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I. Introduction 

Some of the cross sections which involve one photon exchange can be quite 

complicated. The best example is the calculation of the W pair production, 

y + Z -+ W+ + W- + anything, which involves threefold integration of roughly 

3000 terms. With the advancement in the modern computer technique, even 

such a complicated calculation can be handled easily. However, it is often de- 

sirable to have a simple expression which shows all the gross features of the 

problem, such as the dependence of the cross section on the incident energy, 

outgoing energy, angle, mass, magnetic moment, radius of the target, etc. The 

way in which one can do this quickly was originally suggested by Fermi’ in 1924, 

who noted the similarity between the electromagnetic fields of a rapidly moving 

charged particle and a pulse of radiation. Based on this observation, Weizsacker2 

and Williams2 showed independently in 1934 that an incident particle with charge 

Ze, mass M, energy E = yM would produce the same effect as a beam of photons 

with a spectrum p (u) given by3 

- 

x << 1 
(10 1) 

where w is the photon energy, x = w bmm/y, bmin is the minimum impact param- 

eter, andK 0 andK 1 are the usual Bessel functions. The second expression is 

valid when x c 1, which is the usual case when y is large. 

The above formula, which is known as the pseudo-photon flux of the classical 

Weizs;icker -Williams (W. W. ) method, has enjoyed wide applications in processes 

involving one photon exchange in the past because of its conceptual and mathe- 

matical simplicity. However, it can sometimes lead to a numerical value which 
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deviates considerably from the correct one, mainly because it does not take into 

account the effect due to the rapid variations of the form factors properly. As an 

example, let us consider the pseudo-photon flux of a nucleus with a form factor 

G,” = Z2/(1 + t/d)2 to be used for the pair production of particles of mass m (see 

Appendix C, Eq. (C. 6) and (C.9) and also Eq. (III. 23)). 

where t up = m2(I+Q2. In the limit d ----f CO, i. e. , the case of point particle, 

we recover (I. 1) if we identify 

b min = 1.123/ ’ . (I-3) 

When d is not infinity, (I. 2) can be quite different from (I. 1). 

In an arbitrary one-photon-exchange process, if the initial target is unpo- 

larized and if the final states of the target system are not measured, the cross 

section can be written in terms of W,(t, Mf2) and W2(t, M$ of Drell and Walecka. 4 

Thus we must be able to write the pseudo-photon flux in terms of these two form 

factors D This was done in Appendix C. The result can be stated in the following 

sentence: “In the one-photon-exchange process, the target particle, viewed in 

the frame where it is moving with a great velocity opposite to the incident particle, 

is equivalent to a beam of real photons produced by an electron after it passes 

through a target of thickness (3/4) (a/n) X radiation lengths, where X is related 

to WI and w2 by Eq. (II, 19). ” It should be noted that our treatment of the pseudo- 

photon flux will be covariant, but the simple physical interpretation given above 

is possible only in the infinite momentum frame. Feynman’s parton theory5 of 

hadrons has its genesis in the Weizsacker-Williams method. Like pseudo-photon 

flux, the Feynman parton flux has a simple physical interpretation only in the 
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infinite momentum frame. In Appendix C, we also show that only the relatively 

soft component of the pseudo-photon beam is relevant in the W. W. calculation. 

Borrowing Feynman’s colorful parton terminology, 5 we may say that the W. W. 

method deals with the “wee photon” of the pseudo-photon flux. 

The object of this paper is to give a coherent derivation of this “improved 

W. W. method” and discuss its applications and accuracies in detail. 6 In Sec- 

tion II, we present the derivation of the W. W. method which takes into account 

the target form factors. The method is then applied, in Section III, to derive 

simple formulas for the pair production of particles with spin 0, i, and 1. Also 

in Section III, we present numerical comparisons of calculations for pair produc- 

tion of spin i particles using our W. W. method and the Born approximation. It 

is interesting to observe that for calculation of da/dRdp, our W. W. method works 

better for targets with form factors which go to zero as t - co (such as nuclear 

form factors) than those with form factors which go to constant as t --f 00 (such 

as atomic form factors), The reason is that in the W. W. approximation for the 

process y + Z -+ 1’ + 8- + anything, the cross section is a product of pseudo- 

photon flux mentioned above times the cross section for y + y + f+ + I-, with both 

initial y’s on the mass shell. The small correction due to one photon being off the 

mass shell is suppressed if the target form factor decreases rapidly with t. As a 

result, the W. W. approximation works better for the pair production of muons and 

heavy leptons than for electrons when calculating da/da dp near the forward angle, 

