03120 66.73	
	.03152 .03495 57.30 .04074	.04289	57.45 .04141 .03898 106.41	
	.02675 .03336 -83.56 .02922	.01755	-58.70 .02762 .02870 -68.98	
	.03013 .02119 -50.42 .02479	.01664	-57.60 .03560 .03680 -90.86	
	.02744 .02725 112.10 .03519	.02553	-127.32 .01773 .01879 -110.99	
	.01669 .02262 -100.88 .05736	.04414	-58.13 .04971 .05058 -68.60	
	•03299 •03456 -69.93 •03737	.04615	-64.24 .04460 .04620 -110.25	
	.04595 .05800 49.96 .04351	.05994	125.81 .03381 .03379 -67.44	
	•02588 •02788 -83•04			
8	ARGAND PLOT 1810			
-	14405 .2491519923	•04710	0108016473 .01701 .	16797
	•21959 •03616 - •15010	02129	07268 .0547804059	06066
	19339 .04540 .08214	07853	• 06095 - • 28103 - • 07940 - •	09003
	052281235604992	21853	•17451 •03540 •15847 - •	09828
	1762709590 .14920	.23123	•08187 -•03491 •14802 -•	22006
	071110656012926	.38061	•10512 -•16424 -•07230 -•	08073
	•11502 -•32300 -•26338	00697	00048 .25396 .24548	05756
+	ERRORS 1810			
	•07238 •05040 89•38 •06132	.06101	-112.80 .04475 .04142 78.61	
	•04281 •04475 50•50 •03391	.03573	-107.94 .03408 .03462 66.18	
	•03747 •03748 112.62 •04180	.03800	90.48 .04285 .03429 -128.86	
	•02780 •02976 61•40 •01524	.01185	71.48 .02525 .03544 48.84	
	.02453 .02886 57.72 .01659	•02848	52.72 .04059 .03793 -129.05	-
	•U28t2 •U3127 116.91 •02468	.03479	- 05.43 .02349 .01944 -62.14	
	•01657 •01887 -99•68 •07404	.04447	93.88 .05867 .06243 62.50	
	.03087 .03608 70.42 .04135	.03600	/3•/9 •U4698 •U4508 •64•98	
	•UC20U •U53U5 /5•51 •U6033	• 45/56	-114.42 .0310 .04020 05.51	
-	•U3126 •U2698 -45•UU			
ø	ARGANU PLUI 1070	07 4 6 5	107 04 - 22444 - 20020	4 2750
•		- 07045	• 10/040 • 07/20 • 00/244	15320
	• 10009 • 49991 • 42444	03045		440
		.01300		10015
	•US172 -•12899 •13639	19045	•Ub212 +U4797 +10849 -	10016

-7-

	- 40000 - 47507 40475	26077	15022 - 05875 . 14696	26.81.9
		• 2007 3		10520
	22/080999/33642	.20190		14 066
	•27436 -•14530 -•30019	06798	14022 .20900 .20109	17 200
	ERRORS 18 50			
	•05238 •04141. 91•00 •05009	.04637	-128.11 .03263 .03267 67.38	
	.03597 .03417 -53.17 .02893	.02617	-124.19 .03054 .02382 -55.67	
	02055 02710 07 04 07125	62077	-1 71 73 .02027 .03328 127.73	
		+ 4 2 3 7 3		
	•02363 •02201 +122.91 •01110	.01792		
	•01998 •02115 63•71 •01272	.02328	47.76 .02848 .02722 70.51	
	.02435 .01924 77.79 .02460	.01917	-123.04 .01454 .02067 -98.13	
	.00758 .00896 65.02 .02610	.03705	-35.02 .03317 .03582 -106.27	
	.04638 .04961 61.31 .03984	.05645	133-26 .0.3474 .0.3057 -56-60	
		0 00000		
		0.00000		
Ų	.00000 0.00000 -90.00			
•	ARGAND PLOT 1890			
	22483 .0819606234	.03891	.126951954010763 .	09746
	.17604 .12230 .13430	.07089	074001049005755 .	02460
	- 15670 - 16618 · 10551	.07628	.0800217201 .02126	13846
	06685 - 14422 - 24964	09974	.01354 .04328 .13587	13181
		20176		44656
	19544 18383 11909	.20130	• 20111 • 02355 • 20057 -•	14020
	177181610645383	.15683	.028681426502097	10337
	•31805 -•05166 -•23092	20628	27261 .20518 .22289 .	07680
	ERRORS 1890			
	-04688 -04396 72.29 -04530	.04621	-73.12 .03171 .03068 71.27	
	07/18 .03281 86.73 .02699.	02495	+129.71 .02728 .02607 70.83	
		02400	45 30 02368 02247 -114 56	
	• 02000 • 02000 - 49.97 • 02410	.02440		
	•01833 •01/16 -119•0/ •0181/	.01697	/U.35 .U1//5 .U1020 05.09	
	•01919 •01440 88•77 •01900	•01020	84.30 .03288 .02342 87.39	
	.02626 .01665 85.17 .01508	.02061	-83.94 .01460 .01274 -62.72	
	.00848 .01191 126.64 .04871	.02844	93.98 .04252 .03919 98.17	
	.03656 .01398 91.86 .02628	.02229	-61.23 .02803 .02645 -62.66	
	04827 03047 99.25 03947	. 0 4 0 4 4	-111-49 -02822 -02924 65-68	
	• 12443 • 12395 - 50 • 00			
•	ARGAND PLOT 1930			
	22196 .0192704955	04820	• 17838 -• 18371 -• 10155 •	09634
	•12472 •11966 •08999	.01337	067481171011309 .	08480
	0629219639 .02454	.13467	.0535309448 .04054	14927
	10877 - 14384 .26057	06488	0159507390 .16804	04962
	- 06355 - 22334 - 03399	29876	20.080 .11035 .33869	07035
		40572		05594
	223040914546052	.10932		ロシンラー
	•29598 •15228 - •25937	20122	23408 .14338 .21446 .	00//1
- +	ERRORS 1930			
	.03934 .04567 60.86 .04167	.04462	-80.18 .02593 .03179 53.85	
	.03010 .03301 48.81 .02349	.02486	127.64 .02264 .02738 59.78	
	.02528 .02457 -62.52 .03061	.04121	45.55 .03265 .03727 -98.24	
	02578 02404 -62.73 .02429	.02304	69.07 .02439 .02957 51.10	
		01/57	77 08 03114 02322 87.02	
	•A5A50 •A52AA 01+68 •A5135			
	•02754 •01560 88•60 •02081	.02803	-30.11 .01420 .01322 -70.09	
	•02754 •01560 88.60 •02081 •01739 •01227 -131.69 •04540	•02803 •02743	87.02 .04075 .03578 106.25	
	•02754 •01560 88.60 •02081 •01739 •01227 -131.69 •04540 •02918 •01299 83.27 •03675	•02803 •02743 •02789	87.02 .04075 .03578 106.25 -122.10 .03561 .04231 -97.01	
	•02754 •01560 88.60 •02081 •01739 •01227 -131.69 •04540 •02918 •01299 83.27 •03675 •03703 •04260 120.14 •04221	•02803 •02743 •02789 •03568	87.02 .04075 .03578 106.25 -122.10 .03561 .04231 -97.01 -132.40 .02816 .02911 64.18	
	.02754 .01560 88.60 .02081 .01739 .01227 -131.69 .04540 .02918 .01299 83.27 .03675 .03703 .04260 120.14 .04221 .02143 .02253 118.78	•02803 •02743 •02789 •03568	-87.02 .04075 .03578 106.25 -122.10 .03561 .04231 -97.01 -132.40 .02816 .02911 64.18	-
	.02754 .01560 88.60 .02081 .01739 .01227 -131.69 .04540 .02918 .01299 83.27 .03675 .03703 .04260 120.14 .04221 .02143 .02253 118.78	02803 02743 02789 02789	-30.11 .01425 .01322 -76.05 87.02 .04075 .03578 106.25 -122.10 .03561 .04231 -97.01 -132.40 .02816 .02911 64.18	-
	•02754 •01560 88.60 •02081 •01739 •01227 -131.69 •04540 •02918 •01299 83.27 •03675 •03703 •04260 120.14 •04221 •02143 •02253 118.78 ARGAND PLOT 1970	.02803 .02743 .02789 .03568	-30.11 .01425 .01322 -76.03 87.02 .04075 .03578 106.25 -122.10 .03561 .04231 -97.01 -132.40 .02816 .02911 64.18	19016
ę	•02754 •01560 88.60 •02081 •01739 •01227 -131.69 •04540 •02918 •01299 83.27 •03675 •03703 •04260 120.14 •04221 •02143 •02253 118.78 ARGAND PLOT 1970 2166111124 •04326	.02803 .02743 .02789 .03568	-143340913012584	09006
ę	•02754 •01560 88.60 •02081 •01739 •01227 -131.69 •04540 •02918 •01299 83.27 •03675 •03703 •04260 120.14 •04221 •02143 •02253 118.78 ARGAND PLOT 1970 -2166111124 •04326 •11377 •08405 •11645	.02803 .02743 .02789 .03568 04658 00765	-143340913012584 -096521077911538	09006 06531
¢	.02754 .01560 88.60 .02081 .01739 .01227 -131.69 .04540 .02918 .01299 83.27 .03675 .03703 .04260 120.14 .04221 .02143 .02253 118.78 ARGAND PLOT 1970 21661 11124 .04326 .11377 .08405 .11645 03288 19034 .02910	.02803 .02743 .02789 .03568 04658 00765 .14647	-143340913012584 -143340913012584 .0203007872 .04677	09006 06531 11954
•	.02754 .01560 88.60 .02081 .01739 .01227 -131.69 .04540 .02918 .01299 83.27 .03675 .03703 .04260 120.14 .04221 .02143 .02253 118.78 ARGAND PLOT 1970 2166111124 .04326 .11377 .08405 .11645 0328819034 .02910 .1306610624 .22412	.02803 .02743 .02789 .03568 04658 00765 .14647 00474	-143340913012584 -143340913012584 .0203007872 .04677 -0391116026 .15576	09006 06531 11954 06952
¢	.02754 .01560 88.60 .02081 .01739 .01227 -131.69 .04540 .02918 .01299 83.27 .03675 .03703 .04260 120.14 .04221 .02143 .02253 118.78 ARGAND PLOT 1970 2166111124 .04326 .11377 .08405 .11645 0328819034 .02910 .1306610624 .22412 021472070807883	.02803 .02743 .02789 .03568 04658 00765 .14647 00474 .26012	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09006 06531 11954 06952 03748
•	.02754 .01560 88.60 .02081 .01739 .01227 -131.69 .04540 .02918 .01299 83.27 .03675 .03703 .04260 120.14 .04221 .02143 .02253 118.78 ARGAND PLOT 1970 2166111124 .04326 .11377 .08405 .11645 0328819034 .02910 .1306610624 .22412 021472070807883 26560965746791	.02803 .02743 .02789 .03568 04658 00765 .14647 00474 .26012 .04626		09006 06531 11954 06952 03748 01767
•	.02754 .01560 88.60 .02081 .01739 .01227 -131.69 .04540 .02918 .01299 83.27 .03675 .03703 .04260 120.14 .04221 .02143 .02253 118.78 ARGAND PLOT 1970 2166111124 .04326 .11377 .08405 .11645 0328819034 .02910 .1306610624 .22412 .021472070807883 226560966746791 .18003 .255721259	.02803 .02743 .02789 .03568 04658 00765 .14647 00474 .26012 .04626 18609	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09006 06531 11954 06952 03748 01767 09370
•	.02754 .01560 88.60 .02081 .01739 .01227 -131.69 .04540 .02918 .01299 83.27 .03675 .03703 .04260 120.14 .04221 .02143 .02253 118.78 ARGAND PLOT 1970 2166111124 .04326 .11377 .08405 .11645 0328819034 .02910 .1306610624 .22412 021472070807883 226560966746791 .18003 .2560212859	.02803 .02743 .02789 .03568 04658 00765 .14647 00474 .26012 .04626 18609	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09006 06531 11954 06952 03748 01767 09370
•	.02754 .01560 88.60 .02081 .01739 .01227 -131.69 .04540 .02918 .01299 83.27 .03675 .03703 .04260 120.14 .04221 .02143 .02253 118.78 ARGAND PLOT 1970 2166111124 .04326 .11377 .08405 .11645 0328819034 .02910 .1306610624 .22412 .021472070807883 226560966746791 .18003 .2560212859 ERRORS 1970	.02803 .02743 .02743 .02789 .03568 04658 00765 .14647 00474 .26012 .04626 18609	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09006 06531 11954 06952 03748 01767 09370

.02908	.03090	58.43	.02518	.02171	96.69	.03088	.02310	-51.09
.02813	.02363	93.49	.02704	• 02 755	-68.98	•03139	.03116	109.99
.01886	•02023	-105.73	.01597	.02261	51.92	.02229	.01966	-53.96
.01509	•01990	48.50	.01208	•01742	56.80	.02651	•02460	100.43
.01713	•02539	54.91	.01927	.01695	-116.88	.01114	.01650	-100.28
•01195	•01000	106.92	.02979	.03062	66.76	.04338	•03353	79.75
.01184	.02013	58,26	.03440	.02617	-126.36	.03138	.02758	-120.73
•03746	•03846	114.85	.04290	.03956	102.71	.02416	•02866	51.84
•02258	.02021	87.36						

II. SOLUTIONS AT FOUR ENERGIES

On the following pages are reproductions of RUMBLE printout for four representative energies. These are single-energy fits, whose overall phase is undetermined, so the phase of $\Delta \pi (PP_{14})$ is arbitrarily set to zero.

The printout contains:

1st: Amplitudes and error, annotated.

- 2nd: An error matrix dimensioned equal to the number of waves used in the fit.
- 3rd: A 60×60 error matrix. However, this involves repeating the amplitudes and error table in order to specify the numbers of waves and to give the the diagonal elements. Further, because of the size of the 60×60 matrix, the format is different. See annotated example on page 2.4.

*An explanation of the columns headed $\frac{2}{3}$ SIGMA INEL and $\frac{4}{3}$ SIGMA INEL:

These are merely sums of the σ (charge channel) at right. The first three of these channels are neutral $(n\pi^0\pi^0, n\pi^-\pi^+, pn^-\pi^0)$ and must come from π^-p . The last two $(p\pi^+\pi^0, n\pi^+\pi^+)$ came from π^+p . So the output gives fit predictions for:

I	3 neutral modes	2 charge ⁺⁺ modes
1/2	$\pi p \rightarrow N_{1/2}^* \rightarrow N\pi\pi, \frac{2}{3} \sigma_{\frac{1}{2}}$	0
3/2	$\pi^+ p \rightarrow N^*_{3/2} \rightarrow N\pi\pi, \frac{1}{3} \sigma_{3/2}$	$\pi^+ p \rightarrow \Delta \rightarrow N \pi \pi$, $\sigma_{3/2}$

The leftmost I = 1/2 column being a sum of 2/3 $\sigma_{\frac{1}{2}}$ for three modes is then labelled $\frac{2}{3} \sigma_{\frac{1}{2}}$.

The leftmost I = 3/2 column similarly <u>must</u> be labelled $\frac{4}{3} \sigma_{3/2}$. We are sorry if the notation on the summed columns is confusing, but it arises because they <u>are</u> just sums of the more physical cross sections for the individual charge channels.

This page same format as annoted 16-wave format on page 2.3 except that here all 60 waves are defined.

SOLN B 1490 MeV repeated with 60-waves Dulined,

WAVE	RE A	E(RE)	D(RB)	1 M A	E(IM)	D(1B)	PHASE	Ē	RET	ІМ Т	E(AMP)	E (ANG)	T **2	E(T**2)	WAVE
P33 PP11	1.00	- 04	.02	0.00	.11	.04	0	6	.3355	0.0000	.0128	.0373	.112580	.008736	L
P33 SD11	.00	.24	.12	0.00	•31	.15	υ	999	.0000	0.0000	.0184	.0241	.000000	.000339	Z
P33 DS13	10	.01	.00	. 01	.01	.00	175	8	1421	.0117	.0134	.0207	.020336	.004010	3
P33 PP13	.00	.07	.03	c.00	.09	.03	0	999	.0000	0.0000	.0220	• 02 75	.000000	.000486	4
P33 0013	-2.06	•15	•07	•68	.25	•11	162	000	1622	.0552	.0128	0129	.029140	.000128	6
P33 PF13	.00	•57	- 33	0.00	.02	• 44	0	999	.0000	0.0000	-0114	.0146	.000000	.000131	7
P33 FP15		• 0 3	.01	0.00	.04	12	-51	10	.0314	0385	-0122	-0161	.002472	.001368	8
P33 UUIS	-40	.51	. 28	0.00	•19	. 42	-,1	999	.0000	0.0000	.0100	.0149	.000000	.000101	9
P33 FF17	- 00	.42	- 30	0.00	.62	.45	õ	999	.0000	0.0000	.0083	.0123	.000000	.000069	10
P33 PP31	17	.05	.03	36	.03	.02	-116	7	0551	1152	.0108	.0165	.016314	.002363	11
P33 SD31	28	.17	.09	-1.07	.15	.08	-105	9	0224	0858	.0121	.0136	.007864	.002297	12
P33 D533	03	.01	.00	.10	.01	.00	105	6	0412	.1521	.0105	.0164	.024834	.003427	13
P33 PP33	.00	.05	.02	0.00	.05	. 02	0	999	.0000	0.0000	.0185	.0167	.000000	.000344	14
P33 DD33	18	.17	.08	.73	.11	• 05	104	13	0141	-05/4	.0081	-0134	+003493	-001017	16
P33 PF33	.00	.37	.27	0.00	- 35	• 2 3	0	999	.0000	0.0000	.0074	.0070	.000000	.000055	17
P33 FP35	-00	•03	•02	0.00	- 02	.01	ő	900	.0000	0.0000	.0108	.0086	-000000	.000117	18
013 5535	.00	4.9	. 25	0.00	.33	.18	ŏ	999	.0000	0.0000	.0097	.0066	.000000	.000094	19
P33 FF35	- 00	. 39	.27	0.00	.33	.19	ŏ	999	.0000	0.0000	.0079	.0066	.000000	.000063	20
RH3 PP11	.00	.88	.27	0.00	.98	.36	ō	999	.0000	0.0000	.0255	.0282	.000000	.000649	21
RH3 5011	.00	2.20	1.14	C.00	3.09	1.44	0	999	.0000	0.0000	.0179	.0251	.000000	.000322	22
RH3 0513	2.06	.12	.04	-1.35	.15	• 04	-33	4	. 2432	1590	.0095	• 0Z 08	.084419	.005582	23
RH3 PP13	.00	1.11	.31	0.00	1.12	• 35	0	999	.0000	0.0000	.0318	.0322	.000000	.001013	24
RH3 0013	.00	2.66	•76	0.00	2.73	.83	0	999	-0000	0.0000	-0215	.0222	.000000	-000464	25
RH3 PF13	.00	4.31	2.59	0.00	5.69	3.10	0	999	.0000	0.0000	-0108	.0143	.000000	.000123	27
RH3 FP15	- 00	- 58	• 1 7	0.00	2 96	-11	0	999	.0000	0.0000	.0211	.0231	.000000	.000444	28
KH3 0015	-00	7 63	2 21	0.00	8 03	2.34	0	999	-0000	0.0000	.0183	-0198	.000000	.000335	29
RH3 FF17	-00	5.72	2.34	0.00	5.17	2.61	ŏ	999	.0000	0.0000	.0141	.0127	.000000	.000199	30
RH3 PP31		.68	.23	0.00	.08	.21	0	999	.0000	0.0000	.0197	.0197	.000000	.000389	31
RH3 SD31	.00	1.71	.79	0.00	1.50	.78	Q	999	.0000	0.0000	.0141	.0124	.000000	.000200	32
RH3 DS33	.00	.10	.03	0.00	.11	.04	0	999	-0000	0.0000	-0120	.0128	.000000	.000143	33
RH3 PP33	.00	.85	• 21	0.00	.71	• 21	0	999	.0000	0.0000	.0246	.0206	.000000	.000801	36
RH3 0033	.00	1.80	•53	0.00	1.48	• 50	0	999	.0000	0.0000	-0140	-0122	.000000	000221	36
RH3 PF33	.00	3.28	1.91	0.00	3.23	1.07	0	999	.0000	0.0000	-0067	- 0075	- 000000	.000045	37
RH3 FP35	- 00	2.10	. 57	0.00	1.53	- 63	0	999	.0000	0.0000	.0173	.0126	.000000	.000298	38
DH3 5535	- 00	4.84	1.54	0.00	4.50	1.50	õ	999	.0000	0.0000	.0122	.0114	.000000	.000149	39
RH3 FF37	.00	3.02	1.57	0.00	4.10	1.76	õ	999	.0000	0.0000	.0076	.0104	.000000	.000058	40
RH1 5511	.95	- 21	. C7	29	.28	.09	-17	18	.1125	50341	.0171	.0372	.013813	.004300	41
RH1 PP11	.00	1.04	• 34	0.00	1.17	.40	0	999	.0000	0.0000	.0299	.0337	.000000	.000897	42
RH1 PP13	.00	.68	.21	0.00	.81	.27	0	999	-0000	0.0000	.0196	.0233	.000000	.000384	43
RH1 DD13	.00	2.63	.82	0.00	3.26	.96	0	999	.0000	0.0000	.0214	.0265	.000000	.000458	44
RH1 DD15	-00	1.69	.62	0.00	1.88	• ! !	0	999	.0000		+0157	0175	.000000	000133	46
RH1 FF15	.00	6.15	2.17	0.00	2 20	2.04	0	999	- 0000	0.0000	-0100	. 0094	.000000	.000099	47
RH1 FF17	.00	4.03	1+01	0.00	3.19	2.20	25	12	.0000	-0412	-0151	.0200	.009543	.003176	48
DH1 DD31	-1-87	.79	-22	-1-83	.86	.26	~136	17	0544	0531	.0258	.0223	.005784	.004591	49
RH1 PP33		.48	.15	0.00	.50	.18	Õ	999	.0000	0.0000	.0140	.0145	.000000	.000196	50
RH1 0033	. 00	1.88	.55	0.00	1.95	. 54	0	999	.0000	0.0000	.0155	.0161	.000000	.000240	51
RH1 0035	.00	1.36	.44	0.00	1.13	.52	0	999	.0000	0.0000	.0112	.0094	.000000	.000126	52
RHL FF35	.CO	4.03	1.55	0.00	4.73	1.53	0	999	•0000	0.0000	-0102	+0119	.000000	.000103	53
RH1 FF37	.00	2.39	1.26	0.00	3.18	1.43		999	.0000	0.0000	.0060	.0080	.000000	.000037	54
SIG PSL1	-1.96	•12	•06	-81	•22	.07	158	6	2776	-0154	+01/1	0204	+030104	- 006332	L 99 9 56
516 SP11	2.19	• 79	6C.		8C.	• J I	-9	12	- 0090		-0157	-0145	.037783	.006345	5 57
SIG 0013	25	+42	-21	-9-50	1.44	. 70	0	999	-0090	0.0000	.0199	.0147	.000000	.000397	58
	.00	1.70	.72	0.00	1.44	.48	ő	999	.0000	0.0000	.0172	0145	.000000	.000294	59
SIG DF15	.00	3.84	2.51	0.00	2.34	1.77	ō	999	.0000	0.0000	.0120	.0073	.000000	.000143	B 60