Even for electron pair production the result of the W. W. method does not differ 

greatly from the correct value (see Fig. 5) in estimating da/da dp. This slight 

difference disappears completely after the angular integration. Thus we obtain 

an expression for da/dp which is identical to the expression obtained by Bethe- 

Heitler” for production in the screened nuclear field and the one obtained by 
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Wheeler-Lamb8 for production in the screened electron field. In Appendix A, 

the kinematies near minimum momentum transfer are discussed. In Appendix B, 

we use an infinite momentum frame to derive a key formula, (II. 15), which was 

used in the derivation of the W. W. approximation. Appendix C derives the for- 

mula for the pseudo-photon beam intensity and discusses that concept. In Appen- 

dix D, we generalize the results of Section II to treat the energy-angle distribution 

of a particle b in an arbitrary one-photon-exchange process a+ Pi----f b + c + P f in 

terms of WI and W2 of the target and the differential cross section for the real 

processa+y-b+c. This generalization enables one to use our W. W. method 

to calculate processes such as v + Z + p+ o + anything, B f Z + P + Z + y + 

anything, etc. 

Let us now give in the following a brief survey of the literature on this sub- 

ject. The derivation of the W. W. method using the covariant perturbation theory 

was first given by Dalitz and Yennie, 9 but their main interest was the pseudo- 

photon flux of the electron in the electroproduction experiment. Later, Pomeranchukand 

Schmuskevitch 10 considered a more general problem similar to ours but they did 

not investigate in detail the effect of the form factors of the target. Also, in their 

derivation, the rest frame of the incident particle a was used, hence it is inappli- 

cable to the case where a is massless unless one derives the bremsstrahlung for- 

mula first and then uses the substitution rule. Gribov et al. 11 also gave the co- 

variant deriviation of the W. W. formula, but their derivation applies only to the 

calculation of the total cross section, not of the energy angle distribution. They 

also ignored the effects of the target form factors. tierall12 applied this method 

to calculate v + Pi --+ W + p + Pf. Next Jurisic and Stodolsky 13 derived this method 

in the coordinate system where the sum of the momenta of the produced particles is 

zero, thus generalizing the Pomeranchuk 10 et al. Is results to the case where the 

mass of the incoming particle is zero. 
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None of the above authors considered the effect of the form factors except 

ijberall’z who calculated the coherent production from the nucleus using form 

factors with polynomial approximation. Also, a detailed estimate of errors in- 

volved in the W. W. calculations was so far lacking in the literature. In order to 

do this, one has to know the exact value of the cross sections and this was done 14 

in 1972, With this result at hand, Kim and Tsai’ generalized the method of 

Gribov” et al. to include the case of the differential cross sections and also the 

effect of the form factors. It turned out that the resulting formula reproduces the 

exact values quite well. Since then we have applied the method to the pair produc- 

tions of the W bosons and also rederived our results with a simpler method which 

exhibits more clearly the physics involved and which, we believe, puts earlier 

derivations in a better perspective. In this paper, we are mainly concerned with 

these recent development. 

When one or more of a, b, and c in the reaction a+Pi - b+c+ Pf are the strongly 

interacting particles, e. g . , pions , one can relate the pion decay rates or pion- 

pion phase shift to the Coulomb production from the nucleus. 10,13 This so- 

called “Primakoff effect” will not be discussed here, Recently the W. W. method 

has been applied to the calculation 15 of e*+ e- -+ e* + e- + anything. We shall not 

consider this process here either. 

As far as the W. W. method is concerned, Eq. (D. 1) in Appendix D is the 

main result of our paper. However, there are many other useful formulas in this 

paper, which can be listed as follows: 

1. The energy-angle distribution of an electron in electron pair production near 

the forward direction is given by Eq. (III. 17) with X given by Eq. (III. 19). 

This formula is not as good as the more carefully derived formula given by 

Eq. (III. 1) of Paper A, but the discrepancy is small. 

2. The energy-angle distribution of a muon in the muon pair production near the 

forward direction is given by Eq. (III. 17) with X given by Eq. (III. 23) if the 
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target is a nucleus other than a proton. If the target is a proton, X given by 

Eq. (III;27) must be used. Since the minimum momentum transfer involved 

t min, given by Eq. (A. 5) for muon production, is not very large compared 

with the inverse of the nuclear radius squared, we need to consider only the 

elastic form factors. Therefore, these formulas are very good approxima- 

tions except at angles much larger than one characteristic angle. 

3. Equation (III. 17) can also be used to calculate the production of heavy leptons 

or the production of an electron or muon at angles much larger than one char- 

acteristic angle, provided the inequalities given by Eq. (A. 2) are satisfied and 

appropriate form factors given in Section II of Paper A 14 are employed to cal- 

culate X defined by Eq. (II. 19). 

4. Equation (III. 16) gives the pair production cross section of spin 0 particles. 

Since there are no nonstrongly interacting particles with zero spin, this 
\ 

equation is of academic interest only. 

5. Equation (III. 18) gives the W. W. version of the pair production of vrf bosons 

with an arbitrary magnetic moment. This equation is much simpler than the 

result16 obtained from the Born approximation which involves triple integra- 

tions of an integrand consisting of several thousand terms. We have not made 

numerical comparisons of this formula with the Born approximation, but 

Eq. (III. 18) shows very transparently the gross features of the cross section, 

especially its dependence on the magnetic moment, angle, energy, and mass. 
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II. Derivation of W.W. Formula 

A. Kinematics and Gauge Invariance 

For concreteness let us consider pair production of charged particles 

by a photon shown in Fig. 1. The treatment is generalized to other processes 

in Appendix D. In the Born approximation the cross section in Fig. 1 can be 

written as 

e6 1 d3p do= - 
ml5 

4k E / 
d3p+ 
E+ 

1 Lj.lv w 

t2 PV 
(II. 1) 

where the tensor W 
PV 

can be written in terms of the usual WI and W2 in the 

inelastic electron scattering as: 

W 
CLV 

= Mi2(Pip 

-@pv - c$p, /s2) WI. (II. 2) 

L 
P 

is a gauge invariant tensor. In our case it is symmetric in p and v . 

Four such independent tensors can be constructed out of three independent vectors 

P, P+ and q and gclv. Because we are interested in the limit t - 0 and we know 

that L 
PV 

is not singular there, it is convenient to choose each of them free of 

kinematical singularity at t = 0. We will choose the following set: 

Ll/lv = (S2/P* 9)PpPv + tP* qk/&) - P$, - P,qp’ 

L2/Av = @12/P+. 4)P+pP+v + @+‘a/&) - p+/..P, - p+ ,qp, 

L3/lv = [k-p pp-k~p,p+p+ -$+P -k-p+)1 C~--+vl 

and 

L4/m 
2 

= q g/&) - 4$, 0 @I. 3) 
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L can then be written as 
PV 

4 

L = c T.L. t-u. 4) 
PV J JPV’ 

j=l 

where the Tj’s are invariant functions which depend on the spins of the particles 

produced. For the productionof apair of spin $Y particles with no anomalous 

magnetic moment, they are 

k-p+- $t . 
T1= (k-p) WP+)’ 

p - &t 
*2 = fik. P) (k * P+) ’ 

T3 = 2m2 

4 * P)2(k * P+)2 
and 

w. 5) 