2.3

-13 -	
	60×60 Error Matrix bage 1
ERROR MATRIX (AMP(I) AMP(J)) $1.4 \times ST$; ST	.009008 HYPERVOLUME = 3.5748-246
SOLN B 1490 MeV	21
1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434	4445464748495051525354555657585960 L.T
1 1 8 A C O 3 . O L 8 O A A O C A 1 O O O C O O A O O O A A O O O O O O A 8 O O , C A A O O O O O A 1 0 O O O O A 1 0 O O A 1 0 O O I 1 , I A . C O	0 0 0 . 1 , 0 0 . 0 F 2 2 0 1 0 2 . A 0 1 . 0 , 1 3 0 A 2 ,
2 1 A B 4 A 1 A 1 . U A O , O , 3 1 . O A 1 1 D A A A D A D O A 1 0 , 0 0 1 A A 1 . B A D . U B O D A , U D A O U 2 D A D . D B B O D O . D D O O 4 0 G	0 0, 0 A. 0 0 0 û B 0 . A 0 A 0 A 0 1 0 0 , 0 0 B 0
З ВА 120АОО, 0.00, А1., А01, 2.000011А, 10А00 1. А СОСПОЧО.СООООООО 10ЕОА О, 0.1000, ААО	0000000., 004F 00 10 . 01.,0013.410
4 A B 1 A 0 E A 0 , 0 1 0 0 0 0 0 0 0 0 0 3 0 1 A 0 A 0 0 0 0 1 A 1 1 1 0 2 , C 0 0 , 0 0 . 0 0 , 0 0 0 0 0 1 1 A 0 1 1 0 A A C , 0 0 , 1 , 0 0 B A 0	00,00,188010280 ,01A0.00.003AA2A
5 0 4 2 A U A B , 100 A 00 , 01 , 2 2 1 100 A , 000 A , A , 010 0 1 2 2 C , B A 10 10 A A 0 A , 0 , 0 U A A 0 , 0 , 0 A A 0 0 , 0 , 0 0 A	A 1 . 0 0 A A . 0 0 0 0 B B 0 A 0 0 0 0 0 , 0 1 , 0 , 0 3 1 A 1 0
6 CAUOC IAEOUO OUAIUU, AA, OO, A 101100, . 0A00.0 JAAOBAU13160 0, 0, 1900000000000.00.00000000000000000000	00A.00001,AB2210 1,000100.,00011
7 3 1 4 E A L , 1 0 0 0 . A 4 1 0 A , 0 0 B A 0 0 , 1 , 0 0 C A A 1 0 A B U A 0 A 0 0 0 0 , 0 , A 0 , 0 0 0 1 0 0 , 0 , .	0 1 0,0 010C02A4A 01 0011 0.A,1 00
Α Ο Ο Ο Α Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο	, B . O O 1 O O O . O O . , A 1 A , O , O O O , . D O O O 1 O
9 10 A, E 1 1 1 0, , 00 . A 0 C 1 1, 0 0 0 1 0 0 0 A A 0 A 1 A 1 0 0 A 1 1	••••••••••••••••••••••••••••••••••••••
10 0 , C 0 0 1 1 0 . 0 0 0 B 0 0 , 0 9 1 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 • • • 0 0 1 0 0 • 1 A • 0 0 0 0 0 • 0 0 0 0 0 • 0 0
LI 1 , 100,00 AAAA, 1 10000,0,0001000000A0 AOACAAC.20 0.1A0 0801A2 0001, 0000000	
12 8 . C, COC, , . A A 40A0, . DA DO 0, 0 13 08 DO , . D1 0 . COCDO, 1 C A DA, 0 D80, 1010 0A D, 8810001A10000	0 0 0 0 0 . 0 1 . , 0 . 0 . , 4 A 0 0 A A 0 A 1 0 0 .
13 00.C0 .0, AA 02U0A10A0.000A.,0 G0A A,00,10 	0, A 1 , A 0 0 0 , A . 0 , 1 0 A 0 A 0 1 A . 0 0 0 1 0 0 1 ,
14 A A O 1 A O A , D G A O . O O 1 , 1 O A , 1 1 0 0 0 0 0 0 1 8 1 0 8 0 0 0 0 0 . 0 0 0 A C C . 0 A . A 0 . A . 0 0 , 0 , A G 0 0 0 0 0 1 3 A 1 , 1 1 0	00 A 0, 8 A 0 0 A 0 0, 1 0 A . 0 Z 0 4 0 1 0 0 0 . ,
15 A 0 C 0 O A , 0 . A 4 2 . 0 0 8 8 A , 1 , A B , 0 1 0 B 0 0 1 0 0 1 . 0 . 0 . 0 1 A 0 C , 0 0 . 0 10 0 0 8 8 A , 1 , A B , 0 1 0 B 0 0 1 0 0 1 . 0 . 0 . 0 C 3 0 0 . A 10 L A 0	1U.DAA.OAOOG 00. 1.A3A 0AAO 010.0
16 C 0 , O O A 1 1 O O O O A U B A O A O O A O . 1 1 . O 1 1 O , O O O O O O C A O A O . 0 . 0 . 0 . 0 O . 0 . 0	0 0 0 0 1 1 . A 0 1 0 0 0 0 0 , . , 0 1 0 0 0 0 . 0 1 A 0 0 0
17 0 A C , L C , A , 1 A D C , A 0 1 0 . 0 , A C A A Z , O 0 1 0 . 0 , A C A A Z , O 0 A Z C A ,	• • • • • • • • • • • • • • • • • • •
18 A, LCCU ADO'OALOOB,	0 0 , 7 0 0 , 1 1 0 1 A 0 0 0 0 , 0 0 0 , C 0 0 0 A 0
19 10.010A C01,1,0B1. 100 1, A,0 AA000AA 0,001 00,,1 00.018,8A,1.0,010.0.0 000000000A	0 , , , , A A , O , , , D , . A 0 0 A O 1 O O , O O . O O .
20 00, B01.A.01, . 0 .0.01 00A,.00 0 .000 . 000C0, 0100, 0, .0 .0 1.0000,0,,.	0.00 000 B .0 0,, 0000103.00.
21 0 3 A C 2 A C C 1 0 . 0 A O A Ó . 0 , 1 0 4 D 1 3 B 1 , A 1 0 0 0 1 0 0 0 F 4 A . 2 C 0 3 G 0 0 0 0 0 1 , A 0 0 0 A A 1 A 2 0 B 1 0 0 0 0 , 0 0 B 0 C , 1 2 A	3 8 0 0 0 0 0 3 . 0 0 0 0 0 0 0 0 0
22 0 1 0 0 2 A . 1 0 0 A 0 A A . 0 1 0 1 B , 1 0 A A A B A , , 0 , 0 1 0 B B 2 B 1 , C 1 . 0 , 0 C 0 0 0 0 , 1 0 1 5 0 0 0 2 0 0 , , 0 A 0 , A , 0 0 2 0 1	2002A A.10, 0BU,0 LA000.000, 2012,
23 0.10, UU,, O., O.O.O.UD 1 0.10, UU,, O., O.O.O.UD 1 0.10, UU, O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.	00000A20000 A0C.A. A0A010000 01
24 0,310800 0001000,10410 E0,D220.0,000000AE7 00,2.0A0 0,0000A0 1,AB.0100,0,A,00 .0, 23,	74CB1000 AA00002A0 ,00,000009.20 100
25 0 A 2 0 0 A . 0 0 C 0 0 1 0 0 C , , D B 3 E L 1 0 6 B B 1 0 . 0 D 0 0 3 5 C 0 1 1 0 C A 0 . 0 0 C 0 C , 0 , 0 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CG52A00 0000A.A DOAA0.0 .000A28,A
26 01.11,0000, 00, 0. ,1,.01 01C. 000, B,0100,	

26 0 1 . 1 0 1 0 0 001 00A0 A0A.A00. 27 28 00000, 001, , . 0 0, 0, , , 600061A ED. . 0000, 0, 30F74C, , 00, , , . 000 00 0, 0 0, 1, 00, 000 11118A0 1000, , . . 001140, . . 0 . 00000 30 0 00,0, 000°, . 0, 11 A 0 2 B . 10 6 10,0 000011 A 2 2 C F 7 0 000 01,0000 00,. 00,0000 A A 2 0.0 A 5,0 . 0 ,010 A 01 A . 0 . 0 0. 0 J 31 A A 1 0 G 1 . . A 0 C 1 G 0 0 1 0 0 A . , A 1 0 1 1 . 1 1 4 B 5 C 0 1 0 A , 0 0 0 0 . 0 0 C 4 2 0 0 1 , 0 0 0 . 0 0 A A C A 0 C 1 0 A A . 0 , 0 . A A . 0 A A 1 0 2 1 0 , 0 1 A A . . 1 5 2 0 0 0 1 7 , 0 7 0 32 A A 1 0 1 . 0 A 0 1 3 0 1 1 0 0 A . A B . 0 0 0 . 1 0 4 2 A 1 A 2 B A A 0 0 0 . 0 0 C 0 A 1 0 0 0 1 , 1 . 0 0, 0 G 1 . 0 0 0 1 0 1 A 0 0 1 0 0 C 0 2 A A , 0 0 0 0 1 1 0 1 A B A . 0 0 0 A , 0 0 B A 1 1 , 0 A 0 A . 0 33 DAOCO., O C GIA. LOS IAAO. OOO , B A 200010AAO10. 2CAO. A0103 0. D L.O, CA, AAAOA, OOOLOA1100.00A C, A A, 10A, 110000, 38, 000, 00A 0. 0,0,00.01052A E,A 11 00A,0C4730 0 0.0,0 ,00,00., 0.00010A00100,000411000 0 0 34 0 A , 0 A 0 . 1 A 0 0 0 0 0 8 0 0 0 . 0 . 0 6 A 0 0 0 A 0 6 0 1 6 . 0 2 A . 35 0 1.,, ,. 30 BAIC 0.000, 0 ,000. CAZE 2 B6 D8 00,00 2 BDE 4 3 A. 0 1, 0 A A, 0 0, 0 0 0 1 1 0 3.,, 0 0 0, 0 , 0 0 0, 1 1, 1 . 0 , A A 0, 0 0.000 A 0 0 A 0 A 1.00, 1 0, 38 0 A 0 A 0 0 . 0 A 0 . , 0 0 1 0 1 , 0 0 0 0 0 0 0 0 0 0 2 0 A 6 1 A H E . 0 0 0 0 A A 0 C C 8 6 C . . 0 0 0 0 , 0 0 C . 0 C . 0 0 1 . 1 0 . A 0 1 0 . 0 0 A 0 . 1 C 0 0 , 0 0 . 0 , A 0 B , 0 G 0 0 . . . , .

39 01011A.A10.,00 0A00.010001. A0ABL 082H 600 0 002025FF4 .0,00 00, 0 , . . . A100.... A 0 00 10001.,,1 00 000, A.100.0A0000 ,,

,000,01,A018A0E6,000 A200130F50 .,,.11,0.00 01.00 A10,.001. 41 A,.100C0 C0,00,0000 B1A30.,010AA1 00.0.+2AA,A0 10., 1801A .101C C0.0C00 0 .A0,08BA200,0.0A0,.0 ,...5.AA 0.1, 000 .82,.. 60x 60 Emor F B 2 E 5 , U 3 0 A 0 0 A 0 0 0 0 0 0 2 + D 0 2 0 A A 1 1 0 3 A . 0 A . 0 0 0 . , 0 0 . . A 0 1 0 0 0 . 0 42 8 C 1 C . A C J C A 1 1 . 1 9 C O A O 1 O 1 C O C . C . . . O , J , 0,0.000A0A0 0..0 BAA0,0 Matrix Page 2 43 0 C . 2 1 0 A A A 0 0 0 0 0 0 0 1 0 4 2 0 7 C , 2 D 3 2 0 0 0 0 A 0 0 0 A D + 3 D C 1 A 0 0 0 . , 1 0 , 0 1 . , 0 2 , 0 A . 8 , 0 0 0 A 0 . 1 0 A , 0 0 0 2 A 1 0 A 0 0 . 0 0 0 0 . . 1 3 0 A A , 0 0 0 0 0 . . A 0 . 44 0 0 0 0 0 0 0 , . 0 , 0 0 0 , 0 , 0 0 , 3 0 0 4 G A 3 F 4 2 0 0 1 0 . 1 0 0 0 A 0 3 + F C 2 0 A 0 A A , 1 . 0 0 C 0 0 3 . 0 C . 0 , A A 8 A , 0 C 1 0 0 , 0 0 . 0 0 0 0 0 A 0 A 2 0 0 0 00,00001 2,5 . U . U , , O B O O C 5 2 B 7 D C . . O A O O , O , O O . O O I I C I A O A O O O , , O , , O O 45 0 0010 d,0 46 000 .41.10 0.40040,0020B20A46F00.,001A0AA0CC2+F10010,0000000 0 A 0 1 A 0 0 C 5 7 C 0 0 A A . A 1 . 0 A A C . 0 ,0 020A12CF+00,0000 ,0010A 000, 0. 47 • , 0 , C • 0 1 • , • 0 • , , • 0 0 • C • 0 • 2 C • • • 0 C 0 • A 0000 48 1 0 0 C 0 0 0 1 . 8 B A 0 0 1 6 0 A 0 0 0 . 0 . 0 A . 0 A . A A 0 A 1 C 0 A . 0 . A 0 0 0 A , A 0 C C 2 C 2 . 3 A 2 0 A A 0 0 1 0 + C A . B A 1 A 0 1 . 0 1 2 0 0 0 C 0 0 . . C C 1 , 0 0 0 , 3 1 0 A 0 , . 1 0 1 0 . , A A A . 0 , Δ 1 Δ ¬ Δ Ο . Δ 2 Ο Ο Ο Ο Ο Ο 4 C 4 B 1 1 Ο Ο Ο Ι Ο Ο Ο C 4 4 . Ο 1 ¬ Δ 1 C , Ο , Ο Ο Ο Ο C Α 2 C 2 O 1 . Ο Ο Ο . Ο Ο 2 Ο B 49,00,A0,10 01 0,A,00,01,2A0 A • 0 51 0..1. 0.0 AA.A., 0 010 0 00A00A03E11653., 0, 010.15+F0200 000 52 0, 80000 A 0 0 0 0 0 0 1, ., 0 0 A 0 0 1 0 1 0 1 . 0 4 0 8 8 F 0 0 0 0 0 8 0 8 F + 6 C , . 0 0 0 , 0 0 1 0 . , 0 . 2 . 0 0 A 3 , 0 . 0 . . 0 0 0 1 0 1 1 0 0 0 0 0 . 0 0 . 0 0 . 8 . 0 0 0 . A 0 0 0 0 . 53.0 B011000,. 0A1AL,,,0A0.0, 010A 3,A6FF,..00,0A0BD6+E .A10 A.00 0C 0,0.0,0.01A 0.0 .01 A010.001 DA , 10B1000.010001

 55
 F0010AC0
 0C10000010
 30A0001,0
 01
 .0A
 01010,0
 A.A0,
 , + BA00.

 28CAC131.
 A.0,0
 0000.00
 .000.1
 .000.1
 .000.1
 .000.0
 .000.0
 .000.0

 ,,,8000 ..,0100 00., 800100 0000. H+AB.. ,,408,.04.0 1010000,...01.00004.,00.002440 56 2 B A O 0 - 0 1 B B O J 1 O O . , C O . O B . C A O , , A , O 1
 57
 20F
 B 22
 A, C, A,
 .2A.000C0A
 000, 3.0A000
 0A, 0, 001A
 0.0AA+11A

 B (13030A
 A 0 C 1000A C 11.0220, .0.00Z1BZA0B.0
 1 C 0 0 0 0 0 0 0
 0 1 0 1 B C 2 0 0
 58 0. 202 A.A 1 0.10 00 ,0 .2.CA01001 0 2,0,.10 00000.000A00B1+CC 01.2 A001A.0 0.A.0,0100.0120A0AA,A010A10001A1,,. 1BA 0.AA20 59 1 A 0 B A 1 4 , 1 A C . 0 0 0 1 0 A . 0 1 B 0 A B 2 5 0 0 0 , , 0 1 0 0 0 B , A A A 2 2 0 0 . . 0 , 10 0 0 0 , A A 0 0 , C 0 0 , 0 0 0 1 0 0 . 1 C + 1 C 0 0 A A 1 1 0 1 1 0 0 0 0 0 0 , B C A 0 . 1 0 0 , 0 0 1 0 , B 0 2 1 1 A

SOLN B 1490 MeV

	Pio	igonal	Elem	ents	of 60	× 6	0 Ern	lor Ma	trix		
**	* ERROR	ι	.297281	21 73	/08/27.	13.21.20	. 1	(RUMBLE	.)		
E	Re	tm	Correct Cord	1 Re	5	Com. C.	I Ra	Free.	C.C.	_	
ane (i)	.0128	.0373	0447	to 0184	.0241	.2847	10.0130	.0210	2396	(3)	
. Č	.0220	.C275	0303	.0118	.0195	.0280	.0113	.0128	.1783	Č.	
9	.0114	.0146	.2412	. C132	.0154	.3080	.0100	.0149	.0835	(D)	
	.0083	-0123	- 2943	+0164	.0109	2227	- 0139	-0118	.0435	Te	
	.0160	.0111	.2467	. 0185	.0167	0096	.0131	.0086	.2738	<u> </u>	
	.0074	.0070	0065	.0079	.0063	0309	.0108	.0086	•1934	·(店)	
	.0097	.0066	. 3649	.0079	.0066	0100	.0255	.0282	1743	0	
	.0179	.0251	.4966	-0143	.0178	.6378	.0318	.0322	0759	6	
	.0215	.0222	.0718	.0106	.0140	.4933	.0111	.0143	.0821	(27)	
	.0211	.0231	1318	.0183	.0198	.2055	.0141	.0127	1195	\smile	
	0197 م	.0197	0856	.0141	.0124	.0095	.0120	.0128	0572	\sim	
	.0246	.0206	.0781	.0148	.0122	0105	.0083	.0081	0038	(32)	
	.0067	.0075	2979	.0173	•0126	.0390	.0122	.0114	.0717	0	
	.0076	.0104	-1555	.0242	•0329	•7623	.0299	•0337	0645	6	
	.C196	.0233	.3437	.0214	.0265	.2088	.0137	.0153	.1267	(HP)	
	.0152	.0175	.2132	.0100	-0094	.0587	.0148	.0202	1112		
	• 6 2 3 1	.0251	.1480	.0140	.0145	.0156	.0155	.0161	•0450	ഒ	
	.0112	.0094	•0476	.0102	.0119	•0282	.0060	•0080	.0095	સ્ય	
	-C175	.0314	• 2895	.0280	·0205	0279	.0147	.0155	.3093	62	
	.0199	.0147	1230	.0172	.0145	.1114	.0120	.0073	0268		
** T	* TMATF	RIX	.297281	* 121 73	/08/27.	13.21.20	. 1	(RUMBLI	=)		-
	.3355	c.cooo	.0000	0.0000	1421	.0117	.0000	0.0000	1622	.0532	
	.0000	0.000	.0000	0.0000	.0314	0385	.0000	0.0000	.0000	0.0000	
	.0551	1152	0224	0858	0412	.1521	.0000	0.0000	0141	.0574	
	.0000	0-0000	. 2000	0.0000	.0000	0.0000	•0000	0.0000	.0000	0.0000	
	.0000	0.0000	.0000	C.COCO	.2432	1590	.0000	0.0000	.0000	0.0000	
	.0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000	
	.0000	0.0000	.0000	C.0000	.0000	0.0000	.0000	0.0000	•0000	0.0000	
	.0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000	
	.1125	C341	.0000	0.0000	•0000	0.0000	•0000	0.0000	-0000	0.0000	
	.0000	0.0000	.0000	0.0000	.0886	.0412	0544	0531	.0000	0.0000	
	.0000	0.0000	.0000	0.0000	.0000	0.0000	•0000	0.0000	2776	.1142	
	-0984	+-0156	0090	+.1942	-0000	0.0000	-0000	0.0000	-0000	0_0000	

repeated from amplitude list.