The integration with respect to the phase space of the unobserved particle 

p+ can be carried out in the rest frame of u = p+ + Pf as shown in Fig. 2. In this 

frame the integration can be cast into a convenient form 17 

t (u-m) 
2 

( 
j-j-yfr rz 

lJV ) 
1 max dt C 

4Mi 16 F;I t 
min 

PJM2 dMfZ ;‘d$+I-IVWFv) , 

i 0 

where (see paper A) 

U= [k+Pi-p)2]‘=[Mi2+m2+2Mi(k-E)-2k.p]i, (II. 7) 
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I 

and4 

t 
min 

=-- ~-p)2-m2+2E+s&s-Es)-2P+sPis, 

E +s = tP+ l U)/U = (u2 + m2 - Mf2)/(2u), 

kS = & - u)/u = (kMi - k. p)/u, 

ES 
=.(p * u)/u = (k - p + MiE - m2)/u, 

P +s 
= (E+s2 - m2)* 

P is = Mi(k2 -I- p2 - 2kpcos&u 

and 

t max = 4 P+sPis. 

(a- 8) 

(II. 9) 

The above expression for tmin is extremely complicated. We need an 

approximate formula valid when the energy is large and the angle is small. In 

the rest frame of u(u-frame), the minimum momentum transfer occurs when 

8, = 0. Since the laboratory system can be obtained by a Lore&z transformation 

along P> from this frame, we conclude that the minimum momentum transfer 

also occurs in the laboratory system whens+ is parallel to r- $. Using this 

fact we show in Appendix A,that tmin is given approximately by 

t min M tVn + 2A (tminB, 

where 

A= (Mf2 - Mi2)/(2 Mi> 

(II. 10) 

and 

(II. 11) 

-lO- 



It is also shown that at t = tmin, we have 

and 90 =,A . 

Near t = tmin, the increase of t is given by the purely transverse part: 

t - tmin 3 4x2+%2 E q; . 

(rr. 12) 

(II. 13) 

Comparing Eq. (II. 8) with the approximate expression (II. lo), we see one 

of the reasons why it is sometimes impossible to use the computer to calculate 

the cross sections. The largest terms in Eq. (II. 8) is of order k2 while (II. 10) 

gives an expression of order m4/k2 when A= 0, Hence there occurs a tremendous 

number of cancellations among different terms each of which is numerically 

large. However, there is another even more important kind of cancellation 

taking place. This is due to the gauge invariance. Let us proceed to study this 

effect. 

Because of gauge invariance, i. e. , q L 
P PV 

= 0, we may write the term 

proportional to W2 as 

Lo’ PipPiv/Mi2 = L”[P. 
1P + qpMi/(qz - So)1 [‘iv + CIv Mi/(qz - s)1/Mi2 

9Z2 

2 (II.14) 

= 
(4, - soI2 

(Loo + Lzz - 2Loz) + 
9.l. 

(4, - 90) 
2( COS2YL xx + sin2 ‘P Lyy)-. 

(It. 15) 

Here we have used the fact that Pi = Mi in lab. and s = qpos cp , 

qy = q1 sin ‘p with ‘P = azimuthal angle. Because of the t2 term in the denominator 

of (II. 6) (the photon propagator), most of the contribution to the integral comes 
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I 

from the region t Et min ’ 
Hence, we can use (II. 12) and (II. 133 to get 

t -I- A” 
Lpvp p /M2 $.$ min 

ipiv i Gin (Loo +L zz - 2Loz) 

+ t - tmin 

‘&in 
(cos2 ‘p Lxx + sin2 Y Lyy). (II. 16) 

The identity (II. 14) is true but mysterious. In Appendix B a more physical way 

of deriving this identity is given. 

The Weizsacker-Williams approximation consists of two further approxi- 

mation of (II. 16): First the term Loo f Lzz - 2 Loz is ignored and second 

L= and L 
YY 

are evaluated at t = tmin, in which case Lxx and L be come 
YY 

independent of Cp D Hence the resulting W. W. approximation is 

27r 
dv LpvPipPiv/M.2 M 

1 Lyy)t=t 
min 

(II. 17) 

which is obviously covariant. 18 The validity of the above mentioned approximation 

will be discussed in detail in the next subsection but first let us observe that 

Looy L oz and Lzz are all of order E2, so there must be huge cancellations taking 

place in order for us to neglect the term Loo + Lzz - 2 Loz. This fact, combined 

with the purely kinematical cancellations mentioned before, makes the computer 

calculation very dangerous if proper care is not exercised when dealing with the 

Born approximations. 
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B. W. W. Approximation 

Substituting (II. 17) into (11.6) and (II. l), we obtain the desired energy-angle 

distribution of the particle p in the W. W. approximation: 19 

a3 E 
w w = . . z (k-E)ktLin (- ; gpvLpv)t~tmin x, (II.18) 

where 

’ = hi$” $L;-m’2dMf2 [(t- tmin)W2+ 2tkinW1,. (I.I.19) 

min i 

In practice the condition t = tmin in Eq. (II. 18) is replaced by t = 0, in which 

case gpv LPV is related to the y + y d p + p+ process (see Appendix C). Notice, 

however, that the former condition (t = tmin) specifies the kinematics, 

5+//s - 5 (see the discussion preceding Eq. (II. 10)) ,whereas the latter (t = 0) 

does not. 

In the following, we shall discuss tie approximations leading to (II. 18) 

more carefully. We shall also discuss the upper limit t 
up 

of the t integral 

toward the end of this section. 

0 Cancellation of Longitudinal and Scalar Parts 

Let us understand why the longitudinal-scalar contribution D = Loo + Lzz- 2 Loz 

is negligible compared with the transverse contributions T E $(Lxx + Lyy) . This 

can be done easily with the aid of the explicit tensor decomposition given in 

Eq. (II. 3) and consider D and T in the rest frame of s E p + p+. The rest frame of s 

can be obtained from the laboratory system by boosting along the direction of the 

incident photon. In the laboratory frame, we have used the direction of k- 5 

as the z axis, which is different from the incident photon direction. However 
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the angle between them is small by assumption, hence it can be ignored in the 

Lorentz transformation. With this approximation we have Lxx-L& L z L’ 
YY YY 

and Loo + Lzz - 2 Loz M Lbo/y2, where y is the usual y for the Lorentz, trans- 

formation and is given by y = (E + ES/s M k/s. Now L&, L;,Y and Lb0 are 

roughly of the same magnitude because L’ is constructed from the vectors 
PV 

p’, p; and q’ together with g 
NJ’ 

The components of all these vectors have 

magnitudes equal to s/2 or less and the coefficients of g 
P 

have magnitude roughly 

equal to s2. Thus we conclude that Loo + Lzz - 2 Loz becomes negligible compared 

with &(Lxx + Lyy) when k2/s2 is large. Loo + Lzz - 2Loz is equal to the 

square of the difference between the scalar and the longitudinal matrix elements. 

The argument given above shows that these two matrix elements almost cancel 

each other when the laboratory energy of the incident particle is much larger 

than the invariant mass s of the produced particles. From Eq. (II. 16) we see 

that when A2 2 tmin, we need one extra condition for our approximation to be 

good, namely A <<k. This inequality comes about because the range of the t 

integration is roughly from tmin to s2 as will be shown later. Hence in order 

to drop the term Loo + Lzz - 2 Loz in Eq. (II. 16) we must have A2/y2 CC s2 

which is equivalent to A -CC k. In summary, the necessary and sufficient condi- 

tions for ignoring the longitudinal-scalar term in Eq. (II. 16) are 

k ” (stzt and A) . 
min 

(II. 20) 

These conditions are weaker than the conditions required to obtain the approxi- 

mate expression for tmin given by (A. 2). 

ii) We give here another method which also leads to Eq. (II. 1’7) without using 

the trick employed in Eq. (II. 14). This method is more straightforward but 
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tedius. Hence we only sketch the outline. Let us first define 

Aj(t)= -& 
/ 

2n 
d’ Ljoo(t, ‘p), 

0 
(II. 21) 

where L joo is the 00 component of the tensors defined in Eq. (II. 3). Since this 

quantity is nonsingular near t = tmin, it must have a Taylor series expansion: 