2	.6
---	----

			SOL	N B	1520	Me	V											~
WAVE	RE A	E(RE)	D(88)	IH A	E(IM)	D(I8)	PHASE	ΕE		RE T	IM T		E (AMP)	E (ANG)	T**2	E(1*+2)	WAVE
P33 PP11	1.33	. 6 4	.03	0.01	•û9	.05		J 5		.3295	i.000	ե	.J129	.0301		.108596	.008689	1
P33 0S13	÷.18	.01	.01	04	.01	.01	-152	29		1.87	ú57	3	• • 1 37	.0192		.015098	.0J3546	2
P33 0013	-2.66	• 1 2	09	23	.23	•14	-175	55		2285	020	1	.0104	.6197		.ŭ52617	.004858	3
P33 0015	• 3 •	•13	•11	-1.19	•14	+11	÷8(86		.u038	102	3	.0120	.0112		.110480	.02603	4
P33 PP31	03	• 0 6	•04	+.35	.05	.03	- 95	5 10		0095	109	3	.0148	.0182		.012038	.003468	5
P33 5031	99	• 19	.14	-1.72	•15	.12	-12	v 6		÷.0857	148	6	.0120	.0172		.029425	.004256	6
P33 US33	05	.01	01	•13	.01	•01	164	95		j581	.171	.6	.0085	.0159		. 632833	.003156	7
P33 PP33	. 87	. 35	.03	• 4 1	.[3	• 0 2	8i	07		.0250	•141	.9	.0111	. ú172		.020773	.003312	8
P33 0033	•15	.16	• • 1 1	1.01	.10	•09	81	2 9		.0124	•086	2	•0089	.ui39		.007578	.001621	9
RH3 DS13	2.86	.07	.04	22	.18	• 11		4 4		.3344	025	8	.0086	.0207		.112487	.005870	10
RH1 \$511	.53	.10	.08	61	.21	+ 15	- 41	6 13		.0677	071	ŭ.	.0172	.0216		.009612	.003668	11
RH1 PP11	2.47	. 47	.40	•91	.79	•61	2	0 16		.0747	.027	7	.0159	. 6227		.006352	.002789	12
RH1 PP13	1.99	• 2 8	.24	.23	• 48	• 40		7 13		.1602	.007	0	.0090	.0142		.003672	.01170	13
RH1 SS31	.02	•1	.09	.32	•13	.10	2.	28		.0959	.038	0	•L123	• ú152		. 310645	.002696	14
RH1 PP31	-1.51	• 5 1	•37	~ 1.31	•58	•45	-13	9 16		0459	040	10	.0161	.0170		.003708	.002224	15
SIG PS11	-1.83	• 1 1	09	1.14	.18	•11	14	85		-,2515	.155	9	.0151	•ú243		.087566	.609154	16
SIG SP11	2.83	• 5 -	• • 45	.82	.45	•42	1	68		.1634	. 629	8	.0207	.0153		.311589	. 604882	17
SIG DP13	.85	.34	.27	-3.13	• 36	•22	- 7	56		• 4311	113	17	•0124	.0132		.013885	.003085	18
L,J			SIGMA-TO	TAL CH	HANNEL-	1		2		3		4		5				
Pi			L . 4 4 U			1.035		2 • 5 32		.451		.378		.044				
D3			9.327			. 691		2.570		4.333		1.557		.27t				
05			•492			·1ŭ9		.277		.106		6.300		0.000				
S1			1.627			.077		.319		.25t		.885		•090				
P3			1.415			.010		.2 65		• 1 4 4		.387		.090				
TOTAL			17.302			2.121		5.982		4.990		3.707		•5ú0				
L,I,J	ETASQUA	KE.	SIGMA-TO	TAL	СНІ	sa	1		2		3		4		5			
P11	.00327	'e	3.879	+15	2 3.3	3	1.031		2.325		.522		6.680	٥	.000			
013	.12066	57	6.878	+19	7 .:)	.788		3.092		2,999		0.000	a	.000			
015	. 95 83 7	8	. 492	+11	5.3	3	.109		.277		.136		630.0	0	.000			
S11	.91519	34	. 332	+08	7.0)	.060		.172		.100		0.000	0	.030			
P13	. 9853	11	.115	+03	4.3	5	0.000		.038		• 377		6.000	Û	.000			
TOTAL THIS	ISPIN		11.695				1.588		5.903		3.804		0.00	٥	. 6 8 9			
P31	.92816	53	.562	+11	1 .:	3	.005		.083		•ú51		.378		.044			
S31	. 83 +34	+ ú	1.296	+13	5 1.4	•	.010		.194		.117		.885		.090			
D33	. 8434	73	2.449	+19	6 .2	2	.031		.348		.236		1.557		.276			
P33	.9169	36	1.300	+19	9.	3	.010		•196		.118		.887		.090			

SOLN B 1520 MeV

ERRO: J	R 141	RIX	(4 MP ()	I) A	MP(J)	Ρ	HA(I)	PH	4(J)	/ A1	4P(I)	РНА	4(J)	РН	(1)	PH A	(J)).	RAC	-	.011882	HYPERVOLUME ≠	4.9727E-70
•	1	2	3	4	5	£	7	8	9	16	11	12	13	14	15	16	17	18						
1	+2 2+	A1 45	02 A6	,1 64	.0 1	01 4	01 04	1 , 3	01,1	,2 A5	0 A 1 O	BC OE	0 G 0 G	10 02	00 ,1	E3 ,5	10 3,	20 16						
2	44 15	+. .+	4 35	0A A 3	,0 2	,8 03	C 4	08 01	08 02	80 E3	A1 1.	A. 0C	0 00	,C 1	00 00	1 A A 5	01 40	E 1 0 E						
3	04 26	8 45	+4 A+	48 04	A () S ()	,Δ 03	8 •4	0 ,1	1 C A 1	A0 05	A 0 6 6	00 8E	01 A 0	;0 01		00 A5	88 30	2 1 C						
4	.2 14	0 A A 3	40 84	+1 1+	• A 0 1	01	1 2	A 1 0	1 D A J	,3 03	,. 0.	A0 0A	4 A 4 O	.1	A. 0,	1 03	40 1 A	61 18						
5	01	, 12	00 A2	•0 A1	+0 0+	4A 0,	1. 91	00 A A	.0 .A	00 01	0 A 1 A	A G A	00 •	,8 1	A5 A4	А А2	• , 6	,0 00						
6	0 14	,0 93	,J A3	ა 1	ΑΟ Α,	+0 0+	C A 3	0 û 0 4	10 , 3	00 12	A 1 0 1	00 AD	36 00	6 23	АА С,	UU 42	 10	0, 1A						•
7	C 0 1 4	C 4	• 34	1 2	10	CA 3	+0 0+	0A 02	01 A4	00 03	18 48	00 00	,0 A0	6 A 0 0	A, Aû	00 83	A1 1,	1. 1A	18	3X I.	б	Error		
8	13	00 31	0, 1	Д 1]	34 04	00 04	00 A2	+2 2+	6A 12	00 61	06 ,1	1ú 0C	000	0. 13	1 61	0 01	8A 00	60		ľ	1 a	4vix		
- 9	0, 11	30 92	1A C1	1A 00	 9 A	1, 03	0A 14	81 A2	+ A A +	,0 10	A 1 2	0, A8	. U 00	A0 12	0 0.	1A A0	0 60	01 1 A						
10	, A 25	8E 33	40 05	,0 03	00 01	01 02	80 03	0 0 01	,1 00	+0 0+	,1 01	A0 A8	0. 88	,1 A,	1 0 A	8 45	A0 1 A	,2 1 A						
11	01 AC	A1 1.	6 A 0 J	,0 	6 1 4 4	AC 11	14 88	0, 01	A2 1	,Ū 11	+F F+	0 A A	,Α Οΰ	00 02	,1 1A	82 2A	,, 0,	61 0 A						
12	80 CE	40 .C	03 05	AC UA	0 A A	00 00	00 00	10 0C	0A ,8	44 08	0 A A	+3 3+	АА ,С	,0 08	00 00	0 10	CA BC	A 0.						
13	00 0î	0 0 0	0A 1)	44 40	0, 0	00 66	, A 00	0 00	•0 00	08 •8	,0 A0	A, AC	+3 3+	•, 01	А • А	0A ,,	•1 11	0 A 8						
14	10 02	, 01	,0 01	1	, B1	82 3	0.0 A 0	01 .3	A 1 0 2	,Α 1,	00 02	,0 08	•ú ,1	+1 1+	Δ, 0Α	A1 A1	00 10	0 A , •						
15	0, 01	00 00	, o	AJ •,	4 A 5 A	АС А,	۸۸ ,0	6 11	0 0.	10 A	,1 1A	00 00	A A	АО , А	*1 1*	•0	.A	80 60						
16	E, 35	1A 45	04 05	0 13	A 4 2	A0 50	09 03	0 01	1 A A 0	А 85	82 2A	1 0C	0, A,	4 A 1 1	0. 00	+8 8+	81 3A	A () 1 A						
17	13 0,	04 10	A 3 A 0	A1 04	. 0 ,	.1 .0	A1 1,	0 û A 0	0 U U	A1 0A	,C	08 AC	•1 11	01 00	0. 0A	B3 1A	+1 1+	.c 0c						
18	21 08	E0 1E	1 20	01 19	,0 00	01 , A	11 • A	0 0	01 1A	,1 2A	00 1 A	AU •	0 4 B	С, А.	80 00	A1 0A	.0 CC	+ A A +						

1 (RUMBLE)

2.61

.28319235 +- .0037 73/08/27. 13.13.39.

.

A

SOLN B 1520 MeV

WAVE	RE A	E(RE)	D(RB)	IM A	E(IM)	D(18)	PHASE	ε	RE T	ІМ Т	E (AMP)	E(ANG)	1++2	E(1++2)	WAVE
073 0011	1.00	- 05		0.00	.13	. 05	0	8	. 3295	0.0000	.0173	.0443	.108596	.011/04	1
P33 5011	1.00	.29	.15	0.00	. 38	.18	Ň	999	.0000	0.0000	.0242	0321	.000000	.000584	2
P33 D513		• 01	.01	04	.02	.01	-15ž	13	1087	+,0573	.0180	0285	.015098	+004/42	3
P33 PP13	.00	.08	• 0 4	0.00	.09	.03	0	999	.0000	0.0000	0261	.0283	.000000	.000083	2
P33 0013	-2.66	+19	• 0 9	-,23	. 36	.14	-175	8	-,2285	•.0201	.0162	.0313	.05261/	.00/098	2
P33 PF13	•00	•71	. 39	0.00	,75	,48	0	999 400	.0000	0.0000	.0163	.0175	.000000	.000407	7
P33 FP15	• 0 0	• 05	• 02	0.00	• 0 •	• 0 3	0	222	.0000	0.0000	.0100	0167	010480	003788	
P33 0015	• 0 •	•20	•11	-1.19	.61		- 86	999	.0000	0.0000	.0140	0187	.000000	000196	9
P35 FF15	•00	•00	. 33	0.00	.69	48	0	999	.0000	0.0000	.0113	0162	.000000	.00012B	10
P33 PP31	03		-04	- 35	.06	.03	-95	1 4	0095	1093	.0199	.0259	012038	.004/59	11
P33 5031	- 99	.27	•ï4	-1.72	.21	.12	-120	8	-,0857	1486	.0152	.0253	.029425	.005459	12
P33 D533	05	• 02	.01	.13	.02	.01	109	8	0581	.1716	.0187	.0246	.032833	.00/213	11
P33 PP33	.07	.09	.03	.41	. 07	- 02	80	12	.0250	.1419	.0235	.0305	020//1	.00/340	- 12
P33 0033	,15	• 22	•11	1.01	•17	.09	82	12	.0124	.0862	+01+1	.010£	.001010	0006170	16
P33 PF33	•00	• 52	• 37	0.00	. 40	. 33	0	999	•0000	0.0000	0126	.0112	.000000	.000158	17
P33 FP35	• 0 0	+04	• 0 4	0.00	• 0 •	•02	0	900	- 0000	0.0000	0163	0147	.000000	.000266	18
P33 0035	•00	+ 19	. 35	0.00	.45	.27	0	999	.0000	0.0000	0143	0108	.000000	.000203	19
#33 FF37	- 00		.35	0.00	. 46	.26	ŏ	999	.0000	0.0000	.0113	.0110	.000000	.000127	20
8H3 PP11	.00	1.09	. 32	0.00	1.40	.72	ő	999	.0000	0.0000	.0330	.0422	.000000	.001090	21
RH3 SD11	.00	1.98	1.26	0.00	3,99	2.02	ō	999	.0000	0.0000	.0179	.0360	.000000	.000-20	22
RHJ DS13	2,86	.10	• U *	-,22	,30	.11	-+	6	,3344	-,0258	.012	.0350	,11248/	.008447	23
RH3 PP13	.00	.89	.33	0.00	.87	+41	0	999	.0000	0.0000	.02/1	.0205	.000000	.000.32	25
RH3 0013	.00	ī+92	.83	0.00	2,37	1,14	0	999	.0000	0.0000	01/	0215	.000000	.000403	26
RH3 PF13	• 0 0	4 03	2.73	0.00	7.37	4.26	0	900	+0000	0.0000	•0117	0219	.000000	.000225	27
RHJ FP15	•00	1.99	.88	0.00	1.96	1.21	0	999	.0000	0.0000	.0181	0179	.000000	.000326	28
RH3 6515	•00	4.94	2.22	0.00	6.42	3.24		999	.0000	0.0000	.0144	.0187	.000000	.000208	29
RH3 FF17	•00	4.75	2.36	0.00	4.42	3.19	ŏ	999	.0000	0,0000	.0140	.0130	.000000	.000195	30
RH3 PP31	.00	•78	.38	0.00	.94	.44	ō	<u>9</u> 99	.0000	0.0000	.0237	.0284	.000000	.000559	31
RH3 5031	•00	1.98	1.20	0.00	2,59	1.32	0	999	.0000	0.0000	.0181	0230	.000000	.000326	14
RH3 D533	.00	•16	.05	0.00	.19	.08	0	999	.0000	0.0000	.0183	.0221	.000000	.000330	37
RH3 рР33	.00	88	,31	0.00	,89	, 32	0	999 ôoo	.0000	0,0000	.0270	0212	,000000	1000.1	35
RH3 0033	• 0 0	ī.93	.87	0.00	1,98	.83	0	999	.0000	0,0000	0170	0100	-000000	.000143	36
RH3 PP33	• 0 0	4+07	2.07	0.00	4,00	2.12	0	999	+0000	0.0000	0110	.0125	.000000	.000121	37
RH3 FF35	•00	1.90	- 20	0.00	1.73	.97	Å	999	.0000	0.0000	0182	0159	.000000	.000330	38
0H3 FF35	.00	1.44	2.26	0.00	4.98	2.38	0	999	.0000	0.0000	0131	0147	.000000	.000172	39
RH3 FF37	.00	4.08	2.28	0.00	3,86	2,55	ŏ	999	.0000	0.0000	,0122	0115	.000000	.000148	40
RHI 5511	.58	•18	. 68		. 39	.15	-46	24	+0677	0710	.0285	.0402	.009612	.000195	
RH1 PP11	2,47	1.07	.40	.91	1,26	, 61	20	29	.0747	.0271	0240	.0402	.000302	005055	43
RH1 PP13	1,99	.53	.24	.23	, 90	. 40	7	25	.0805	.00/0	0107	0209	,003012	000247	
RH1 0013	• 0 0	2+05	.90	0.00	3,11	1.30	0	999	.0000	0.0000	.0100	A178	.000000	.000159	45
RH1 0015	• 0 0	1+39	. 70	0.00	1.91	1.09	0	900	.0000	0.0000	.0132	.0177	-000000	000173	46
RM1 PF15	• 0 0	1 1 1	5.63	0.00	4 33	3.02	U N	999	.0000	0.0000	0098	0126	.000000	000096	47
RM1 FF17	.00	3,30		32	24	.10	22	15	0959	.0380	0187	0277	010645	.004211	48
RH1 PP31	-1.51	. 91	37	-1.31	1.21	.46	-139	32	+,0459	-,0400	0316	0336	.003708	.004847	49
RH1 PP33	.00	, 52	.24	0.00	, 69	.30	0	999	.0000	0.0000	.0159	.0210	.000000	.000452	50
RH1 0033	.00	2.16	.92	0.00	2.13	.90	0	999	.0000	0.0000	.0190	.0194	.000000	.000-85	51
RH1 0035	• 0 0	1+38	•71	0.00	1.74	.84	0	999	.0000	0.0000	.0125	.0158	.000000	.000159	51
RH1 FF35	•00	4.31	2.37	0.00	3,96	5.03	0	999	.0000	0.0000	.012	.0117	.000000	000102	54
RH1 FF37	•00	3.32	1.87	0.00	3,60	2.22		344	.0000	1689	0090		.087566	.014233	55
SIN PS11	-1.83	•18	• 6 7	1.14		• • • • •	140	- 14	.1034	.0298	0306	.0258	.011589	.007518	56
510 SP11	2.83	• 62		-3,13	.54	. 22	-75	11	.0311	+.1137	0190	0216	013886	.004825	57
STA PD13	.00	2.01	1.01	0.00	1.67	.97	0	999	.0000	0.0000	.0222	.0184	.000000	+000493	58
516 F015	+00	1.75	.78	0.00	1.67	. 67	ŏ	999	.0000	0.0000	.0194	.0184	.000000	.000376	59
514 DF15	• 00	3:68	2.42	0.00	3,26	2,36	Ó	<u>9</u> 99	.0000	0.0000	+0133	,0118	.000000	.000176	60
			F1644-707		ANNEL -			•	•	•		5			
L.J			SIGMA-101	AL C	TANKEL-	1	-	e = 3 0	.j	•					
- P1			4.440			1.035	2	310	,401	.3/0		•0.90			
51			1.627			.017	-	.570	4-017	1.55	ĩ	.276			
5			7+321			- 010	2	.285	.144	.86	7	.090			
FS			0.000			0.000	0	.000	0.000	0.00	Ó	0.000			
D5			.492			.109	v	277	.106	0.00	0	0.000			
E7			0.000			0.000	0	.000	0.000	0.00	0	0.000			
TOTAL			17+302			2,121	5	.982	4.990	3,70	7	.500			

LeleJ	ETASQUARE	SIGMA-TOTAL	-	CHISQ	١	2	3	*	9
P11	.008270	3.879 +-	.171	3.3	1.031	2.325	.522	0.000	0.000
511	915194	.332 +-	.127	.0	.060	.172	.100	0.000	0,000
013	120667	6.878 +-	.257		.788	3.092	2,999	0.000	0.000
P13	.985311	.115 +=	.063	.5	0.000	.038	.077	0.000	0.000
F15	1.000000	0.000 +=	0.000	1.0	0.000	0.000	0.000	0.000	0.000
015	A958078	.492 +-	.159	.3	.109	.277	.106	0.000	0.000
F1?	1.000000	0.000 +-	0.000	.4	0.000	0.000	0.000	0.000	0.000
TOTAL TH	IS ISPIN	11.695			1.988	5.903	3.804	0.000	0.000
P31	.928163	.562 +-	.149	,3	.005	.083	.051	.378	.044
\$71	. 874740	1.296 +-	.178	1.4	.010	.194	.117	.885	.090
033	.843473	2.449	.277	.2	31	.346	.236	1,557	.276
P13	916946	1.300 +=	290	.3	-010	.196	.118	887	.090
F 15	1.000000	0.000 ++	0.000		0.000	0.000	0.000	0.000	0.000
กลัด	1.000000	0.000 +-	0.000	.6	0.000	0+000	0.000	0.000	0.000
F37	1.000000	0.000 +-	0.000	.7	0.000	0.000	0.000	0.000	0.000
TOTAL TH	IS ISPIN	5.000			• ô56	.821	.522	3.707	.500