Aj(t) = Aj (tmin) + (t-tmin)+ -‘a . (II. 22) 

With the help of the expressions for L. 
JP 

given in Eq. (II. 3) one can show that 

Aj(tmin ) = L. (t . ) is indeed negligible and also ~00 mm 

(II. 23) 

The advantage of this method is that it enables us to see why the expression18 

(t - tmin) occurs in Eq. (II. 17) from the analyticity of functions. One is tempted 

to ask whether a better approximation can be obtained by making the next order 

expansion and include the term 

#2 
1 

2’ . ( ) dAi 
a t2 t = tmin (t - tmin) 

2 (II. 24) 

in Eq. (II. 17). However in order to be consistent we also have to expand Tj in 

power series: 

8T. 
Tj(t) = Tj(tminl + & t=t 

( > min 
lt - tmin) > (rr. 25) 

and keep the second term as well as the first. However keeping the second 

term is against the spirit of the W. W. approximation because this term depends 

upon the off-shell behavior of the interaction y + y - p + p,. 
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iii) Cutoff Function 

To complete our derivation, we must discuss the upper limit t 
up 

ofthet 

integration in (II. 19). We need a tup which is usually much smaller than tmax 

because if one examines carefully the exact expressions, the integrand is much 

smaller than the approximate integrand in @I. 19) when t > m2. Therefore, one 

must multiply the integrand by a cutoff function C(t) which is unity for t near 

t min and a rapidly decreasing function for t 2 m2. Two more complications 

arise for the function C(t) . First its form depends upon the spins of the pro- 

duced particles. Second and worse, it is actually different for different j’s 

in (II. 4). For the case of the photoproduction of lepton pairs (see Eq. (II. 5)), 

C(t) is roughly [ 1 + t/(m2(1 -t- a))]-’ or [ 1+ t/(m2(1 + Q)2)]-1 depending upon j . 

Notice that this gives a cutoff of order m2 which agrees with the classical 

estimate based on the uncertainty principle. 

We shall take the point of view that C(t) is an empirical function to be 

determined by the criteria that it gives the bestnumericalresults. The form of 

C(t) is expected to be most crucial when the form factor does not fall off 

rapidly at large t. The atomic screening form factor to be discussed in the 

next section is such a case. It was found that if we take C(t) = 0 (m2(1+Q)2 - t), 

i.e., t 
up 

= m2(1 + Q)2, then our result reproduces the Bethe-Heitler’s 

formula7 for da/dp. For nuclear or nucleon form factors which die off rapidly 

at large t, whether t 
up 

is chosen to be m2(1 + Q)2 or co, it hardly makes any 

numerical difference. In the application to be discussed in the following section, 

we use t 
up 

= m2(1 + Q)2. As for the meson production part of W1 and W2, the 

form of C(t) is crucial because the form factor is slowly varying. The choice 

C(t) = (1 + t/(m2(1 + a)))-l seems to give the best result for this case. 
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The concept of a pseudo photon beam is discussed in Appendix C where we 

have also put Eq. (II. 18) in a covariant and more compact form. 

III. Applications 

In this section, we apply our W. W. formula (II. 18) to the pair productions 

of particles of spin 0, 4 and 1. We also discuss the accuracy of the W. W. 

method by comparing the numerical results of the W. W. approximations with 

those obtained by the Born approximation given in paper A for the spin $ case. 

From Eq. (II. 18) we see that the problem can be divided into the evaluation of 

two quantities: 

1. The quantity X which involves only the properties of the target except 

in the upper and lower limits of the integrations and 

2. The quantity 

Fs zz (- + LpVgpV t = tmin f-In* 1) 

which involves only the particles produced. 