					-1 (-		GOXGO Error Matrix page 1
ERROR MATRIX (AMP (1) AMP (1)) AMP (J)) PHA (J)	, , SOLN	B 1520	MeV	RAD =	.012704 HYPERVOLUME = 2.9782-228
4.49.9 I U			00211	5 1020			$\mathcal{O}(\mathcal{O})$
1234567	8 9101	112131415	16171819262122232425	262728293031	3233343536373839	404142434445	464748495051525354555657585960 C. bh
1 + 0 (A) 0 0 1 (2) 1 0 0 A B 1 0	0 0 0	0 A 1 O O A 1 A 1 1	0 0 0 1 + 0 0 + 0 4 1 0 A + <u>1</u> + A A + 0	0 8 0 0 1 0 0 0 1 0	A 0 0 0 0 0 0 0 0 0 • • • 0	A B A O O 0 2 0 A O 1	010 0000F1200A • 0 • 0 0 • • • 1 3 0 8 2 •
2 0 + A A 5 B . 1 2 1 1 2 B .	A 1 •	101	0 01 11408	8 0 2 0 0 1 A 0 0 8 0 . 0	A B A O O . 0 B 0 1 0 . 0 A 0	0 A 0 • 1 0 0 B A 0 1 B	0000AA00 0A01B. 01001A1.00.AAV
3 4 4 0 0 . 1	A . 0	A 0 0 0 0	0000.00800	00, 00	1011	A 0 0 . 0	10.01 00.1.E.0 ⁰
10008»+	000	A.,10) 0 0 , 1 0 0 0 E 0 0	, 2 8 0 8 A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. U U A B A U D O O O O	10000 10+.00.28U
00 . A 1 1	0 4 0	0.00		0 1 0 0 A 0 A	00800000	0 1 4 4 4 0	• A A A O • O • • 1 A C 3 O
50500+80 300A0	A 1 A 0 0	00101 A 01	0 0 0 9 9 0 0 A A	A . 0 0 0	A0100AA	0 4 8 8 0	00.1.00003.814
6 1 8 • 0 8 + 2 8 1 8 • Å A O	• E 0 1 A 1	.0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00811, <u>*</u> 0*00 *		0,00081	A • 0 0 • 0 0 A 0 1 1 0 • 0 0 • • • 0 0 • • A 0 1 0 1
7 2.1002+ 1.000B1	A 1 0 A 0 1	00.		0 A 0 2 1 0 A 3 A 0 0 1		1 A B A	11000000,021A3J 100 00000.210A
8 0 A A A A	• 0 1	, 0 , 0		1 • 0 • • 0 0	, 0A0 0	• 1 0 0 A A	
9 A) 1 + A 1 E 1	0+	0000	• • 0 0 8 21 0 B	001400,	A 1 0 0 0 0 0	. 00 A 1 A	
11003A0 10 A.01A00	• A 1 D	1.000	0 A 1 0 A A 0 1 0 0 8 0 0	01400 • 40060 •	0001400	• 2 A 0) 1.0. ,.1 1AU
	I O A		• 0 A 0 • 0 0 0 0	0 A 1 0 0 0	004	• • 0 0 A 1	. BA 00.01A . 0 . 00.AAB.100A.000
A O O A A C	0 2 0		0.00Ç 1.AA		01, A.	+ 0 0 Å 1	, 0 0 0 B 0 0 0 , 1 2 0 A 0 +
	0 • 0 • 0 0 1 1	A + A + 2 B 0 0 1 1	200090, 1 001,2A10		AAIAOOA	0008A 0	003110.00.200
13 1 1 0 A 1 0 A 0 0 A A A	• • • • • • • • • • • • • • • • • • •	• A + A ; • 0 • 1 •	201010,10, 0100000A	A 0 • A 0 0 0 1 • C	0 F 0 C , A 0 1 0 A 0 0 0	0 0 0 0 0 0 0 0 1 0 1 0 A n 0	, • 0 0 • 0 B 0 • A A 0 0 0) 0 • • A A 0 • 0 2 0 A 0 1
14 0 0 0 0 0 0 1 0 A 0 0 A 0	• 0 • • • • • • • • • • • • • • • • • •	B + A + 0 0 0 + 1	0 0 0 + + • 1 + + 1 1 0 1 B 1 A 2 • 0 0		0160.0A BA202 A	0 1 . A C 0 C A A A) 1 0 0 5 0 0 • 1 0 A 0 0 • , 0 0 2 0 0 0 0 • 0 A 0 •
15 010010 0080AA		A 2 2 0	• 0 0 • 1 0 0 0 •	0,0,,,,	B B 0.	0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 0 . A 1 0 0 0 0 0 0 0 . 0 2 0 . 0 0 0 . 1 1 A 0 .
16 0 0 0 A 0 1		0000	0 + 0 A B , A O + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +		0 1 0 0 1 0 0 A A 0 1 0 0	. 0 0 0 A () . 0 1 . 0 0 A . 0 1 0 0 0 1 0 0 . 0 0 A . 0
17 0 0 0 0	000	1010	0 0 + B 1 A 1 0 0 0	0.0000	A A 0 0 . 0 0	A B0000	0 • 0 1 A • 0 • B 0 A • 1 A 1 ⁰ 0 • • 0 0 0 • • 0 A 0 • 0 0
18 0 0 0 0 0	0.00	000,	0 A B + 0 1 + 0 0 0		01.04.	0010100	
19 1 1 0 , 1 0	0 , 0 0 8	, o 1 ,	1810+1000	.000000	0°A,,000	A • A • 1 • •	0 0 0 A . , 0 0 0 . 0 0 . 0 A .
50 • • 0 0 0 0 0	о 0 б. В	1 A C ,	A 2 A 0 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,0,0	0 0 0 0 , A 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 21 0 1 0 A 1 Ç	,00, 4120	0 A 0 0 # # # 1	0 # 1 # 0 0 # 0 0 2	0.00.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 E 2 1	C 0 1 2 0 0 0 0 1 # 2 0 A A 0 *
A 1 1 2 0 A 22 0 1 0 . 20	• 2 •	• • • • •	0 1 A 0 0 + 0 A 0 A 0 A 0 0 0 • 0 + A 0	1.010A	00100 0. AAAO ,A	• 0 • 0 0 • 0 0 0 • 0 0 0 A	1 0 A 0 A 0 + 0 2 0 A 0 A 7 1 2 0 B A 0 0 0 0 0 A 0 + 7 A
A 1 0 0 1 0		• •	0010 ,21,1	• • • • • • • • • • • • • • • • • • •	DOA.00 .	. 0 01	0 2 0 0 A 0 • 0 0 • 0 B 0 1 0 0 0 0 0 0 2 . • 0 A 0 0 0 ⁰
	A 1 Ŏ A	A 1 1	0 0 0 0 1 • 0 0 A B	1,10,	A IDIAA	0 1 Å Å B ,	0 0 ÷ Å A 0 0 ÷ 0 0 0 2 0 8 1 ⁰
• 0 <u>•</u> 3 2 0	5050 4.0	0 A 0	A A 1 O 1 A A A	0110.0	A O O A O A O	DOAOO	0 0 0 0 0 0 A 1 0 • 1 A ; 0 • A
25 A 6 0 , A 0 1 0 2 , 1 0	010. 1	10A, 01.	0 • 0 • • • • • • • • • • • • • • • • •	• 13.• 0 A 0 A 1	1011•A 0 00000•10	0 • 1 1 1 E 0 • 0 1 • 0	2,0 0.00, 00 0 0 A 0 + 1 0 0 0 0 A B 0 • 0
26 0 0 0 2 0 0 0 • <u>•</u> 0 •	A , Ò A Ò • •	01.0	• • • • • • 1 A 1 • • • 1 • • • • A	• , 0 B 2 • 0 0 1 A 0	,0.0000A 00,AA080	, . 0 A 1 0 1 A 0 0 .	, A 2 0 A A 0 0 0 , O 0 0 0 0 1 0 <u>•</u> A O A 1 0 0 1 0 0 0 B 2 ?
27 B 2 0 B 1 B 2 0 A 2		0 0 0 1 A 0 A	0 A 0 0 0 , 5 0 0 B A A - A 0 A 0 1 -	1,•00. 01AAA•	2001 Alo 00000.0,	.0 A 2 ñ	В 1 0 , 0 0 В 0 0 3 , 0 , <u>е</u> до 0 0 1 0 0 , С + 1 д 2 ,
28 00,801	0 . A 0	0.0	• 0 0 0 0 0 B 1 A A	300+.A	01.0	21.1AE	70 A A Q • 0 1 A 0 • • 0 0
29 0 0 BA1	5 . 0 0	0 0	,0000.B00A	. 8 3	. 1 0 0 1 0 1 3	001000	0 0 2 0 0 . 8 2 0 0 1
30 11 + A 0 +	10,0 1000	000	00,,00,A0 ,0000010,0	A B 0 + 3 A + 2 • A 3 •	• • • • • • • •	0 + B A 0	A D 6 1 0 0 0 0 0 0 0 0 0 0 0 0
• <u>•</u> 0 310404,	0 • 0 0 0 • •	0 • 0 8 1 A •	,.00,A, A	20,200	• 1 1 3 • 0 2 B	• • 0 • A	2004.041.000 - 1100 0 1 • 2 2 2 • 1 0 0
• A 0 A 0 32 A A 1 0 A 1	0 A 0 0 0 A 0	0 B 0	1,0,00AL0 0A000AA00	1000.0	0 • 4 1 0 0 1 • 1 • 0 0 1 0 1 2	0 + A 1 A A 0 2 1 0	0, 121.0 0000.0. 100A00A00 00,10 <u>.</u>
.00100 33 080 m A .	0 60 1 1 0	0 0 1 à F 1	BO1 ,001A1 B1A1A0.AA,	A 1 0 . A . 1 0 . 0 .	. 0 0 , 0 0 A 0	0, A, 1, 001 A 1 õ	, 1 0 A E 0 0 . 0 0 , 1 0 A 0 , . , . 8 . 1 , 0 2 1 2 . 0
	0 0 0 0	A A Q 1	, A 2 0 1 • 0 0 0 0	0.,0,.	• A A 2 0 0 A A 3 0 2 • 0 1 • B	0 0 0 0 A . 0 1 0 B 1 0	, 0 , 0 0 1 1 0 . 0 0 0 0 0 0 1 , 2 1 6 1 A 0 0 1 . 0 0 0 .
00.000	• A 0	1.00	A O 1 O O A A 1 B	1 A 0 • 1 •		00.10A	
000100 et	0	A 1 3 A	3 A 0 1 0 0 0 0	00101	1 0 A 2 . 0 A	A + 0 + 1 0	
36 0 0 0 0 0 0 0 + 1 0	• 0 0 0 0 A 0	A 0 1 8	• 0 0 • • 0 0 0 0 0 • • • 0 • 0	A 0 A + 0 0 1 A + A 0	0 0 1 . + 0 A A 0 A A A 0 0 A	u ≥ 0 + A 0 0 0 , 0 ō	• U • U 1 1 3 A A 2 0 A • U 0 V 0 0 1 1 1 8 1 A 0 0 A • 1 0 A
370 ±00 ••000	0 1	, A Ö A 1 1 0	0 1 0 A 0 A 2 A • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c}01,1\\1,0\end{array}$	210.10+3	A 0 . 0 0 A . 1 0	0 2 0 0 A , 0 0 A , 0 0 0 A 0 0 0 A 0 0 0 A 0 0 0 A 0 0 0 A
38 0A.0 000A0		10 A	.00,00A 0 1002 0 A 1	0 A 0 0 3 . 0 0 0 . 1 A	82 84A3+ 000-0+-0	2 B 0 1 0 0 0 • 1 0 1 1	1 A O A A O E 5 O A , , , 0 O . , A G A O O , O O O , 0 . A
39 00000	1	0000	. A 0 A 0 0 A	0,.200	A 0000 2 0001022	• 5 • 0 0 0 1 0 1 • 0 1	1 4 0 0 0 0 • 2 C 3 • 0 0 0 1 1 0 0 0 1 0 A 0 A • 0 0 0 • •
		~ ~ * * *					

10 0001C2AB5+ 10, 000..,01 0 . 0 10 0081A 00240 • 1 • 0 2 1 0 0 0 0 • • • 0 A A • C A 1 0 • U A • U G 02 A 1 B B A O 1 A . 60¥60 42 800000800A0.0A0000. E0 C1AA108.1AB ..1000 80.40000.0A00100. Å04.04A00AB0.001A10A0.0 + A A 2 0 8 A 0 A 0 2 0 A 1 • 1 A 1 00 Error 4 1 B 1 2 A O 1 43 8 Matrix 00820 Page2 00, 1A1 E10E0 - 0.00A0A1810 0 0 0 0 0 0 0 • 0 0 A 0 A 0 0 0 0 0 0 . A A B 0 0 0 0 A , A , 1 . 0 0 0 0 0 :::2.63 1 1 1 0 2 A D + A 0 0 1 1 1 0 1 0 0000 1002, B70A + 0 0 + 0 00 0 0 0 0 0 Á 0 1000, 1001,00 0 0 A D + 0 . . 0 0.0 ... A . 2 C C . 00 1 0 0 A 2 0 0 A 0 A A 1 B 1 0 0 0 0 1 2 0 Z 6 1 0 1 0 A 0 1 0 , 0 0 . . . 2 1 8 0 0 , 8 A 0 0 . 0 C 0 , 0 2 1 0 0 1 A 1 A . 8 2 C 0 0 0 , 0 0 , 0 0 . 0 50 0 A 1 0 005 0,.,000 1.AD.,020.611000 0A 0000B00100,0A1A201 ,0 01AA00000 . A 0 1 1 0 0 0 . . . • 0 0 A 0 A • A B 1 • 1 1 0 • 0 • A E + • 0 0 0 1 A • 0 0 0 • 0 53 0 0 0 , 0 , 0 A . 0010 0,00 A 0 . A 0. 0 A 0 0 0 0 A 0 . 0 0 A 1 0,00 0 0 A 2 O A 3 5 O A , 0 O 0 0,00000. 0,1,...0. 00000 200+0 0 • A • O O 0 0 0 B • 0 • 0 1 A • 0 • 2 A 0 0 0 • 3 • 0 0 0 2 1 0 0 • • • B 0 1 0 0 0 0 0 0 • A 0 C 0 0 B 2 0 0 • 1 0 • • • • 0 0 1 A B A 1 • 55 F0100A0011A1A1 0 . 0 0 0 0 1 A 5 0 8 0 . A 1 5 0 5 A 1 2 0 0 5 A 1 0 5 A • A 0 0 • 0 0 0 0 0 0 A A 0 0 • • • • 0 1 • • A A • • • • • 0 0 C A A 0 0 A 0 1 • 2 1 2 0 1 0 1 1 0 0 0 • • B.000 A.0.A0 57 20 E. 0110. ñ 50 0 1 • 2 1 1 A 0 A 1 0 0 0 • 0 A 0 0 • 0 59 0 8 0 8 A 0 3 1 0 0 1 A 1 3

SOLN B 1520 MeV

*** ERROR	,28319235	73/08/2	7. 13.13.39.	1	(RUMBLE)
E					
·0173 ·0443	.1021	•0242 •0	321 .2077	•0197	.02733238
0261 .0283	0106	.0166 .0	311 ~.1885	.0163	.0173 .1114
.0160 .0198	,1801	.0167 .0	179 .0444	.0140	.0187 .1218
-0113 .0162	.0023	.0259 .0	200 -,0580	.0235	.01783975
.0240 .0197	.1694	.0299 .0	2431817	.0183	.0145 .0277
.0122 .0108	1419	.0126 .0	112 .1031	.0163	.0147 .1680
.0143 .010B	0461	.0113 .0	1100676	.0330	.04220919
0179 .0360	1319	.0123 .0	351 .0550	.0271	.02651446
.0174 .0215	.0610	.0117 .0	214 .0872	.0150	.02191434
.0181 .0179	0050	.0144 .0	187 .3243	+0140	.01300655
0237 .0284	.0680	.0181 .0	2360680	+0183	.02271616
.0270 .0272	0470	.0176 .0	180 .0205	.0120	.0137 .0373
-0110 -0125	0708	.0182 .0	159 .0649	+0131	.0147 .1818
+0122 -0115	1397	.0209 .0	453 .4978	.0324	.03822612
.0160 .0271	0365	.0185 .0	281 .0715	.0126	.0178 .1247
.0132 .0177	.1359	.0098 .0	126 .0418	.0184	.02791358
.0276 .0370	=.0246	.0159 .0	2101095	.0196	.0194 .1257
1126 .0158	.0174	.0127 .0	117 .1497	.0098	.0106 .0615
.0242 .0335	2720	.0300 .0	264 1131	.0210	.0196 .1404
.0222 .0184	0574	.0194 .0	184 .1334	.0133	.0118 .1483
*** TMATRIX	,28319235	73/08/2	7. 13.13.39.	1	(RUMBLE)

1.11

r										
.3295	0.0000	.0000	0.0000	-,1087	- .0573	.0000	0.0000	2285	.0201	
-0000	0.0000	.0000	0.0000	.0038	-,1023	.0000	0.0000	.0000	0.0000	
0095	+.1093	0857	-,1486	0581	1716	.0250	.1419	+510+	.0862	
.0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000	
70000	0.0000	.0000	0.0000	, 3344	- 0258	.0000	0.0000	.0000	0.0000	
.0000	0.0000	,0000	0.0000	.0000	9.0000	+0000	0.0000	.0000	9.0000	
.0000	0.0000	.0000	0.0000	.0000	0.0000	+0000	0.0000	.0000	0.0000	
-0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000	
0677	0710	.0747	.0277	.0602	+0070	+0000	0.0000	.0000	0.0000	
-0000	0.0000	.0000	0.0000	.0959	0380	*.0459	0400	+0000	0.0000	
.0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000	2515	.1559	
1034	298	.0311	+.1137	.0000	0.0000	.0000	0.0000	.0000	0.0000	

SOLN B 1690 MeV

WA VE	RC A	2 (RE)	D(88)	IM A	E([M]	D{18}	PHASE	٢	RFT	ІМ Т	F (A4P)	E(ANG)	1**2	E(T##2)	WAVE
P33 PP11	1.04	.10	•67	0.00	.13	.1)	0	7	.2018	0.0000	°. 5. 9	.0263	,J+J736	.006841	2
P33 S011	2.06	•25	•19	64	• 4 ?	• 33	-17	11	·10)6	~.0498	•0144	.0322	.J2d2ú6	.007C39	2
P33 0513	14	•03	•1 2	.25	•04	• 13	119	6	0724	.1334	. 197	.0166	القاد الا م	. 10 63 39	3
P33 0013	23	-16	• 14	-2.23	• ? 4	• 2.0	-96	5	0180	~.1743	.1194	.014)	2076 در .	.007161	4
P33 FP15	-1.35	-06	•04	29	•08	• 06	-168	3	2755	0584	.0115	.0168	.17.1306	.006604	5
P33 0015	5.17	•17	.10	-2.47	• 26	•16	-26	3	• 3997	1926	• 10 9 4	•0226		.107993	6
P33 1 F15	2.63	• 37	• 3.	-1.81	•56	• * • 5	-35	12	.0812	0559	L 34	+0187		.0~2198	
P33 0P31	-•	•10	•(8	68	• 11	• 10	-51	*	0155	~.134!	a. 219	• 197	111276	.006066	8
P13 5011	4.00	•14	• 19		.40	• 21	-3	2	, 3814	**0219	. 144		1 3930	. 311398	,0
P33 D533	-+23	.03	• • • 2	• 34	•03	• 92	124	2	1195	•1/92	-1121	•0197	.1+0411	.000139	10
P31 PP31	-1-43	.08	دن.	• 45	• 12	-07	140	14	- 0474	.1900	• 782	• /232	120210	0.00441	12
P33 0P33	81	•20	•14	- 01	• 2 1	• 2 1	140	14	2108	- 0072		3171	10.1034	005142	14
5H3 U-13	1.90	30	• . 0	-•••2	-10	35	175	ĩ	2918			. 3141	104FF	.0055435	1.4
		.14	. 09	1 - 60	- 15	.11	64	5	0845	.1696	-0152	.0160	. 1. 3886	005977	15
KH3 U333	• 60	.17	.14	.89	.26	119	54	12	-0685	.0946	.(225		. 11 15 18	0(57:9	10
041 0011	- 19			11.15	.55		91		0057	3427	.0170	.0215	7483	.011967	11
241 0013	1.58	.41		-3.18	.47	. 37	-62	7	. 522	- 0967	-11+3	.)135	2474	003405	1.
041 5531	-1.19	.19	-14	.9"	.24	. 20	143	Ŕ	- 1256	0949		. 9234	114342	Y 76 55	19
RHI PP31	-2.04	76	.61	7.14	.50	.52	106	6	0527	2196	.0151	.0237	. 122176	.007108	20
STG PS11	-1.93	.30	.24	.18	.34	.24	175	10	1561	.0149	. 234	. 1232	· 1. + 5()	.0.7887	21
SIG SP11	7.52	.15	4	-2.06	.87	. 75	-15	7	.2221	0634	.0211	. 267	وورد رد .	.010169	24
SIG OP13	2.51	.53	40	-7.79	. 52	. 42	-72	4	. 738	2372	-145	.0165		or 7223	23
SIG FOIS	-21.19	.90	.72	7.57	.68	. 91	162	2	2777	.0917	.0109	•0079	. J: 3360	•006478	24
L,J			SIGMA-TUT	AL Cr	IANNEL-	1	2		3	4		ö			
P1			3.040			.217		601	1.830	1.1	53	.(39			
S1			4.007			.190	1.	574	.237	2.5	22	.29+			
03			7.136			•61	2.	<u>_11</u>	1.257	3.3	46	• 221			
F5			7.032			1.418	3.	115	1.889	0.0	0.1	0.000			
05			5.844			1.3.0		77)	477		1.7	633			
P1			3.243			• 240	•		•077	3.3	17	• 432			
τοται			33.958			3.782	11.	985	7+173	1.5.0	42	,976			
L+1,J	FTASQU	JARE	SIGMA-TUT	AL	СнI	5 Q	1	ŗ		3	4	5			
P11	. 0933	312	2.243 +	19	5 .0		.236	.753		1.085	0.000	1.16			
STI	573	354	1.056 +	120	0.0		.267	19		.169	3.0.0	5. 21			
013	433	734	2.717 +	140	1.9		.630	1.554		. 593	0.000	5.100			
F1=	0459	306	7.082 +	172	1.1		1.418	3.775		1.889	1.000	2.23			
01#	212	598	5.844 +	23	a 0.0		1.379	3,253		1.283	n.000	0,000			
P13	. 9501	104	•247 +	063	3 0.0		3.000	• ^ 8 2		.165	n_(^.:	n.(∩)			
TUTAL THES	S ISPIN		19.249				3.830	10,236		5.184	0.000)•091			
P31	. 676	521	1.000 +	068	з.,е		.0.24	.260		.139	1.138				
\$ 31	. 2411	803	3.752 +	~ .182	°•5		.032	.567		.347	2.522	.23+			
033	.559	917	4.356 +	193	? 7.5		• 025	.677		.388	3.,46	.271			
P33	•495	135	4.995 +	21	5 2.1		• 04 8	•730		• 46 4	3.717	• 4 3 <u>2</u>			

.108

2,240

1.338

11.142

•97s

TOTAL THIS ESPIN

+

14.705

Î.

SOLN B 1690 MeV

ERRO	A M A	141X	(AMP (() AI	1P (J) PI	1411	I PH	(J)	/ AP	4P(I) PH/	(J)	PHI	(1)	PHA	(J)	۱.	RAI	D =		,	14300	HYPER/JLJHE = 2.85776-89
Ϋ́.					_		-	0	•	10		1.5	13	14	15	1.4	. 7	1.0	10	20	21		1.1	14	28
1	ו + י	. ?	80	4 04	ВО	ہ ۵	1 0a	A	9 01	10 A0	0,	•0	15	.11	15	0.	FJ	,0	00	1	сл С	1,	دی ۱	50 00	
2	2+	15	0.2	01	A3	A3 B0	0	A 1	е1 ПА	C1	10 14	•	•1 01	02 10	02 00	^` ∆1	0A	•0 •0	,° 0	11 ^.	Α,	Δ	0	4A	24x24
4	20	3+	co	3,	A0	20	.0	1	ĩ	ì	ĩ		AA	io	аğ	- ô	40	A	อเ	0.	ġ.	6.0	, ^	0A	Error
1	н.) 02	°С 07	+8 B+	л ,	0 A 2	00 11	,υ 03	C A U	1) A () 1	18 70	0 71	А ,Ü	317 A4	0.3 A1	A 4 2	eî.	10 2.	.в 01	ec.	,1	•С 02	0 0,	94 01	ن ۸۰	MATTY X
4	00 A 1	33 1	39 +	+4 .1+	8A A 2	A. 13	UC A	ú 00	•0 01	, ⁰ , 2	י 10	,1 11	B0 12	01 16	,0 ,1	04 • 0	(י A קינו	0 01	0 01	о , 0	C, 1	71 00	or O	24 18	
ŗ	на ©З	14	2 2	НА 42	+ A A +	АС А З	АВ 1	L A U 1	20	0C 01	0C ,2	08 08	1A 12	АВ 13	L 4 • 2	A() •1	24 • l	en c	•8 01	08 91	, A A1	• ^ Dil	1A 90	34 00	
6	Λ4 (*3	вС 02	11	A!	АА СЭ	+0 0+	A2 01	0. U1	A () # 2	00 02	۸1 د ,	0 00	02	۸Ū 33	, J 02	ว เ	1) 12	10 1.	07, 02	0 11	10 • 1	A, A.	n ∆ò	10 9	
7	5 A 11	۸. 4^	•0 03	0A ()	А В 1	A0 21	+B B+	00 0 2	, i	0. A2	۵¢ • 2	01 7.	00 02	36	•0 ¢	רט יו•		ं • • 0	20 •1	20 • 1	0 01	•	^0 A	,. Н	
8	۸۸ ۱	0	ר אי	0 00	00 A1	00 •1	00 02	+. .+	A^ 0 3	(ن A2	•	01 11	ن من	, Λ , 1	2, 01	11 00	1) •1	•••	0. 01	G () 4 A	0, no	•U .)	0) ,8	γ1 , Δ	
9		0 A 1	13.1	• 1 01	, ^ (1	A, 02	,,	AC E u	۰. . +	A. 0.2	40 23	1 ∧ 4	л. D2	,	00 13	0A 11	AI	.1	50 12	10	.0	ŗ	• ch	0 • C	
10	٨٠)		1,		00	00	UA	A	AD	+8	A1	44	Α.	00	F2	12	•]	À	11	00	01	n. Del	•(00	10	
11	`.	-	0,	50	21	Α,	υ,	••	A0	∆^ 1 2	+1)	A0	n.	n 1 2	0.	A		4	1	•;		an a	и с 1		
12	•	••	۰ ,	,1	02 00	0	02 06	01	14	A1	44	41 +ß	.0	n 12	A 2	00	L	01	80 80	,0	•1	ə.	•••	UA.	
13	<i>е</i> .	۸ . ۲۵	AÚ 34	11 81	8A 10	•0	1. 10	91	4 רם	43 AC	01 04	B+	ن +ن	.1 80	2 00	1. 08	ai Dh	L. Al	1+ AU	.0 ,A	, i	-A	42	1 A 1 -	
		* A	Č4	02	A2	•2	0Z	00	• 2	•1	•2	άn ο	0+	2	• 2 • 2	0 1	42	01 40	02	A2	23	ot	40	•0 60	
14	1.)	11	0A 61	01	B.3	А:) (13)	ί.	A 1	1	^2	2	i	<u>2</u>	9+ 13+	02	21	43	•2	•	11	61	ΰ۸	0	46	
15	1 12	11° 00	4 47	יי גר	1, A2	+0 02	ůc	66 , 1	01 03	FΑ 2,	• 2	A 2 A	01 02	00 12	+1 1+	84 ,1	,) A2	•	08 03	00 0	48 41	7A 04	•A C()	- (י А В	
16	• 1	А 10	- ^ - 1	0• Að	A. 01	01 2	00 0+	00 60	01 A1	1, 2A	41 2	01 0,	შე 81	A2,1	8. Al	*4 4*	ΛΛ Α,	24 28	10 21	A U,	0 • L	40 A1	00 10	1C , A	
17	₽ A Q11	• Å 50	10 0.	4-) 02	2. A 1	0 02	0 •	1. 01	A 01	•0 •0	A)1	0 11	-)A 02	ва 3	02	ΔA Λ,	+ 4 4+	A. 02	0 42	0 ••	AA 0.2	04 15	CA.	• 1 DE	
18	26	4A ()	•0 31	00 1	л: С	01 0,	3, •D	::	,0 1,	A.	AD ,	00 1.	A() 11	н. 82	0 1.	2.2 A B	۸0 • 2	+0 0+	10 80	•0	0:) 01	41 , A	С• СЛ	۰C ع	
19	а ,	0 01	•?	00 1	,0 81	00 02	C . 01	00 •1	E 1 0 2	10 11	1 12	в1 О,	A1) 1)2	 10	00 83	12 91	4)4 2	16 09	+B 8+	ა •1	60 91	:)	C Q	,С ,В	
2'`	11	 	0, 01	.,:	ао 81	U1 1	с, 91	64 D A	10 00	01 01	,, ,2		,Δ Α2	,1 01	00 0.	0 A,	U. •		.∂∙ 1	+) 0+	0 <u>0</u>	:	na Ga	А 4.2	
21	C 4	,U	12). .1	, A B 1	1. 01	ເປເ 1	00 10	02	n 12	,^ ,1	ii	, 2 1 3	.0 11	84 81	₀i	۸1 12	្វា ា	00 01	ם. נו	+3 3+	∩2 ∧•	A : ,2	A LC	
2 >	1	٨	0	50 10	•0 40	A A	or	, 00	÷a	00 20	30	00	•0 41	10	00 AA	A A 0 1	11 11	A , 1A	U	•0	04 2•	+1	∆⊓ C•	۸0 • C	
23		1,		0	16	04	(-A	0,	•0	•0	0	••	AA 20	50	+0 40	C1 0.0	313	0U	۵¢	00	4,	Λ.) 0.	+A	31 18	
24	- 60 - 60	• • 00	ני ג ייט	20	80 80	1	•		u _!	+1	- U - U	• • 0 L	1.	¢ CA		1.	- 9A 18	•# 0•		A	1	A.	C1	+ 2	
	04	4	۸	A B	4 C	00	•1	1 A	٥C	С	•c	A A	οŋ	υF	08	0 A	16	, 8	:18	AD	A(;	· C	1 H	'! +	

SOLN B 1690 MeV

L

W4 V E	RE A	E(RE)	D(F8)	IM A	E(IM)	0(18)	PHASE	E	RET	т м т	E(AMP)	E (ANG)	T**2	E(T**2)	MV A E
P33 PP11	1.00	.13	.07	0.00	. 16	.10	0	9	.2018	0.0000	.0254	.0325	.040736	.010920	1
P33 SD11	2.06	.27	-19	64	. 49	- 33	-17	13	.1606	0498	.0226	.0372	-028266	.008107	2
P33 0513	14	.04	- 02	.25	. 05	.03	119	8	0724	.1334	.0267	.0209	.023031	.008822	3
P33 PP13	.00	.12	•06	0.00	• 15	•Uä	0	999	.0000	6.0000	.0245	.0296	.000000	.000598	4
P33 0013	23	.22	.14	-2.23	- 29	. 20	-96	6	0180	1743	-0232	.0172	-030702	.008650	5
P33 PF13	- 00	. 51	- 3.8	0.00	- 78	- 55	0	999	.0000	0.0000	-0159	.0243	.000000	.000252	6
P33 FP15	-1.35	.07	-04	29	- 10	- 05	+168	4	2755	0584	-0148	.0197	.079306	.008548	7
P33 0015	5.12	.21	.10	-2.47	- 34	-16	-26	4	. 3997	1926	.0132	-0286	196851	.011855	â
D33 6616	2.63	52	. 10	-1.81	. 73	.45	- 35	11	0812	0559	.0158	. 0229	009730	003368	a
D22 6617	- 00		. 74	0.00		38		999	.0000	0.0000	0142	0100	000000	000201	10
033 0031	08	.14	.08	68	- 14	.10	-97	12	0155	1340	.0273	-0284	- 018206	-008127	11
033 5031	4.88	- 23	. 19	28	7	27	-3		- 3814	0219	-0179	-0370	145930	.013996	12
5520 EEG	- 23	04	- 0.2	.34	• • •		124	7	- 1195	. 1792	.0227	.0274	046411	010290	13
D33 D033	-1 43	14	.05	95	. 18	. 07	146	÷	2959	. 1966	.0217	- 0413	126216	.015902	14
033 0033	97	24	14	74	- 10	. 21	140	1 8	0676	. 0572	.0199	.0777	007839	003918	15
033 0633	-00		34	0.00	10	47	110	000	0000	0.0000	0149	0214	000000	000219	16
733 FF33	.00	• • • •	• 50	0.00	.10	• • •	0	000	.0000	0.0000	0159	0105	.000000	000217	17
P 33 FP 33	.00	.08	• 0 5	0.00	• 10	.00	0	000	.0000	0.0000	.0130	0271	.000000	.000210	1 9
033 5535	-00	-24	• • • • •	0.00		- 1 1	ő	000	-0000	0.0000	0108	0213	000000	000320	10
P 33 FF 33	.00	• • • •	- 30	0.00	403	• • •	Ň	000	- 0000	0.0000	-0175	-0213	.000000	.000220	20
P33 FF31	-00	• • • •	• 25	0.00	* 02			333	-0000	0.0000	-0130	-0189	-000000	+000186	20
383 PP11	-00	- 91	+ 4 9	0.00	1.00	- 24	0	999	.0000	0.0000	.0202	.0310	.0000000	.000795	21
RH3 SUI1	.00	2.50	1-50	0.00	2+83	1.04	- 1	444	- 0000	0.0000	-0287	-0304	-000000	-000625	22
-KH3 US13	1.96	•14	• • • •	02	• 19	• 1 1	-1	000	•2108	0022	-0140	.0204	+ 044457	.000477	23
RH3 PP13	.00		1 00	0.00		• 3 (999	-0000	0.0000	.0217	-0189	.0000000	.000472	24
RH3 0013	-00	1.99	1.08	0.00	2.15	2 01	0	393	-0000	0.0000	-0224	-0239	-000000	.000900	20
3H3 PF13	.00	3-78	2.48	0.00	4.04	2.81	176	444	- 2010	0.0000	-0171	-0183	.000000	.000293	20
RH3 FP15	-9.41		+ 2 3	.00			113	200	-+2918	. 0200	+0115	-0171	.085869	.006879	21
RH3 0015	.00	1.62	•95	0.00	1.75	• 92	0	9999	.0000	0.0030	-0181	.0171	.0000000	.000329	20
RH3 FF15	.00	4.07	2.20	0.00	4.25	2.02	0	999	.0000	0.0000	.0185	0193	.000000	.000341	29
RH3 FF17	-00	3.34	2.13	0.00	3-12	1.93	0	999	.0000	0.0000	-0151	-0141	.000000	-000229	30
RH3 PP 31	.00		• 2 3	0.00	1.00	• 29	0	444	.0000	0.0000	-0298	•0326	.000000	.000891	21
KH3 2031	• 00	2.41	1-54	0.00	2.16	1.71	0	444	.0000	0.0000	.0275	0306	.000000	.000756	32
KH3 0533	-80	-18	• 09	1.60	- 19	•11	64	0	.0845	.1090	.0194	.0207	.035886	.007714	د د
RP3 PP33	-00	-92	4.3	0.00	- 13	• 42	U	444	.0000	0.0000	.0283	-0226	-000000	.000821	34
KH3 0033	•00	2.24	1.17	0.00	2.05	1.12	0	999	.0000	0.0000	-0249	-0228	.000000	.000621	35
RH3 PF33	•00	3.84	2.62	0.00	3.83	2.03	0	444	.0000	0.0000	.0172	• 11/2	.000000	.000297	30
KH3 FP 35	•00	.43	• 28	0.00	• 56	ود.	0	999	.0000	0.0000	.0133	-0180	.000000	.000177	31
RH3 0035	•00	1.90	1.03	0.00	1.61	• 96	0	999	.0000	0.0300	.0211	•1179	.000000	.000445	38
RH3 FF 35	.00	4.42	2.49	0.00	2.83	2.35	u	999	.0000	0.0000	-0199	• 0172	•000000	.000394	39
RH3 FF37	.00	4.02	2-42	0.00	3.15	2.09	0	999	.0000	0.0000	.0180	-0141	.000000	.000325	40
8H1 5511	.04	•22	• 14	.89	• 32	•19	54	16	.0685	. 0946	-0264	+03L7	.013638	.006866	41
RHL PP11	13	• 43	•53	11.05	•68	• 42	91		0057	. 3421	-0211	•1288	.117483	•C14894	42
ANT PP13	1.09	• 59	• 36	18 و -	• 13	- 21	-62	10	.0522	0987	.0221	•0141	.012474	.005418	43
RHL DUIS	•00	1.62	•97	0.00	1.04	• 88	0	999	.0000	0.0000	+0181	.0184	.000000	.000329	44
RH1 0015	•00	1-19	• 80	0.00	1.49	. 85	0	999	- 0000	0.0000	-0133	-0167	-000000	.000177	45
RH1 FF15	.00	3.03	1.94	0.00	3.25	1.92	0	999	.0000	0.0000	-0137	+0147	.00000	.000188	46
RH1 FF17	.00	2.48	1-72	0.00	2.66	1.14	0	999	.0000	0.0000	-0112	.0130	.000000	.000126	41
RP1 5531	-1.19	•25	-14	.90	• 31	-20	143	11	1256	.0949	.0307	.0297	•02480Z	.010604	48
RH1 PP 31	-2.04	1.00	•61	1.14	• 69	• 52	106	8	0627	.2196	.0198	.0318	.052176	.009435	49
RH1 PP33	•00	•70	• 38	0.00	• 69	. 39	0	999	-0000	0.0000	-0214	•0211	.000000	.000457	50
RH1 0033	•00	1.87	1.10	C.00	1.57	• 96	0	999	.0000	0.0000	-0208	+0174	.000000	.000433	51
RH1 0035	•00	1.46	.87	0.00	1.25	• 83	0	999	.0000	0.0000	.0163	.0138	•00000	.000264	52
RH1 FF35	.00	3.69	2.27	0.00	2.86	1.97	0	999	•0000	0.0000	-0165	.0128	.00000	•000274	53
RH1 FF37	•00	3.04	1.91	0.00	2.65	1.75	0	999	.0000	0.0000	.0136	.0119	.000000	.000185	54
SIG PS11	-1.93	.36	• 24	.18	• 43	•24	175	13	1561	.0149	-0281	•0355	.024600	.009589	55
SIG SP11	7.52	.96	•64	-2.06	دا ۱۰	• 75	-15	9	.2221	0609	•0266	•0349	.053035	.012936	56
SIG DP13	2.50	.68	•40	-7.79	- 66	• 42	-72	5	.0738	2302	.0180	.0212	.058446	.009027	57
SIG PD13	.00	1.86	1.09	0.00	2.22	1.35	0	999	.0000	0.0000	.0223	.0266	.000000	.000497	58
SIG FD15	-23.19	1.03	•72	7.57	.81	• 91	162	2	2777	.0907	.0124	.0095	.085360	.007429	59
STG DE15	-00	2.86	2.04	0.00	3.82	2.44	0	999	- 0000	0.0000	-0147	-0197	- 000000	-000217	60

ÉRROI	2	٨M	I P I	x		((۸۸ ۸۸	IP () IP ()	()/ ()F	лмр РНА	(J) (J))			SO	L	N	В		16	90		Me	٧				Ŗ	AD	=	4		015	143	+	YPE	ዮላና፣	L (JM	E =	4	.22	87 -	219						
1 + J	••																																									6	2.10						
	1	2	3	4	56	7	8 4	910	111:	213	141	516	171	819	202	122	232	425	262	272	829: n. ri	303	132	333	435	536:	6738 0.5	3394	404 0	142	4341	454	647	484	9509	0	535	455 1	565	758 0 A	596 1	0							
1	1	1	ñ	Δ.	1 12	4 4 4 5	0.0	0 1	B	1	1	,	-	0 0	0	04	1	, 1 U (,	1	5 0 6 0	L	• 0	Ô	1		00	5.	0 0	i A	0	Ň	ŏ ð	v	21	ň	•	0 0 0 0	ĉ	1 1	î.	0							
2) 2	+ B	1 C	۸ ۱	B 1 3 C	1 8	A J A	10	Λ	00 ,	1 C	•	1	0 (A (1 C 1 •	A . 1 A	0	υı	. 0	1	00	0	• • •	0	• 0	0	0.	. 0	0	в 0 0 В	• (j o	, o		1 ^	1	1	0.	д 0	1 U 3 O	0	•							
3	R O		+ C	1 (n	10	1 0 3 A	0 0	Â	' '	0 1 0		, 0	C 1	1	, n	0 0 0 A	ы 0	01	U U	4 I	n ,	л 1	• •	۸ ۲	00	00	00	00	(1 0	. 2 0 A	'	2	• 1	()	, ,	n c n c) ; ,	, ŋ 1	•	0, 0,1	1	i							
4	1	. 0	1 0	* 2	A F	1	1 0	1 B A 2	0	0 / 0 /	,	. A	0	• (^)	A C	0 U 2 A	•	υ (в.	1	6 N	0 0 8 ()	0 ,	0 0 A 0	1 0	0 1	•	00	0 0 A	•	A 0	٨	1, 1 A	0 ·	0 0	i o	• 0) ()) ()	, 0 . A	0	• 1 0 0	0	ù V							
5	1	. B	t N	A 0	+ / A 1	АВ	۸ 0	10 80	0	• 0	•	;;	1	1000	5 G 6 G	, # ຄຸ້	ь 1	н I • 4		U C	0 0	• 6	10	0	0'	0	0	• •	0 0	• B 1	Ð	o n	• 0	0	• •	п. ,,	0	00	0	D C	200	0							
6	P	3 1	1	8	A 1	•	0	A 1 3 C	0	•	1	6 0 0 0		A	· ·		1	: ;	•	i	А О.,	٨	. 0	, 0	1	• •	÷	. c	0 0	ci Gi e	•	л a n	: 0	,	0 0	n () L ,	. ,	C C	, , n :	0	0 •							
7	h	1	0	1	B	•	•	B 2	1	00		, () i	A	1	20	, U	•	, ,	в	0 4	•	• A	1	ي د د	C T	0	0 C	0	A 2	1		00	0	۵ ۵ ۵	0.0		• 0		2 1	L R L D	۸ ۸							
8	-		0	, 1	A (· ·	+	۰ ۵ ۵		0.0	, ç	¢ ,	, c	٨	10		, , ,	41		U	DA	•	00		2	1	ņ	, - 1 C	υ	•••	A	10	v 0	0	01	0 0	, , ,			A (0	0							
9	0		•	1	0	н А П		00 +0	n D	0 0	c L u	, i	1 , n	•	• B 0	2 0	 	ະ. ບ	L 0	0	• •	•	, 0),	J	, 0	• ೧	•••	•	- A	n	0.	· ·	0	10	0.0	÷.	0 0	0	ņ,	 	ő							
10	-	אר כ	Α.	1 В	• / 0	n / 1 2	. z	នព 0 +	• 1 • 0	п л • (•••	0 0 (• 0 0	O A	0 0	1/	L A	ຸ (ບ	ເມ . ບ	0 U	00 00	1	• 0 0	•••	• 0	10 60	, 1	0 0 0	• 0	۰ م 0 0	1	1 A	• 1 • 1	r	•	0	• U 0	. (, מי	10	• •	0							
	(; 	,	1	, i	0 0	٨	4 2 • •	0	Ó R	0 Ū	c (50 50	• •	ם הו	00	u u u	A .	4 0 : 1	ι	0 0 0 0	0	• •	0 0	۰ : ۵	00 01	0 C	0 0 A	1	• ∩ • 1	0 1	1 ^ 1	0 B	2	о 0	1 1	1 • 0	00	o c n	, (0;	2	n A							
	į	ò /	Å	ĭ	0	A F	i e	1 4	o	1 /	4	1 f	30	i	Ă N	Ā	55	5	บับ	ů	ŏ.		i c) ō	Ă	0 0	A	, 1 0 1	0 C	6 A	ō,	Α,	•	0 E	4 () 2 1	• •		• •) 1) 1	(נ	с •							
12	4	0 /	0	•	•	, (С Р	• 11	1 0	0 0	* / A -	6	8.0) 1	A	, n	• (Ā	1	00	ŭ	0 0	Ň	00) i	A	0 1	Ă	. 0	0	1 ^	1	0 Ö	ë r	3	ī.	0	ō ē		0	•	10								
13	ļ	0 1) 1 \ A	А 0	0	n () A . 1	1 P) 5 A	Λ · Ο F	•	00 2	•	0 2		0	ມ (: 0 0	U A	00 0	1	• •	0	0 2	2 B	1	. 0	C	• U 2	0	2 C C A	A 1	0 0	0	1 0	2	1	10	0	. U	£ 1	51	i							
14		C	1	:	:	1 0 /	0	0. , (א <u>.</u> חומ	Å	• •	¢ (B	2	0 C	0 0 0	0 2 I	0 4	0 1	Ú	0 U	A () 0 ()	00	20		7 0	02	0	1 0 , A	0	1 (0 1	A (2	, Δ	1	00,	ċ	08	•	1.	0							
15	. '	0	۰.	i	i	C e	0 3 •	1 /		·2 (\ \	1 A A 0	+ В І	. Л Н 2	1 0	0 0	0 0 1	11	0	60,	0	0, J,	0	• 1 0 1	1 B 1 2	0 0	• 0	A 0	00) ; ;	0 U 1 A	B •	о,	00	рс 3	0, 1 0	2 0	0 1 C 0	0	01 , A	• •	. 0	0							
16	0		0 0 0	^ 0	ò	0 (0 (0	, (00	0 (1 (0 0 7 0		+ 0 1 0	0	A A A A	n	Α. , D	U A	D U	ն ն	о г	•	00 01	א כ , ר	•	0 A 1 C	01	1;	0	r: (0 (0 0	i ,	0 0	n O	п А 1 1	•	ċ ċ	0	с.	0	•••	n							
17		1	. n	0 ,	1 1	n n	10	ი ი ს) 0) 1	B (8)	о с,	۸ ۸	0 + , 1	e u	2 8 1 0	1 -	A A A U	;	0	0 •	A r U Q	, 0 5 A	3 / 0 ,	, ,	0 A	1 C 0 C	A A	0 B 0 1	3 1 1 0	0 / 1 /	1 2	; P	• (n t	2 1 2 2	4 0 0 4	đ.	8 A 1	0	0 0	n	10	:							
18		n ,	ι. , Α	*	1 0	۸ ۸ 0 ا	л л Э	17		с 0	00	1	o c	+ 4	^ 1 2	B A	, U 1 .	G •	0 0 0 0	1	0 . 1 0	0	, . A	1 B 2 ,	1 0	0 . 0 0	. 0) A	4 C 0 A) .	V L	▲ 8	0 0 A 0	0 0	0 0 0	0 1 A	п 0	20 C1	•	0 1 0 1	∆ C	01 0.	0							
19		0	0 0 , A	0 A	0 ,	•	1 1 , A	в (•	. 1	A 0	n 0	۸i	A 2 N /	1	+ n 2 1	0	ι. • >	i	ь р • р	U	1	, C	1 (0 ()	0 0 0 •	•	0 C D C) 1	. c 0 1	: 0 1 1	• (1	מ י	n i	• () 1 , 0	в (4	•	02 00	с	, r •	0 •	• •	c							
20		n 0	, , ,	۸ ٥	n •	ō	0 . N	00) ព 0 ព	1	٥ ٨	0	ов	1	0 + 0 2	ō	ა ი • •	•	0, 0C	0	1.	. G	A 0 1	1.	0 0	0 0 1 4		, ·	. D	0 (, (0 0 A	∧ 0 , ∧	• •	n n	01	n	с о • •	C 2	, n 0 1	:	0 0 A 0	e •							
21		2.0	κ 0 ο.	0	.	,	2	۸ ۱ ۸	10,	۸ 0	0 D	С Л	, i	. в) п	•••	+ 2	к 0 в,	1	1 // 2 C	U A A	, 1	6 I 8 I	2 /	ι,	A O	А (1 .		A (1 6 (2	00	в	1 1 1 0	A A	L n	0 , 0 /	0 0	۸ ۸ 0 ,	0 ,	1.0	0 0							
22		4	, 0	0	۸ ۱	•	0 0	A 1	N 0	•	0, 1 C	1		· . 0	0 0		+ 0 0	1	D 1 0 1	0	1 (0 0 1 A	0 1	2,0	• •	000) 1	•	, A	ດ	0 A	; ;	1	р Э.	n /		л 0 , 0	0 0	0 0 A	1	0. 1	•							
23		0	03	•	B	1	0 0		• •	1	0 0	1	• 4	0	,0	0	+ 11 [1	- U	00	A	A 1	00	0	ο,	0	0	1	1 0	• • •	0	0 B	1 1	0	n B 1.	0 0) n L	о с,	C	0 2,	8 A	A 0	0							
24		•		0	N N		, h	0	• • 1	A	00	•	0	. 0	• 0	1	. U	•	10	0	2	1	;	00	, o	0.	. 0	0 0	0,	2	1	A 2	2 A	01		, 1	е,	•	0 л	;	1 0 2 0	•							
25		•	01	0	0	•	a v	1	. 0	U	0	n	2	0	v 0	1		1	+ 4		0	2 .	0	0 4 1	,	1	-	00	, , , ,	0.	 \ 0	с.	- A	· ·	0 0	הי	00	,	00	0	n o n	0							
26		י ס	• 0 0) I) I	,	•	, 1	, i	n i		n	0	0 1 (, U) 0	0 u	٨	15		A 1	- 0	0	U 2	• 0	0		0	2.		2.	0	00	0 4	0	1.	, [0	• 0	•	0.		0,	n A							
27		0 1	۸ •	0	1	• ⊓	по во	0	0 0,	0 0	• 0 0 0	00	• (0 (י כ ר כ	e u c	1 U 1 D	a D	••	00) ()) + ()	0	02 01	•	1,	. 1	U	, a	•	•••	А	8 0 8 0	• t	10	1,	• •	· ·	A O	0	. 2	0	Λ B	1							
28		1 0	n or	. A 1 O	• 0	A	с 0 п 0	0 0	00 00	o O	, G	l e		۰ ۵	• •	3 B	10	2	6 6 (JO	•	••• 10	А А	0 (1	ы	•	0	0	•	1 . . A	е. по	A E	5 0 5 0	. o		5 I 7 I	о. со о		u a	1	01								
29		Ă a	ā c),),	0	1	а а а а	2	о, оп	•	, 0 0	•	• •		•••) , 	21	. 1	2 3	ч • 2 - С	1 1	1 В + А	1	1 ¢ 0 ,		•	n o 0	, ,	00 14	A 1	• ^ • 1	с с В 1	יינ נס	A 1 A		אר אנ	•	e	10	o O	•	1							
20		8	0 1		A	۰ ٥	Α.	•	00 20	; ;	0 0 0 0	, ,	•	n n	0 0 0) В 1 1	00) a	в :	1 1 2 1	0 0	۸ • ۱	Â	• •)) 	0 0	0	*	0 A ,	0 0	1 A A O	1 f	•	л. 5л	1	•••	,	, ,	. a	1	, a	0							
		i	0 P	i n	ò	Â	0	õ	ō ō	, [°]	0		•	01	́п,	, ,	, , ,		•	20	2	n 3	•	01	i à ni	0	1 0 0	1	oi eo	. 0 1 0	01 0	0 1 0 .	L ,	20 01	8 I	эо в.	, 0 1 0	0	ο, , Α	0 . 0	00	0							
31		1	• •	1		Ô	1	'n	ž	B	Α.	. В	•	3 4	14	î	0 4		•	•	ő	AC	3	B 1		2	••	•	B Q	,	, 1	•	Ō	01	ō.	0 A	Ō A	1	i n n i	i C	10								
32		9 1	a /	• 0 \ 8	0	0	A 0 A 1	0	08	2	10	, 1) 2	0	01	A	0	0 0	A C	4	010	0	0 0		1	B 1	~	0 .	0	1		A A	: /		× •	1	ōŏ	. 1	,	1 1	Ö,	20								
33		1	0 0	00	0	:	1.,,	4	• 1 • 0	0 A	F (3)	р (Р 	C C	, B 1 A	0 0	0	U A	. 0	0	A Ö	0	0 4	A	•	+ 0 1 3	1	, U 0 A	A	0 1		n 1	,	•••	01	•	A U A	0	0	A C	, 1	0 0								
34		•	0 0	5 0	0	1 0	02	۸	0 A	0	, 4	1 0 1 A	å	01	• (A (. (L ,) U , 1	:	. 1	B T	0 0	1	0	20	1 0	0, 1,	1	0.	0	п в 10	0	0	, A 0 1		3 A •	0.	•	в (0	• •	1							
35		0 1	0	0 0 4	•	,	0 1 • 0	ò	n o 0 0) ,) ,	D C A 1	5 C 1 B	0 1	1 0 C A	0 (0)		00	0 1 1	1	0 0 0	0	• •	00	C	1 1 3 A	•	Λ0 0,	2	1 A 0 C	0	. i	0 0 A (A C 0 0	- 0 A C	•••	1 C	0 A • A	0	0 A () 0	•••	5.							
36	•	5	0 . 0		•	0	01	•	01	0	1 2	20	А 0	0. 2	0 (0 /	0 0	ų	.	•	2,	٥	0 0	0	1	• •	A 1	+ A 1 0	A 1	B 2 0 1	20		0		. 1	. n . A	02 -,	Р.	. 0	ir J	10	00	0 0							
37	,	0 1	10	0 0	0 0	ċ	0 0 0 0	0	10	0 • •	о с	• •	0	Λ0 3.	1 9		A	ιυ ,		. 0	0 A	00	01	0 0 B -	, o	0 0	A + 1 0	1	1 E A 1	3 O	100	0	1 N 0	0 A • C	1	3 , 0 1	с. О Е	Α	A 0 0	, .	•	0 0							
38	;	n	1		0	•	01 0.	•	0 C	0 0 0	i	1 n 1 1	•	04 1	•	, A 1	•	0 1,	0 0	• ۲	0 0	0 4	0	0 /	A 1 8 1	2 A	A 1 , i	+	2 C 0 A	0 0 A	, О А	0	; ,	, c 0 c	3	1 A 1 O	5 / 1 (0 () ,) ,	А А	. 0 . 1							
39	,	ò	0 0	а с • С	•••	o C	0 0 , 0	I T	о л • А	1	00	0 0 0 0	ċ	во В,	L A	. 0 1 0	•	. U	0	0 . U	•	1 /	A B	1	, 0	1 A	в 1 0.	2	: d			0 •	, 0 , 0	0 A 0 ,	1	2 B 1 O			0	•	0	; ;							
40) 3	a 0	0 •	٥	•	0 0	•	0			0 0	ė	, (, .	• 1		0 1	D 8	۸ ب	b	1	5 0	;	0	Λ, Γ 1	0	0 П	0 n	, A	2	B A	0,	+	ò	n 0 0 .	0	;;;	00 10	1	D C B A	1	.	05 01	1 1	•	n 0 n 2	0 ,	0 •		
----	---------------	--------	---------------	----------	----------	---------------	------------	-------------	--------	------------	------------	------------	------------	----------	------------	------------	----------	------------	-------------	-------------	------------	------------	---------	------------	----------------	------------	---------	------------	------------	------------	----------	------------	-------------	------------	-----------------	------------	-------------	--------------	------------	------------	----------	------------	--------------	-------------	------------	-------------	------------	-----	-----
41	:	8 0	ī	۸ 0	.	0 /	, 0	•	0 0	0 A 1 5	2 3 2	٨	0 0	0 i A	0 0 1 0	•	0 A	1 1	U b	•	0 0	а) к	A 1	0 0 A 1) J	,	B A	0 0 0 0) 0	0	0 0 (, i	+ 4	A 1	2 0 2 ,	ດ 1	1, 0,	1 3	- / /	0	ċ	0. 0.0		Â	1	•	•		
42	F 1	0	2	С 0	8	1 2 C 4		N 0	0	1 C 0 ,) () [0 4	0 •	0, 0	A A	•	0 •	z	• •	4	ь (0	в	0 0)) 0	с •	0 1	о в ,	. 0	1	* 4	, 0 0 0	A 1	+ (A .	ו ו ס	;	n A 1 0	,	۸ . 0 /		с	ос о,	B C	A A	1 1	2 ^	ŋ	60%	60
43	9	0 0	;	А 0	o	2 1		0 0	1 ^	1 /	1 0 A	∱ 0	8 •	0 ,	1 A 0 0	0	רי ס	2 A B ,	. В 1	1 2	01	1 D 1 A	0 1	1 (2 (р о в Ц	A 0	1	в. • :		0	•	, 0 0 0	2 8	0	► B \ O	1 0	, () A B	1 A	۸ 0 (е э,	ċ	• (0	8 7	0 1 0 1	2 ^	,	Mat	riy
44	;	•	2	1 •	n	n	. 1 1 ,	0	1 0	4 0 0	0 0 0	0	1	:	+ C A 0	6	Å U	0	1	k B	ι (0 () • 2 A	A O	B (B) ()) ()	,		0 0		0	0 4		n N	1	3 + 1 0	۸ ۵	1. 2,	۸	•		1 ^	0 2	в 1	0	00	, , ,	0	pag	12
45	;		0	.	0	c c	0 0 1 8	•	А 0	1 /	n 0	а О (А Л	; 0	r 0 0 0	•	0 0	0 0 1	, а 5 б.	2 1	•	4 D 2 B	5 0	1 0	0 1	B	0	A (A		1	,) (; (;	0	1 A 3 A	•	¢.,	1 0	Λ (0 .	1 0 1 0	0 0	о 0,	:	A	c (0 1 1 0	0 4	2.	11
46	0	0	r	0 1	;	• •	0 A A D	۸ ج	0 C	, (c (0 0	, C	ò c	•	; ;) .) 0	;	н Н	1 0 6	к С	А (U)	ນ ມ ເວ	0	D O	• •	, n	n •	۰ ۸ د	A , 1 (000			1	0 0	1 2 0	А 0	• 6 0	0 1	•	1	ŀ.	0 0	, i	C D	0	0 • 0 0	P		
47	1 1	ċ	۸ 0	:	0 •	0 , 1	0 0 0 0	1	1 1	•	. n) () (î,	0	0 0 0),),	n c	1 U 2 A	2	Ľ 0	:	1 1	ż	4 0	5 C 1 ())	0	•		. 0 \ 0	•	0 0	, ,	۸ ۸	 	i	A 1	0 0	• ;	, 0	2		, o	C			0 0		
48	0 0	0	0	0 0	0 •	c	в	0	0 1	2 I A (F 1	С	(. 1	0	10) 1) 0	0 •	1	i ن د	1 0	0	• •	0 U		• 0		8	A 1	0 1 •	L A • U	0 1	4 1 0 0	1	6	100	1 ,	0 .	+ B	B 1	в 0 О	i	0 I	00	Ω Λ		1, , 0	ò		
49	1 0	0	'n	,	0 0	r 0	A C A	0 1	с	G D	2 A 0 0	i	с 1	o O	6 C) В П	0 0	Λ (• [5 0	A	0	Ŭ A •	U N	1	, E	1 0 1 0	٨	3 1	- (. c	ō	1 C 1 1	0 0 L fr	Λ †	0 A	'n	•	в	+ n	00 10	ċ	1	ċ	1 ,	Ā	8. 0.0	0		
50	0	1	;;	•	С 0	0 1	01	. n •	•	A B	10) 4	•	۵	^ 0 4	0	1 1	А, ,	а С , С	4 (0	0 ;	ა ნ , ა	n	•	n f A t	3 A 0 1	A 1	3 1	1 (р 3 1	1	2 0	. 11	:	n 0	0	01	В 0	0 1	+ 8 0 0	1	с (-	: 0	•	C O	, n , n	1		
51	0 0	0	• 0 • •	•	0 0	0 0	0 n 0 1	0	c ,	C 0	• P 0 C		2 C	c o	, (0 .	. 0	v	0	, L , C	, i o	U 0	ບ . ບ	1 ^	∧ 0	1	. 0 1 A	0	A O	с : о (2, 0	۸ 0	B 1 4	ι,	ò	с. О.	0 0	1 () . 8	0 I 0	R + 3	B O	•	0	,	1 ດ	1 0	•		
52	ņ	0		0 •	'n	c c	0 0 0 1	0		в (0. 0.0	. 0 0 0	0	:	n ;	2 0	• •	0 A	A L G C	0 0 0 0	Ե •	A A	0 0	0	•	L A	() A	0	01	B 0 0 1	5 1	1 0	1 U	0	. 1 n c	0	0	Å	1	18 00	¢	в (0 () .)	'	с •	٨	1		
53	Ü		. n	O	•	,	ò	;	0 N	0 0	•••	n • •	1 (:	;	н (А 1	2	0 ,	, ,	0	ċ	0 0	. U	0		0 1) 1 \ •	0	•	0		Á	ι (0 .	າດ •••	0	, c	•	•	0	n 1	n 1 1 .	B 1	+ 1	0	•	0 0	0,	0		
54	0	0) ,	:	0 0	, 0	•	0	;	1 1	00	4 C	• 0	0	0 0	0 1	ι c	n 1 0	• •		ů	• •	•	n D	1	2 A	0 G	;	0	0 A †	:	9 0 A	5.0	0 •	α,	1	1	, .	n B	c n A .	•	۸ ۲	+ 0	0	•	o , 0	р О		
55	С	ſ	ה נ י	บ •	0 ()	ċ	0 0 8 0	0 0 0	0 0	A	0 . 1 (• ^	0 1		с (0 ;	5	А 0	ιi	L	•	0 0		,	ì	4 0	B	•	0	ο,	0 1	0	1 4 -	B ∧	0 B	0	0	. 0 L A	i	0 0 1	C C	0	0 + N 2		8 (7	0 C 8 C	0		
56	1	Ć		ſ A	0 1	0 D	0 0 A (0 0	0	٦ 4	1 (1 0	n	п :	1 n 1 A	0 0	A N	04	, , ,	U	• 2 • 1	0	0 0	0	A 0		0 0	1	0	0	1 (, ,	٨	н,	۸ 0	0) (1) (1	1	; 0	0	0	с 3	+ 1	А О	C // A (0 2		
57	0	ļ	L (1) () 4	ō	D Q	i	2 / 0	• •	1	0 ()	• 1	: C 1 •	ò		П /	A () ()	0	•	1 E U 3	5 . 5 C	D 1	• (A #) 1	0	۸ ¹	. 0	1	0 ,	A	00	•	0 (C	1	0 0	0	0	,	•	0 0	0	0 ^	, P	, ,	*	1 E O 1) ^ 1 0		
58	۸ 0		,	1	n	Å	1 1	1 ,	0 0	2 2	A (A (0 .	۸ ۸	0 0	1 / 1 /	0 0 A 1	• •	1 1	0 / 1 /	4 1	L' A	6 A 1 •	0 10	0	t	1 A 0 R	•	D 0	0	0 0	A 0	с , ,	0. N 0	1	20		0 9		ß	0 • 0	C	С О	00	C C L	1 1	* . 3 /	, C		
59	1		א ה ס	0	2	0	8 4	0 0 0 0	۸ 0	2	n	0 C		• 0	0	1 A • C	, n	•	• (0 0 0	U A	, t 0 1	1.0	ĥ	n	1 0 C	0	0 0	•	0 D •	•	• K	, n	0 2	0	. 1 1 0	0	5:	'n	• •	0	0	, С. С. В	0	Р. 1	• •	F 0 D A		
69	c))		. ^ ^	0	0 1	/ 1 B) n	c ,	A B	0	, a n a	0	0 n	0	о о,	0	0 0	00	 	0 D	0 1 0 1		0	•	• •	A 0	0 1		0 0 A C	0	•	0. A	0 6	Å	0 0	0	, 0 A 1	0 2	, ,	,	•	0 0 0 .	0 0	A A	c r D () +) 5		

SOLN B 1690 MeV

***	ERAOP		.2330172	4 73,	/68/28.	10.07.19.	1	(RUMBLE)
F.	0254	.0325	. 1749	-0213	-0380	. 06.95	-0187	.0283	0328
	0245	.0296	2460	.0175	.0229	.1672	.0159	.0241	.1183
	.0151	.0194	1356	.0164	.0269	.5236	.016i	.0227	.2668
	.0142	.0199	.2362	+0282	.0275	0429	.0177	.0370	0301
	.0235	•0267	.2559	• 0285	.0369	• 52 54	.0204	.0268	.2743
	.0148	.0216	.1596	-0158	.0185	.1198	.0188	.0271	.4093
	.0148	.0213	.2202	.0136	.0189	.25%	.0282	.0310	.2777
	.0287	.0318	.0935	•0148	•0204	9738	•ú217	.0189	.0487
	.0224	.0239	0939	.0171	.0183	.0631	.0116	.0171	.0681
	.0181	-0171	.1682	•0185	.0193	.0081	.0151	.0141	• 3261
	.0298	.0326	.3155	.0275	.0306	.1665	-0195	.0206	1251
	.0283	.0226	.0868	.0249	.0228	.0576	.0172	.0172	-1141
	.0133	.0180	0340	.0211	•0179	د156ء ا	.0199	•0172	.1036
	.0180	.0141	.1668	.0235	+0339	3271	.0288	.0211	-1388
	.0184	.0227	0291	.0181	.0184	.0764	.0133	.0167	.0751
	.0137	.0147	0599	.0112	.0130	.1014	-0267	.0333	0983
	.0308	.0214	.2923	.0214	.0211	. 0587	.0208	-0174	.0794
	.0163	.0138	.0911	.0165	.0128	0047	.0136	.0119	.1077
	.0290	.0347	.3039	.0284	-0334	.2501	.0199	.0194	.2364
	.0223	.0266	.3910	-0123	-0097	1351	.0147	.0197	.5345

*** TMAT	PTX	.23301	724 7	13/08/28.	10.07.19	. 1	(RUMBL	E)	
т									
.2018	0.0000	.1606	0498	0724	-1334	.0000	0.0000	0180	1743
.0000	0.0000	2755	0584	.3997	1926	.0812	0559	.0000	0.0000
0155	1340	.3814	0219	1195	.1792	2959	.1966	0676	.0572
.0000	0.0000	.0000	0.0000	.0000	0.0000	.0006	0.0000	.0000	0.0000
.0000	0.0000	.0000	0.0000	,2108	 0022	.0000	0.0000	.0000	0.0000
.0000	0.0000	2918	• 0266	.0000	0.0000	.0000	U. 0000	.0000	0.0000
. 2020	0.0000	.0000	0.0000	.0845	.1696	.000	0.0000	.0000	6.0000
.0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000
.0685	.0946	0057	.3421	•0522	0987	.0000	0.0000	.0000	0.0000
.0000	0.0000	.0000	0.0000	1256	.0949	0627	.2196	-0000	0.0000
.0000	0.0000	.0000	0.0000	.0000	0.0000	.0000	0.0000	1561	.0149
. 2221	- 0609	. 0738	2302	2 .0000	0.0000	2777	- 0907	.0000	0.0000

-23-

SOLN B 1890 MeV

2.12

WAVE	સર 🗛	E(RE)	D(RE)	IN A	E(IM)	0(13)	PHASE	£		RE T	т ні		E (AMP)	E (ANG)	T**2	E(T++2)	WAVE
P33 FF11	1.00	.09	.07	0.00	.10	•09	٥	6		.2393	0.366	c	.0212	.6249		.057263	.010613	1
P33 SD11	.56	.18	.16	12	.17	.16	- 12	18		.3719	015	2	.:233	.0226)	.005395	.003958	2
P33 0513	42	. 9 3	. 03	.31	. 64	.33	143	4		1862	.140	1	.3149	.0165		.054319	.007152	3
P33 0013	1.04	.13	.11	42	.13	.11	-22	7		.1345	054	7	.0165	.6173		.021083	.005060	4
P33 FP15	52	. 15	. 85	73	.05	.05	-125	4		-,1235	175	2	.0125	.0136		. 145943	.005498	5
P33 U015	79	.10	.08	88	.11	.10	-132	5		1019	112	c	.0145	.0126	,	. 323063	.004607	6
P33 FF15	. 48	. 21	.18	1.77	.26	.17	75	6		.0336	.123	g	.0141	. 6137	,	.316485	.003826	7
P33 PP31	.26		. 64	01	.05	.34	-3	12			003	i.	.0117	. 0126	,	.003926	.001604	a
P33 S031	.71	.11	- 0.8	1.63	- 0.8	. 18	67	- 4		13903	209	8	. 6 . 9 9	.0145		.052160	. 664599	Ğ
7720 779	- 16	. 12		74	. 92		-124	Ĺ		0730	+.187	A	.0883	. 80.96		. 016955	. 002223	10
FJJ 0333	- 56				. 64	. 0.3	135			- 1341	. 136	2		0103		036006	603207	11
PJJ (~33		• • • •	• • • • • • • • • • •		.04	.00	110				1.25		10000	+ 0100		140630	002677	- 11
P33 0033	-4 6 8	• 17	• 0 5	• 95	• 0 0	• • • •	113	- 4		- 1177		6		.0095	-	• 019020		10
P33 FF35	-1.00	• • •	+ 00	1.01	• 1 4	• 10	132	2			100	C	+0004	+ 0 0 0 0 0	,			1.4
P33 FF37	-3.84	• 0 7	•05	+12	•14	•10	1/0			-+2007	• 3 0 6	2	.0050	.0103		.0/2241	.002720	1.
RH3 US13	.01	• 4 7	.07	29	• 11	• 4 8	- 67	15		+0821		3	.0165	.0116		.002060	.001771	. 15
RH3 FP15	-2.51	•14	•12	1.12	•19	•16	156	4		1/28	+ 077	2	.0090	012	9	.035830	.003474	16
RH3 US33	•17	• 27	• 05	1.31	. 05	• 0 4	83			.4257	.215	4	+	.0104	•	.042890	.003239	1/
RH3 FP35	1.65	•14	•19	-3.13	• 69	• 10	-66	. Z		.1143	257	8	.0657	.0088	1	.079511	.003259	10
RH3 FF37	-11.60	. 31	• 2 4	-8.19	.35	•30	-152	2		1851	-+098	7	•0042	.0062	2	.044021	+001769	19
RH1 SS11	-2.00	• 0 9	.08	.27	•16	.13	172	- 4		-,3138	.041	6	.6147	.0245	5	.100196	.009512	21
RH1 PP11	1.01	• 2 5	•23	3.07	.31	.26	62	5		1115ء	.212	0	•ú238	.0201	L	.057315	.010371	21
RH1 PP13	6.94	.13	•12	.12	• 27	• 24	1	2		.4861	.008	1	.0073	.0189	5	.230585	.066733	22
RH1 3531	49	.09	, 37	.79	.07	.36	121	£		ŭ758	.124	2	.6103	.0154	,	.021157	. 003092	23
RH1 0031	23	.21	17	1.51	.19	.15	99	8		0157	.104	5	•u128	.0147	,	. 011116	. 002870	24
SIG PS11	-3,51	. 22	.20	67	.28	.26	-169	4		3165	060	4	.0193	. 0249		.103815	.012815	25
SIG SP11	3.32	.54	.56	6.19	.42	. 44	64	5		.1463	.272	9	.0173	.0245	5	.095877	.611020	28
SIG OP13	7.40	. 51	.29	-2.25	.37	. 36	- 17	3		.3264	099	4	.0128	.0169	3	.116416	.008886	27
SIG ED15	-7.79		.50	-6.32	51	.52	-141	. 3		1831	148	5	123	6119	- a	.155602	005946	28
							-											
Ł,J			SIGMA-TOT	AL CH	ANNEL-	1		2		3		4		5				
0 7			1 8 7 1			777				6.0.2		107		0.05				
P1 64			1.021			1323		6 30		302		*1U/ 70E		•005				
51			2.439			•209		.029						.000				
03			L. (UU			.621				.491		1.025		.094				
F5			/.130			.500	4	.125		.444		3.294		.100				
05			.455			.192		• 2 5 3		+101		0.000		0.000				
P3			5.983			.010	1	.305		1.958		+020		.091				
F7			F . 585			• 143	1	065		+617		4.778		.383				
TOTAL			27.414			1.872	8	1.530		4.060	:	11.439		.742				
L,I,J,	ETASOL	JARE	SIGMA-TOT	AL	СНІ	sa	1		2		3		4		5			
					· · -		370						0 . 00					
P11	015	+ 4 2	1.6/1 +	062	1.5	2	.339		.897		435		0.000					
S11	.2091	131	1.301 +	- +061	4.5		• 212		+646		•444		0.000		0.000			
013	. 3493	344	2.141 +	- •091	12.2		•607		1.321		.213		8.000		0.000			
F15	.472	365	2,502 +	099	2.0		.589		1.453		.559		0.000	(0.000			
D15	.917	747	. 455 +	686	5 Ű.J		.102		•253		.101		0.000	1	6.603			
P13	.3776	561	3.035 +	085	5 8.4	•	0.000		1.012		2.023		0.000	1	.000			
TOTAL THIS	5 ISPIN		11.205				1.849		5.582		3.775		0.000		6.000			
P31	.954	321	.150 +	034	• e.a)	.001		.024		.013		.167		.005			
S 31	. 654	297	1.138 +	068	5 2.7	,	.008		+175		.102		.785		.068			
033	• 6 1 1	808	2.559 +	074	37.6	,	.010		.406		.224		1.825		.094			
P33	. 156	931	.948 +	082	2 0.0	,	.010		.138		.089		.620		. 6 91			
F 35	.541	367	4.528 +	164	• 6.6	1	. 011		.734		.389		3.294		.100			
F 37	476	971	6.885 +	170	n r		. 843		1.065		.617		4.77A		.383			
									- • • • • •									
TOTAL THIS	S ISPIN		15.208				.082		2.540		1.434		11.409		+742			

SOLN B 1890 MeV

-25-

ERRC	2 MA1	RIX	(4	MP ()	I) A.	19 (J)	P P	FA(1)	PH	7 (J)	/ A	<u>н</u> р(1) PH/	(J)	PH/	(I)	PHA	(3)).	KAU) ±		• Ú :	1105:	Lŀ	I YP Ei	<i>vo</i> li	INE =	2.6994-110
J V	1	2	3	ų	5	6	7	e	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	2.13
i	+1	- 	, A 1	AA • 1	A 0 0 1	AC A1	0, A 1	, C 0 G	0 6 1	, Q	00	01	00	, 0 03	o,	0 .0	с •0	.0	G G G	O G	DO O A	10	,0	C O	E1 00	•••	10	1A A	,
2	OA GA	+0)+	10 00	40 0,	Δ 0 0	01	00	.G 00	·,	00 •0	00	60 1.	0.	.0	0 0 A 0	0	 0,	,. G.		0A 2.	61 ,,	00 ,0	.0 0	, ,,	,0 ,1	A C A C	0	0 C	28×28
3	, A 1	10 00	+0 0+	AJ A	A. 2	,1 01	,0 A 3	3 C 0	C 01	• 1	•0 01	0, 00	,0 ,1	,0 .1	21 01	01 • J		. 0	.0 0,	• U Qû	0 • 1	0 01	:	,	00 • 0	0 00	A1 8,	0, 00,	E1101
4	A, Al	40 J,	А ЭА	+, ,+	,0 01	AO A S	01	°,	រា ៦០	60 1	, 0.	•0 00	01	, i	10 01	,, 00	···	000	:	0	C. 1.	,0 .0	•	0 0	10 •	Û D A	C 6 0 0	10 00	Mutsix
5	A0 C1	AD 2	۸ 2.	,0 01	++	00 00	C, 40	00 ,C	00 ,.	01	C 1	0.1	.0 00	0.1	C A 0 0	• , 01	00 0	,0 .0	0 00	,0	и , и	.0 01	.0 0.	:•	1 A 0 1	00	۵o ,	82 C	
6	44 01	ŋ 10	,0 11	04 6 4	00 20	+1 1+	0, 81	,. Û,	,C ,O	1	0 C 02	,. 30	6 01	0. 2	10	0, 0.	•ŭ ,û	00 0		1 ,0	1, ,J	Αū •1	00 0	,0 0,	,ŭ 0,	A0 00	0 D 0	0 A	
7	0▲ ,Ŭ	09 2.	• A 0 J	01 0)	СА , Ù	ов ,1	+0 0+	00 00	.1	01	co ,1	.0 ,1	0. Az	. 2	.1 00	02 02	0 0	• 0 1	•0 01	сс 90	00 C	î 1	• 6	':	.,	JA O	0 0 A A	A C B	
8	,C C D	.0 00	ე ეე	ں ,	0, 00	,C .,	00 00	+0 0+	02 12	A 1 10	01 2A	,А З.	30 C u	A () 1 ()	0, 0	•?	0 60	00 A 1	۰C ۵,	L نQ	ċ,	:.		2A 32	' o	,0 ,.	;	••	
9	00 1	.0 ,,	00 1	Où C	0, C.	00	, 1	01 22	+. .+	60 3	J, 01	A ù B û	,C 42	8A 13	0, ,	••	G. 16	01 01	00 •1	•0 •C	Cû	, i	С8 2,	о J	٥.	оа ,0	0 A	0 A 0	
10	,0 96	о. 00	1	9 01	,0 ,1	• 1	6 1	A 1 1 C	0 03	+0 0+	A0 •1	A1 A2	,J 82	A O 0 3	, J 	oč	01	00 11	01	,ŭ ,ĉ	,0 0C	•0	1A 00	2 A • C	ů 0,	03 • A	0. 0A	0 O A	
11	50 00	00 30	.5 01	,,	01	00	0, 01	02 1A	00 ,1	A. 01	+8 6+	.3	03	۵, 5	,c	00	1A Cu	40 01	UC UZ	۵۵ ۰	,A 01	.0 1	01	92 30	00	, 0 A	•0 09	08	
12	11	3.	,1	00	01	.0	01	, e A.	00	12	03	+8 8+	43 43	42 0 R	С,	00		1 1 1	01 00	ů	00 00	 0	•	00 00	0,	0 20	Α	0 A	
14	01 01	• 0	01	•1	03	01 0	.2	00	02 81	02 40	, 3 A	A3	8+ 0.	,4 +1	ò,		00 0	00 00	12 46	ů.	00	. ŭ	02 11	0 A	00 ú.	Â	0Å O	ов •С	
15	00 00	96 34	01 20	.j 12	01 00	• 2	2	05 00	A3	03	,5 ,1	32 0	84 ,0	1+	, +0	0. 00	C1	• 2 A	02	•ú 80	01	1 .0	01 02	•	;0 AB	Ă AA	08 A.	óā uu	
16	,	טכ ס	11 0.	01 ,0	A C . 0	,0 00	19 0	,	:	٥. ن	с о	,, DO	, ,0	, .c	0+ 00	0, +C	0.	,	•	е, 60	0 1,	1, AA	ů, C	, 0	00	10 00	o.	08 0	
17	00 0.	01 •0	1) •0	,0 ,•	,1 0	•••	02	,. 0C	01	, Ú D	0. 10	00 00	• 0	0. 00	٥, •	C+ 00	C +A	01 D1	0.	,0 00	0	,1 .0	0A •C	00 42	00 00	10	. J J.	0 C	
18	•••	•,• ,•	,u	ن م	,, ,,	0 0 0	•	04	00	10	A 0	10	A0	0.	, u А	, 0	D 12	+0	C,	А2 • •	00	,ŭ		-A	•0	00	00	••	
19	0 00		.1	•••	0 00		•0	• 6	0.01	,0 .1	00	• Ů	01	A0 02		0 • A	,0 01	C1	+A A+			0	80	00	OÅ	ċ	•0	0. AE	
20	00	02 4.	•0	0 00	,, C	15	00 00	0 C 0		,, 00	0. 00	.0	,. .ŭ	,0	08 0,	0, JO	0A 02	•	••	+6 6+	C0 12	81 01	00 0	C. 1.	,. 0,	E Ŭ O A	, A A O	1 A O	
21	00 0 A	J, 1,	0. 1	01	00	1, ,0	0 0 0	••	0	,0 00	,0 A1	00 00	0 0 0 ú	00 91	1 10	1A ,U	00	00 01	,0 .0	01 02	+C Q+	С, З	00 02	,. (A	80 ,0	00 08	0 4 A	,0 0 A	
22	10 00	30 0.	0 01	,. 00	.0 01	A. 01	ð 1	' :	•••	01	01	, j	.	, 01	.1 0,	А, А1	., Q	,. ú2	80	86 11	с ,3	+0 0+	,, 01	0 U 0	0 0,	1, 0A	O Ab	0. 08	
23	, ,	00	,.	••	•0 0•	3 0 C	 0.	,. .0	С2 В,	1û A0	40 A1	A Ū.	0 00	10 11	00 2,	D QA	.1 CC	0 A A 2	E1 02	00 0	0 G 0 Z	,0 ,1	+ù 3+	10 e A	ΰĠ ,Α	0 A	0 4 0	0 A	
24	0	,;	,	00 0	•	,0 0,	, ,.	20 A2	c C	2. AQ	80 20	,0 03	3	0. A	0,	0 0 0	A2 20	•8 A 1	0 Q Q A	01	,0 , A	აი ვ	18 Ja	+ A A +	ос	00 1	o, 	••	
25	E0 10	71	0. 00	1 0.	10 41	,0 0,	,,	' o	°.,	٥O ,	0 0	٥ ٥,	,0 .0	,0 ,0	А 80	00 00	00 0	• A 0	0 . A	,0 •,	£, 00	ůů ,	0, 0A	.0 ,0	*. •*	0 G 0 G	A A 0 0	01 0A	
26	. 0 , 0	44 30	00 00	5C 0	• ŋ 0	A0 00	0 A 0	0.	0, CO	ŭ. ŭA	0A	,0	0 D A C	0 4	A1 A0	01 00	,0	C A	,C	EC Da	08 08	10 , A	0 A	0 J1	00 00	+0 0+	01	A 1C	
27	10 00),	43 1,	00 10	0 ,	00 3	04	,;	.0 .A	00 •A	.C 08	, A	0 • •	00 00	A0		CA • A	00	00	,A AO	4 0 A ~	0A B	0 AO	ů. ,.	A G A G	00 10	+0 G+	A1 10	
28 ~	1 4 A	00 10	ιa ,0	00	9C 2	. С ,А	09	,0	• 0 • A	U U A	.C	,0 .A	.0 8	,U 08	03	90 90	0 A 0	. U , В	0A •E	1A 0	, U Q A	•8	. О , А	;	1A	A1 C	A1 10	•	

SOLN B 1890 MeV

2	•	/	4
• -		-	

малл.	RE A	1(11)	D (53)	ім у	C(IM)	0(IB)	PHAS E	ε	RE T	IM T	E(AMP)	F (ANG)	T**2	E{T**2)	IVAW
P43 P011	1.37	.1.)	•)7	0.00	.11	.)9	0	6	.2393	0.0000	.0241	.0270	.057263	.012137	1
033 0011	.50	.20	.16	12	.19	.16	-12	20	.0719	0152	.0256	.0254	.005395	.004412	2
P33 0013	?	• C +	.03	.31	.04	. 03	143	5	1862	.1401	.)164	.)188	.354319	.007907	3
P33 PP13	.00	.08	. 115	0.00	.10	.07	0	999	.0000	0.0000	.0185	.0229	.00000	.000341	4
P33 DD13	1.04	.14	.11	42	-15	.11	-22	8	-1345	~.0547	.0182	.0195	.021083	.005624	5
P33 FF13	-00	.26	.20	0.00	. 24	.21	0	999	.0000	0.0000	.0182	.0168	-000000	.000331	6
r33 FF15	- 52	.06	. 5	- 73	.06	.05	-125	4	1235	1752	.0138	.0156	.345943	.006084	7
P33 0015	79	.11	. 18	88	.14	.10	-132	6	1019	1126	.U169	•0159	•023063	.005421	8
P33 FF15	-48	.23	.18	1.77	-22	.17	75	7	.0336	.1239	.0157	.0159	.016485	.004265	. 9
P33 FF17		.19	.12	0.00	.22	.18	0	999	.0000	0.0000	.0130	.0152	.000000	.000170	10
P33 PP N	.24	.00	.04	01	.06	.04	- 3	13	.0625	0034	.0139	.0145	.0.13920	.001938	11
P33 5P31	. 7. ,	.12	. 18	1.63	. 09	.08	67	4	.0903	.2098	.0109	.0168	.052160	.005091	12
r3 1 05 13	16	.02	.)2	24	. 32	.02	-124	5	0730	1078	.0099	.0116	.016955	.002666	13
P33 0033	56		3	.56	.05	.03	135	4	1341	-1342	.0108	.0127	.036000	.004197	14
P33 0033	52	.09	.05	.95	.09	.06	119	5	0674	.1228	.0111	.0111	.019620	.003218	15
P33 PF33	• • • • •	•14	•1ú	0.00	.15	•12	3	999	.0000	0.1000	.0096	.0111	.000000	.000092	16
P33 FF 15	+ 19	* 1)4	. J3	0.00	.04	. 03	ა	999	.0000	0.0000	• 00 9 L	.0094	.000000	.000083	17
P33 0035	.00	.06	•)+	0.00	.09	.06	Û	999	.0000	0.000	. 36.83	.0116	.360909	.000064	18
P33 FE35	-1.60	-12	.)8	1.61	.15	.10	135	3	1122	.1126	.0101	.0094	.025259	.003318	19
P33 FF37	-3.84	•09	.05	•12	•17	.10	178	2	2687	.0082	.0062	.0117	.072241	.003364	20
DH3 PF11	• 00	.31	• 2 3	0.00	.44	. 31	U	999	.0000	0.0000	.0213	.0306	.000000	.000453	21
FH3 5011	.00	.73	.50	0.00	.80	• 63	0	999 999	.000	0.0000	.0237	.0259	.000000	.303561	22
FH3 PS13	.01	.03	. 07	29	•12	.08	-87	16	.0021	0453	.0190	.0129	.002060	.002092	23
EM3 (F13	•00	.31	.20	0.00	•37	• 22	e	999	.0000	0.0000	.0217	.0254	.000000	.000470	24
RH3 0013	.00	.50	.38	0.00	•75	• 54	0	999	.0000	0.0000	.0160	.0242	.000000	.000257	25
RH3 FF13	.00	• 3 9	• 63	0.00	1.16	. 92	U	999	.0000	0.0000	•0142	.0186	.000000	.0302.02	20
CH3 CP15	-2.50	.13	.12	1.12	.26	.16	156	5	1728	.0773	.0103	.0176	.035830	.003991	27
RH3 0015	• 00	•53	. 38	0.00	• 57	•41	e e e e e e e e e e e e e e e e e e e	999	-0000	0-0 200	-0187	-0183	.000000	.000350	29
PH3 FF15	•00	.30	· U 2	0.00	1.18	.87	ა	999	.0000	0.0000	.0128	.0189	.000000	.000185	29
RH3 FF17	.00	.84	.57	0.00	1.01	.67	0	999	.0000	0.0000	.0134	.0162	.000000	.000181	50
RH3 PP31	.úJ	• 2 4	.16	0.00	.22	.14	:)	999	.0000	0.0000	.0165	.0153	.000000	.000271	31
FH3 5D31	•00	•56	• 39	0.00	• 41	. 30	U U	999	.0030	0.0300	.0181	-0134	.00000	.000327	26
EH3 PS33	.17	.08	.05	1.31	.06	.04	93	+	.0267	.2054	. 30.91	.0129	.142890	.003863	30
RH3 PP33	•00	. 19	+11	0.00	.19	.11	U	999	-0000	0.0000	.0130	.0128	.000000		36
RH3 DD33	.00	.34	.23	0.00	•34	• 22	0	999	.0000	0.0000	.0110	-0112	.000000	.000121	
CH 3 CF 33	•00	+65	.50	0.00	.57	• 43	0	999	.0000	0.0000	.0104	.0041	.000000	.000108	27
RH3 FP35	1.65	•15	.09	-3.73	.12	•06	-66	2	.1143	25/8	•0.174		.079511	.004217	20
KH3 DD35	•0)	• 34	•17	0.00	.28	.18	3	999	.0000	0.0000	.0109	.0091	.000000	.000119	20
EH3 FF35	.00	.52	. 37	0.00	.60	.37	3	999	. 3000	0.0000	.0082	.0096	.0000000	.0000088	40
RH3 FF37	-11.60	.41	- 24	-6.19	.45	.30	-152	2	1851	0481	.0058	.0079	100106	011775	41
RH1 \$\$11	-2.00	•11	.08	.27	.20	•13	1/2	6	3138	.0416	.0181	.0307	.100190	011031	42
RH1 PP11	1.61	.4)	.23	3.07	• 36	-26	62		•1113	.212.7	.0237	.0207	210595	017049	43
PH1 PP13	6.94	.12	• 12	.12	• 34	• 24	1	د	- 4801	.0001	-0062	0210	.230303	0001747	
EH1 DD13	-00	-+8	.32	0.00	- 65	- 46	0	999	.0000	0.0000	.0128	.0211	-000000	.000165	45
RH1 0015	.00	.40	.23	0.00	• 52	- 38	0	999	-0000	0.0000	-0128	1158	.100000	.00.0133	46
CH1 FF15	•00	• / 2	•52	0.00	• 99	. 70	0	999	.0000	0.0000	0101	0140	000000	. 0001 0 3	47
FH1 FF17	• 00	.63	.40	0.00	-88	• 6 3		444	.0000	12.2	0124	0197	021157	- 003772	43
FH1 5531	43	•12	. 37	. 79	- 04	- 06	121		- 0157	+12+2	-0124	0201	.011116	.003763	49
RH1 PP3I	23	•29	•1(1.51	• 24	• 15	99	000	0157	0.0000	0130	0116	.000000	-000169	50
RH1 PP33	.00	-19	•11	0.00	•17	•10	ų v	999	-0000	0.0000	0123	.0106	.000000	.000152	51
RH1 0033	+ 30	• • 39	• 4 5	0.00	<u>د</u> و.	• 44	0	900	-0000	0.0000	.0113	.0071	.000000	.000127	52
PHL 0035	-00	•35	• 21	0.00	• 44	• 10	0	9.99	.0000	0.0000	-0087	.0082	.000000	.000076	53
MH1 FF35	•0•	•55	.40	0.00	• • • • •	• 34	0	9977	10000	0.0000	-0077	.0065	.000000	-060059	54
FE1 FE37	.00	. 48	. 32	0.00	.40	• 28	-140	444	- 3145		.0214	.0291	. 10 38 1 4	.014275	55
51G P511	-3.51	•24	-20	61	• 32	•20	~104	,	-+2103	2729	.0201	0200	.095877	.012870	56
S16 5P11	3.32	.65	. 56	6.19	.50	• 4 4	62	٥ د	•140J 3744		.0201	.0199	.116416	.009591	57
516 PP13	7.40	• 34	. 29	-2.25	• 4 5	• 20	-17	000	.0000	0.0000	.0237	.0223	.000000	.000563	58
516 PD13		1.01	• 12	0.00	. 45	• 1 3	-141	177	- 1931	1485	.0136	.0132	.055602	.006583	59
516 P015	-/./0			-0.32		• 2 2	-141	200	1031	0.0000	-0158	.0177	.000000	.000249	60
210 0412	.00	r 1.20	1.00	0.00	1.30	+ 70		779							-

60×60	Etrot	Matvix	page	
-------	-------	--------	------	--

FREAD	с н	4 1 1	RD	K		(۸M	F(I F(I		MP	(J) (J))												- 4	21	-			5	ΔD	-	6	σχ	.01 .01		241	10 4	FR	• ~ /በL3	IME	אי =	۲	30	88-	•232			
л• Ј	••					·			, ,		1.57	,			S	0	Lľ	V	В		8	90)	M	eV	'					-							- L N	101.1	J'11.					\overline{C})	10	_'
•	1	2	3 4	45	6	7	89	101	112	213	141	516	517	181	920	212	222	324	252	627	282	293	031	323	333	+35	363	738	394	041	424	4344	4454	464	1484	950	515	25	354	5 5 5	657	585	5961	° (\sum_{i}	, [J	
:	•	Ω A	• •) ^ • •	i A	۸ n	, D A A	2 6	n 0 9 0) 0	ບ ບ	0 C 0 C	ן טיי	U 1	, (,	1 0	0	, , ,	•	0 C	0	0 •	, 0	0 0	0 •	. 0	0 N	。 。,	0	ο.	0 0	1 2	2 A , 0	• ;	10),	0 C	n	0 •	, ,	ē	1 U A	0	0	•				
2	с 0	+ 0	1,) .) .	n B	n n	1 0 0	1 1	ņ	0 •	0 0). 1 (; :	0 •	,	, ,	1 ຄຸ	1	n •	n oc	n	0	, , ,	;	ò	, 0	,	0 0	1	, 1		• •	. A	ก	n	, ,	,	ċ.		ċ	n . c .	с • 0	0 0	,				
3	•	1	+ (s A	n A	٨	0 0 0	ē 1	υ.	,	0 A	а (9)	, , , 0	۰ n	0 , .	ກ 	ċ	2, A,	1 A	0	•	ò	00	•	; '	ن ه	0	, 0) 	•	, 	00	o.	0 I 0	, 0	• •	;	A	•••	:	. A	0	1 0	0				
4	00	J A	0	+ 1 1 1	۸ ۸	•	• 1 A 1	,			3 0	0.0	۸ • 0	0	00	0 A	с ·	n z	:	1,	A 0	•	ı, 0	A D	0	r.	•	0, 0,0		00	5 D	1 f B f		,	A .	, () 0)	n ,	:	1 0	o c n) 1 A	0 0 1	1				
5	A.	^	Λ	1 +	• •		0 0	٨	• (0	5	10	,	•	,	A 1	10	n	00		0		n	0	n	;	•••	•••	0 a r	0	0 0	0 0	A	0 0	0	0		:	1	• •		1					
6	1	n	ç .		+		 	0	, r		:	A	, ,	r	2	,	c :	n _	0	• •		,	ດ ເ		۔ د	•	0		, ,	• •		1 (0 0	0	10	•		0	0 0	÷	0 (a r) 1 0	0	•				
-	۰) ۸	n	A	, ,	,	•	, c	L	00	, 0)	U	а. • Г	, 1 0	C		. u	0	• •	:	۰ ، د ،	. 0	J	•••	• •	0	•••		• • •	.,	• 0		0 0	• 0 0 0	n,	••	• •	1.	0	•	0	• (o o	B	n				
е	, ,	1	, , ,	. с • г	• 1	, ,	0 A + A	. 2	ņ	•	D	n.	• 1 • C	ບ ວ	9 V	1 U U	0	υ A ο .	", 0	n c		n	n n	•	•	• •	ņ	0.	, U	о і г	n o	а.	- ^	•	. ປ ວ		•	:	, , 0	0	0	, 0 		2				
Q	1 1	2	i	r c e v	2 א יחי	• c	1 8 A +	- n	•	, . ,	0	•	00 0.	0 0	n r.	• • A	0 0	οο ο.		0 ೧	, ^ ,	0	, (,, 0	,	• • •	•	•	, , .	.) /	κα 0	1 C	тв 0	0	1 n.	。 ,(· ·	n 1	0	•	• •) A)	٥ ٨	0				
19	ر. 2	1	n . n	∧ .; , /)2 \	1	υ Π 2 ι	• 3	, ,	ι. .,	, ,	с 1	. o ,	' , n	۸ ۵ (0 0 0	A N	01 .1	n	n () ()) ()	•	0 C 1)		n	U	• •	, n	0. 0.	. 0	, i	. 0 0 а	A	0 2 0	•	, 0 0		۰۰ م	6 8	- (o	• 0				
11	n	0	.,	1.	• •	0 0	Λ1 C,	•	ני + ו	n So	•	0 (1	0 1 A	. 0	U f	n c	• 0	0.	•	• •	ם ו ה		. c)) 0	0	, 0 0 0	•	• •	 . n	, (0 0 0	o i	л 1 С 0	• 5	в 0 о	2	, 0 1 A	o ,	••• •••	1	, (n ,	ור הי	n o	0 ,				
12	1	n	ر.	, r	; ; , ;	n	÷ ن	1-0)	• •	10 +	2 N	в	Α C		с	1. 80	n	n n	,	•	, 0 , 0		י א ר ח	\ . т	1 0	ı oo	0	, (0 0 0	(0 n 0	•	• •		о, . р	00	חנ הנ	0 A	。。 。	0	о о.		•					
15	ñ		•	ō,	. (n	,	. r	2	•	ñ B	C A	, 0 0 A	A (Ř : n r	2	n	П	0	ó r o	1 ñ . 0		, i	i ī n	ī D	Ă	ō.	00	Ö Ä	•	•••		•••	_	2 0 0	1 /	1 1 0	•	ა ი	•	، ۱ م	י. חסי	•	•				
15	•		U	n i	• • •	,	•••	'n	1 4	0.0	•••	3	0 0 0 0 • 0		B	, , , ,	å	.;	ů				Ŭ.	эĭ	2	• •	o ,		2 0	1	•••	:	ο ΄	:	ĩ	0,	2	•	•••	•	. (5 0 	ō o	·				
14	•	0	0	n i	; •	٨		, ,	00	о о о о	B	1	1 0	2		4 • • •		•	•	n	• 0	•	• 1		Å	01	0	1 /	A 1		 	•	0 0	, ,	n ,	•	Î A	•	• •	•	υİ	n j	,	'n				
12	1	0	1	·, i	јд П	ò	9. 11. (• •	Λ -	ал 0-1		• ,	1 A 1 P		1 · 9	в,	ò	0 , 0 (0	o i	0.0	•	• • • •	. 0	Δ.	0	່ ນ	0	••	0	, u	0	. 0		0	0	0	4		ċ	•	, 0	•					
16	, 1	;	с •	e :	1 , n	n ,	•	, , ,	1	A () • 1	Α . Α	1	+ A • 1	13	2 A	1.		0 r	0	'	. 0	ō	; r	n A	•	•	0 . n	, 1	10	5	,	0	, u 0 0	•	, 1 ,	,	•	0 0	, 1	0	0	• •	'n	ċ				
17	J	, •		Λ : •	•••	•) •	0 . A (, , ,	1	04	. A	4 1	A + 0 0	A (B U	20 . ປ	0	ົ່	•	0	ο. ου	•	0 (0 (, c , c	1 0	• C 0	0	A	Α Α 1	ò	n. 00	•	υ C 0 .) .	00	i	1;	1	A 0 1 1	•	0	• •	A ,	•				
18	ن A	13	e.	, ,	, n o a	Δ	э. 11:		2	,) , 1	а А	1 9	3 A 2 ,	4 + 2	1 A	Λ, 1,	Ú N	ò,	0	ŋ	- 1 ,	J	, (,)	ЭА 21	4 7	A 2 0 1	8 8	0 ,	2,	0 1	ر. •	'n	00	• •	л.	ż	0 0 7 0	Z A	, 0 .)	ò	i	.,	0	0				
Ιo	•	•	n N	0 ,	• •	٨	י נו ו	1 0 1 A	n U	, 3 5 3),	1 C	2 8 0 0	3 1 9 0	+ R	0 0 0 0		• r),) 0	۸	, o	,	, , :	0	,	а. О.) 0	А 0	1 0 J	U	, o		, 0 . ,	•	' o	0 0	1 n.	л Э	n o , c		: •	c o	0	;				
2à	ſ	•	n	n B	01	'n	A O	, n	n 1	в : А А	а А Ц	۸ ن	۸ z 0 ,	2 A 0	n A	+ 1) 0 •	,	' č	;:	n	, ,	,		. 1 1	1 0	1 (A ,	1 A 0	A :	3 1 П	А 0	, ,	•		, o , ,	, 0	0 0	Α. Ο Λ	•	2 0 A	0	o i	, D	0	;				
21	1	i	6 7	A 10	, , 	0 0	1 / 0 (A O D	0	α, 0	; ;	,	C	• •	0 ,	0 + • 0	0 2	0 0 0 1	0	0 C	1 A	0	10	. ס	0	• •	, n 0 0	•	, o - ·	о O	0, 0	, 0	0 (A ,) N	0. 00	0 0	1 0	0 0	Å C	A 0 0	۸ ن	• 0 0	0 1	0				
22	ť	1	i 'n	п.	A D E N	n N	ינ •	ነ ቦ • በ	r •	n . n .	, A	•	1 (0 7 0	1	, 0 0 0	+ 0	в : Э ,	n ç . 3	1 0	12		1 0	0 A 0 C	0	•) U	•	. 0 1 ,	•	0 0 0), ,	A (A (00000	. 0 0 .	0 1	U Å	1	5.	i	.)	0. n j	•	•				
2.3	с ,	л . с	2	0 0	1 0 0 A	٨	() , (э. Га	U	n L	, ,	J	о с ,	• •	•	, o	8 0	+ 4 ^ 1	0 1 1	0	, 1 A /	, ,	^	n o • •	• P •	0 0	0	A •	1 . 0 r	0	0 1 8 0	01	。 ,(• •	. 0	0	1 n	;	• ;	0	۸ 2	Α, Ο Ο	ò	,				
24	c		5 7	2	0 n u	0		. 1 . ^	e		• .	;	n r	, o	0 •	. U	0	A + 1 (1	00	1	i A	0. 0.0	0	0 0	, , , ,	0	n 0 5 1	•	0 0 0 4) 1 A A	0 / 0 /	A A	. O	0 1	, A 1 ,	0	A . 0 3	, a	c	0 0 1 C	• •	1				
25		, r	1	, 1	n o A	:	0	• 1. 1. 1.	:	0		о •			ċ	• 0	C B	0 0) + 	۸ 0		0	В 1 -	0 0 0 A		• 0) 1 0	i	0 C		n 0 1	:	۸ (1	0 0 A	A 0 0 0	A	n o A	0	, (, . 	•	or , 1	, n	0				
26	ç)	1 1	с, оц	.)	•	. 1	0	•	, 	•	,	, o	n	•	1 4	n : o		+ A	1 3) C	1	0. 0.	0	00) A)	•	::	. 0 1 0	0 /)	; ; i (. B J A	1. 0.	0	ос с,	0	, r) ()) ,	:	0 0	0	0				
27	C f	>	1	1	n a . n		0 A	n A G	÷	。 ·	. n 1	ა ე	. 0		o	1 , C	1 A	, (0 ,	٦ A 2 ,	1	+ 1 D /	1 4	1 0	。. , 0	0	5	, n 0	0	•••	0	00) В 1-0	•		0 0 A	o	1 C B	0	• •	1 0 . 1	0	ос , 1	8 0	с •				
28	ŗ	n n	n	A	 r	•)	1) 1	, A	n	n .	u o	1	ა. ძ	, 1 0 0	0		2	1 (: C 0 1	0	1 4		0 I 0	00	0	0	ı.	•	o.	i	•	, A	0 1	1	ა	0	10,0	00	00		ა ა	0 A 1 P	A .	0				
29	ų	۔ بر	, ,		0, 0,	0	Г I	0 1 1 A	n	0		•	•	0 0	0	0	0	, :		C	A A 1 1	+		• •		•	0 4 1	0		n N I	, r	0	•	D A 1 2	1 0	•	•••		00	n o	:	. c		0				
30		,	, ä	1	, r	1 3	n n	- 1	;	0		,	, (, o	,	, 1	1		1 R	1	1 1)))]	•	0	n	0	• 0			00	11	L L	0	υ	1	0	1 4	1	0 0	אנ הו	A		0	n				
31			, o	,	• •	, 0 , 0	n		0	1	A		•	00		; 0	0	0	• - • •	0	0 1	· ·	0	+ 0	1				00		0 (ם ר	0	0	, A	1	0 0	1		4 0 1 0			•	0				
32	ſ	2	· •	۰ ۸	_ •	, u	•	n,	0	1 :		8		, A	٥ ٥	1.		0	, 0	•	• •	· ·		0 +	2 2		с . В А	в	2 4	0	•	, ,		•	, u		· · ·) A	: :		• 0		0	0				
33	(· ·	n n	e, ou	- 0 - 0	•	, .	0	0 1	. u p 2	, 5 . 5	0	1 A	•	1	0	0 I		0		, , ,	0	A 0	· •	0	A 1	. c	00	0	•	• •		•	::	A	2 . A #) 0] 1	:	or	, ,	ņ		,		
34		, ,	, D		υ. r	• •	•	0 0 0	• ა	• •	20 ,3	; 2 ; 2	Α.	, . . A	1	10) • •	0	υ,	0	• r),	0	а с А	0	•	o.	. 1	A U B J	, . L A	•),),	1 4	0 0 0	0 4	1				, 0 , 0	0	0		0 O				
35	(0 (D (;),	0	•••	,	n	••	, n	ი : ა	0		A . (0 0 2	A ,	а 0.	. 0	, D		• 0	• •	/ • 1 0	•	A C O R	J A 3 A	0	, . + ,	0	8 -	, 2 0	, (, :	, 0		•	• •	, c , p	2 (A I	", 2 0	:	ч 1 (, o o	0				
36	,) ر	•		••	. v) .	n c	, ,	υ,	•	в 1 , 2	. 0 : 0	о п (. в п.	•	0 A 0	A A	A I	00 ,	0	00	о с -	А 0	1 C) 1 (1	A •	, 1 , 1	- A	ви	а В 5 о	0 ,	0 0	ומו	00 0	0 0	. D) A	в : А (5 A) 1	0.	2 • 5 0	0 0	• •	. 0	•				
37				ο	• •	5 0	ņ	• •	۸	0.	. õ . o	1	0	0 0 A 0	A	0 . A 1			。 。	•	• (), , 0	•		, , ,	A 1	0. 1 A	• •	в ; в ;	2, .D	1	, , .	•	• • •	00	A	1.	, , , В	о . о .	о. А.		0 (• 0				
33	,	. u n	, ó , c	ñ	п.	, ñ , n	ō •	• •	ó •	1	, . 0 A	Ō	0 i 1	0, A 2	0	0. n.	o	0	аó по	•	• d	5 0 5		0 c 0 2	0 I 2 0	О В	вг	о) в	o / + (4 i 3 2	•	•	1 A	• •	• B	. A		1 A 1 1	0	0 0	0 0	•	• •	•				
	,	. ('nñ	·	, (0 0	ō	; o	Ā		ī,	0	Ā	1 B	•	ñò) . 	-	0 0 0 0	•	•	0	Ó	, A 0 -	Ā	0) ñ) .	D	• ī	,	•••	ა	. ō	0 A	ō	1	LĀ O	n . n	م م م	•	, i	1 • 1 -	ა ი				
<u>ب</u> و	ſ	r		'n		. 1	ΰ	ີບ	1	•	J A	0	1	0	1		ō	i	Ă,	Ţ	ō	• •	·	õ 3	i .	B	B C	ЪB	2 8	3 3		ο,	ø	•	ŏì	ō	ō,	. ĭ	ź,	A J	•	0 0	'n	,				

-27-

5 .00... Ĵ,0140,.0 40.00.00.0000000000000000,0000,01400 ,00 0 0000,,4000 0 00,10...,0,00 010000114 00,0,01010101 .400, ... F 9 0 0 . 60×60 42 P., NOA 1998 3 JOS . D., NIO 00, NIO 0, ., 0, A + B0., 00.A . UB 01.0 00100 .00.0.000201A..0, ..03 0.0 0,0 ..25A3000009.0 Matrix 47 0 ., 0. , 2028, 0. 000000 ..., 0. , 00001001A00, A 0.0.01 A10A01A00.,0 .001 0.008 ,A1..00,0 . , 1 50 0 P.O., 9.0 A G. 9.2 0 0 1 A 1 1, 00 L 1, 10, A , 2 A 1 A 0, 9 A A 1 , 0, O + A A , A 0 00, . 0 ... 0 0 0 0 A , 1 A 1 0 0, 0 1, 0 0, 0, , 1 B 2, 0 A 0 A 1 0 1 0 9 0 0 1 A 1 A 3 0 A , ... 0 52 0. 0 0).0., A1, A0120 01, 00000, 11A A0181010 0, A0.10AA+0800, 000 0 000 0000233A, 1.0 ., .0.., 101, A1A0 2 , .0000A0 21000 ., 0 53 . η <u>1</u>, 0...0 Δ, η ., . Λ, ... Ο Ο Π. Λ. ., ... Α, 30, Α Π + Α., Ο Δ, Ο ... η η Λ. Δ 1 3 Ο Λ, η Ο , η Ο , η Ο , η Ο 1 ΙΑ 3 Α η Ο ύ Π Ο - Ο Α Ο - ύ Α Β 1 Ο , Ο , ύ ,.Α Α υ, ΠΟ.Α Ο.Ο,Ο, Γ 218,ΟυΟ ΟΟ,ΟΟ+,ΟΑΟ ., .ΟΠ, Β10..ΠΟΠΟΓΛΟ.ΟΟΠ.Γ,ΠΟΑΣΟ,.Ο.ΟΑΟΟΒΟΠ 56 D.D.J.O. DOJ - 0400...04000. 60 θ, Ι,,Π,Ϋθ, ε, ,.Ο,,.,ΙΠΟΣΟΟ ΣΟΠΟΔΟΟ ΣΟ.Ο,Ο.Ο.Ο.Ο.Ο.Ο.Ο.Ο.Ο.2Ο+ Ι ΡΒΠΙΨΙΠ ,.,ΞΠ,ΟΟΛ.ΣΟ+Α ΑΒΟ-Α ΞΟΞΙ,ΟΠ Α ΣΙΒΞΞ ΟΠ.ΙΩΩΑΖΟΒΠΑ

SOLN B 1890 MeV

+** : 0000		434501	14 73	119/15.	14.27.03.	1	(RIIMBLE	1	
T T T T T T T T T T		• • • • • • • •		• • • • • •		· •			
.0241		. 12 15	. 1260	.)249	.0774	.0165	.0188	.1375	
.0185	. 1229	.1000	.)134	.0194	.0425	. 01 82	.0168	.0042	
.0151	.0143	1124	.0147	.0180	.0406	.0161	.0155	.0391	
. 113-)	. 152		• 2139	.0145	.0223	.0160	.0121	3172	
.0108	.0107	1726	.0102	.0132	.1684	.0110	• 0112	.0172	
.0096	.0111	. 0249	.).191	.0094	.0600	.0080	.)116	.2046	
.0086	.0108	0145	•) 162	.0117	.0967	.0213	.0306	.0622	
.0237	.0259	. U546	.0i28	.0191	.0814	.0217	.0254	.0563	
.160	•J242	1454	•)142	.0186	1183	.0092	.J182	.1619	
.0187	.0183	0581	.0128	.0189	2624	.0134	.0162	3397	
.0165	•0153	.1004	•0181	.0134	0671	.0131	.0088	.1317	
•0130	.0128	0744	.0110	.0112	0268	.0104	.0091	.0219	
.0103	.0035	• 35 07	.0109	•0091	4018	.0082	•0096	2710	
•19999	10172	2061	.0178	.0309	.0173	.0275	.0251	1644	
•0043	.0236	1323	.0157	.0211	0436	.0128	.0168	0619	
.0115	•0158	0442	.0101	•0140	1430	.0183	.0143	.3690	
•U2UU	.0166	.0611	.0130	.0116	.1818	.0123	.0106	1182	
.0113	.0071	• 1 + 5 +	.0037	.0082	2121	.0077	.0065	.0023	
.3215	+0290	763	.0285	•0220	2928	•0148	•019Z	.2673	
.0237	•0223	•1643	.0137	.0131	.0188	.0158	.0177	1295	
*** TPATE	X I X	.434541	14 73	/09/15.	14-27-03	. 1	(RUMBLE	• •	
Υ									
.2393	Ú.JOOO	.0719	0152	1862	.1431	.0000	0.0000	.1345	0547
. ŭunu	0.0000	1235	1752	1019	1126	.0336	.1239	.0000	0.0000
•0625	0034	.0903	.2093	0730	1078	1341	•1342	0674	.1228
.0000	0.0000	.0000	9.0000	• 30.00	0.0000	1122	.1126	2687	+0082
.0000	0.0000	.0000	0.0000	.0021	0453	.0000	0.0000	.0000	0.0000
.0000	0.0000	1728	.0773	.0000	0.0000	.0000	0.0000	.0000	0.0000
.0003	3.300	.0000	0.0000	.0267	.2054	.0000	0.0000	.0000	0.0000
.0000	0.0000	.1143	2578	.0000	0.0000	.0000	0.0000	1821	0987
3138	.3416	.1113	•Z120	.4801	.0081	.0000	0.0000	.0000	0.0000
.0000	0.0000	.0000	0.0000	0758	• 1242	0157	.1043	- 3165	0.0000
.0000	0.0000	.0000	0.0000	.0000	0.0000		0.0000		

2.17

APPENDIX I (reproduced from D. J. Herndon, Thesis, LBL-544, 1972).

In this Appendix, we wish to review another property of the variance matrix, E, and the second derivative matrix, D, where D is E^{-1} . E (or D) is positive definite. This is necessary to ensure a maximum in the likelihood, L, rather than a saddle point or a minimum.

Defining the origin of the parameter space to be at the maximum, we can write

$$\mathcal{F} = \ln L = \ln L_0 - 1/2 \chi^2$$
, (A.1)

and near the origin we can expand χ^2 as

$$\chi^2 = \underline{A}^{\dagger} \cdot \mathbf{D} \cdot \underline{A} . \qquad (A.2)$$

The surface, enclosing the origin, defined by $1 = A^{\dagger} \cdot D \cdot A$ is known as the error ellipsoid. This surface intercepts each axis at the points $A_i^{int} = (D_{ii})^{-1/2}$. (A.3)

This is sketched, in two dimensions, in Fig. A.1. It can be shown^{*} that the planes defining the circumscribed box intercept the axes at the points A_i^{max} , given by

$$A_{i}^{\max} = (E_{ii})^{1/2} \equiv \delta A_{i}.$$
 (A.4)

(The plane $A_1 = A_1^{max} = \delta A_1$ is the dashed line of Fig. A.1). In A.4 we have written

$$\mathbf{E} = \begin{pmatrix} \delta A_{1} \delta A_{1} & \delta A_{1} \delta A_{2} c_{12} & \cdots & \delta A_{1} \delta A_{n} c_{1n} \\ \delta A_{1} \delta A_{2} c_{12} & \delta A_{2} \delta A_{2} & \cdots & \delta A_{2} \delta A_{n} c_{2n} \\ \vdots & & & & \\ \delta A_{1} \delta A_{n} c_{1n} & \delta A_{2} \delta A_{n} c_{2n} & \cdots & \delta A_{n} \delta A_{n} \end{pmatrix}$$
(A.5)

* Rosenfeld, A.H. and Solmitz, F.T. Lawrence Berkeley Laboratory Group A Memo 753 (unpublished, 1972). and $|c_{ij}| < 1$ and are the correlation coefficients. Now (as is evident from Fig. A.1)

$$(D_{ii})^{-1/2} \leq \delta A_i$$
 (A.6)

2 18

and the equality holds if and only if $c_{ij} = 0$ for all $j \neq i$. Thus one can get a measure of how strong the correlations are by comparing $(D_{ij})^{-1/2}$ with δA_i .

In Table AI we compare δA_i and $(D_{ii})^{-1/2}$ for all the waves at a typical energy, $\sqrt{s} = 1690$ MeV. Note that there are three entries for $(D_{ii})^{-1/2}/\delta A_i$, which exceed 1.0, one of them by 20%! This difficulty presumably has to do with invalid approximations in the inversion of D. Remember that we fit in a space of two, too many variables; i.e., we use the real and imaginary part of all amplitudes, even though the overall amplitude and phase are undetermined. Therefore, D is singular, and we have to subtract two eigenvalues -- sec Eq. 14 of Miller's thesis, Ref. 4. Apparently approximations in this procedure can introduce errors at the 10-20% level.

.

		Re			Ir	n
	δĄ	(D _{ii}) ^{-1/2}	$(D_{ii})^{-1/2}/\delta A_{i}$	δA	(D _{ii}) ^{-1/2}	$(D_{ii})^{-1/2}/\delta A_{i}$
P ₃₃ PP ₁₁ DS 13 DD 13 FP 15 DD 15	0.0755 0.0206 0.1520 0.0589 0.1916	0.0630 0.0162 0.1281 0.0382 0.1021	0.834 0.786 0.843 0.649 0.533	0.0734 0.0208 0.1223 0.0392 0.1269	0.0528 0.0144 0.1036 0.0288 0.1269	0.719 0.692 0.847 0.735 0.551
PP31 SD 31 DS 33 PP33 FF35 FF35 37	0.0913 0.2283 0.0264 0.1006	0.0745 0.1944 0.0194 0.0689	0.816 0.852 0.735 0.685	0.0642 0.1589 0.0189 0.0295	0.0533 0.1346 0.0134 0.0327	0.830 0.847 0.709 > 1
RH3 DS ₁₃ FP ₁₅ DS ₃₃ FP ₃₅ FF ₃₇	0.0973 0.3184 0.980	0.0767 0.2347 0.0742	0.788 0.737 0.757	0.0882 0.1910 0.0979	0.0647 0.1493 0.0701	0.734 0.782 0.716
RH1 SS 11 PP13 SS 31 PP31	0.1111 0.3066 0.1549 0.5790	0.0976 0.2297 0.1198 0.4471	0.878 0.749 0.773 0.772	0.1356 0.2924 0.1414 0.4885	0.0974 0.2474 0.1037 0.4268	0.718 0.846 0.733 0.874
SIG PS11 SP11 DP13 FD15	0.2106 0.6360 0.3282 0.4801	0.1559 0.5678 0.2855 0.5859	0.740 0.893 0.870 > 1	0.1927 0.4441 0.3741 0.6085	0.1675 0.4621 0.3107 0.5367	0.869 > 1 0.831 0.882

TABLE AI. Comparison of δA_1 and $(D_{ii})^{-1/2}$ for all the waves at a typical energy, $\sqrt{s} = 1690$ MeV.

XBL727-3577

Fig. A. 1

I

- 44

III. DATA TAPES OF ALL THE $N\pi\pi$ EVENTS

All 160,000 Nn π events are available on 16 BCD data summary tapes, but from two different sources:

- 1) The π^+ p events at or above \sqrt{s} = 1810 MeV are available from Prof. Anne Kernan, University of California, Riverside, CA.
- The rest of the events may be requested from LBL (Rosenfeld) or SLAC (Leith) or Saclay (Mme. M. Neveu).

The tapes consist of 132-character BCD records, two such records per event. Each record was written with an 11F11.8 format. Each event consists of 21 words including the center-of-mass 4-vectors (P_x, P_y, P_z, E) for each of the five particles in the following order,

- words 1-4 : beam pion
 - 5-8 : target proton
 - 9-12: outgoing baryon
 - 13-16: outgoing pion of same charge as beam
 - 17-20: remaining outgoing pion
 - 21: "mark number" M, specifying the final state:

 $M = 2 \text{ for } n\pi^{-}\pi^{+}_{0} \qquad M = 4 \text{ for } p\pi^{+}\pi^{0}$ $M = 3 \text{ for } p\pi^{-}\pi^{0} \qquad M = 5 \text{ for } n\pi^{+}\pi^{+} \text{ [see 1), above].}$

The tape numbers and \sqrt{s} bins (1 file/bin) are:

1. DST131 1310 1340 1370 1400 2. **DST144** 1440 1470 3. **DST149** 1490 **DST152** 4. 1520

5.	DST154	1540
6.	DST165	1650
7.	DST169	1690
8.	DST173	1730
9.	DST177	1770
10.	DST181-	1810 1850
11.	DST1 8 9-	1890
12.	DST193-	1930 ^π Only
13.	DST197-	1970
14.	DST181+	1810 1850
15.	DST189+	1890 $\left\{ \pi^{+} \text{ only} \right\}$
16.	DST193+	1930 1970