The subscript s refers to the spin of the produced particles. -LpVgpV is in 

general a function of t, k . p and k 0 p+, besides the mass, magnetic moment 

and quadrupole moment etc., of the particles produced. As explained previously, 

the subscript t= tmin is just our convention that in evaluating (-L pv gpY not 

only t should be set equal to zero, but also k . p+ should be evaluated at t= tmin, 

yielding the relation (A. 12). In general Fs is symmetric with respect to the 

interchange p - p+, hence it is symmetric with respect to k. p - k. p+. Let 

us therefore define two new variables A and B: 

A 5 k.p+k.p+ x m2(1 f Q)/[ 2x(1 - x)] 

and 

B = (k* P)(k. P,) w m4(1 + q2/[ 4x(1 - x)] , 

where Q = (ep/m)2 and x = E/k. 
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The expressions for Fs corresponding to spin 0, spin $ and spin 1 particles can 

be written in terms of A and B as follows: 

Spin 0 Case 

F. = m4A2/B2 - 2m2A/B i- 2 P-4) 

Spin + Case (no anomalous magnetic moment) 

From Eq. (II. 3) and (II. 4) we obtain, 

F, = - m4A2/B2 + 2 m2A/B - 2 + A2/B. 
2 PI. 5) 

Spin 1 Case 

20 Using the Feynman rules given by Lee and Yang, we obtain 

F1= m4A2/B2-2m2A/B+2+ -& (~4+8~3+8~2 - 32~ + 16)A4/B2 

- & (-p4+40p2-48@+16)A2/B 

- i@f 
24m4 

(-7~~. 12~ - 12)A2+ 2(~ - (III- 6) 

where p is the magnetic moment of the vector boson in unit of e /(2m). ~1 is - 
20 

equal to 1 + K of Lee and Yang. In Lee and Yang’s version of the quantum 

electrodynamics of the vector boson the electric quadrupole moment is not 

arbitrary but is given by - eK /m2. In Weinberg’s theory2’of electromagnetic 

and weak interactions, y W- W’ has the Yang-Mill type220f coupling which corre- 

sponds to K = 1, hence p = 2. When 1-1 = 2, terms proportional to m -2 and m -4 

disappear from Eq. (III. 6). Equation (III. 6) was derived with the aid of the 

algebraic computer program “Reduce” written by A. C. Hearn. 23 It should be 
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mentioned that the expression - i g LPV 
WJ 

with t # 0 is about two orders of 

magnitude more complicated than Eq. (III. 6). 

We note that in the limit k - 0, the three expressions for Fs given above 

coincide, except that the sign for F 
9 

is different from that of F. and F1. This 

is due to the fact that in the Compton scattering the cross section must be given 

by the Thomson cross section irrespective of the spin of the target when k - 0. 

The minus sign for F+ is associated with TV = -1 for the hole state. The angular 

distributions of y + y - p _ + p+ in the center of mass system can be obtained from 

Eqs. (C-2) and (II. 4, 5 and 6): 

das 
Y-v- P++P- \ 2 

\ 
dcos0 

/ 
cfn = 4k2 = Fs, 

cm 

@I. 7) 

where p2 = 1 - m2/kEm, and A and B in Fs are given by A = 2 kErn and 

B = k:m(l - p2 cos2 6 cm). In Fig. 3 we show these angular distributions at 

k cm = 3 GeV andm = 2 GeV. The angular distribution must be symmetric with 

respect to 8 cm = ;7/2, therefore only the distributions from cos 6 = 1 to cos 6’ = 0 

are shown. 0’ has more cross sections than 90’ in all cases. This is especially 

true for the case of spin 1 with p = 2, whereas for spin 0 and spin 1 with /J = 0 they - 

are almost flat. 

Integrating Eq. (III. ‘7) with respect to cos 8, we obtain the total cross section 

for y+y+ p+ + p as follows: 

0 Spin 

0 
(7 = -& (; f-1)+$]. (III.8) 
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Spin + 

($ = -co+ - ,“z”z Qn 1-p * l+p 
cm 

PI. 9) 

Spin 1 

2 = ITo+ aa2p 
12 kErn 

(P4 + 4P3 - 16p2+ S/-J) +Qn 3 

k2 
+ (/~~+8/~~+8~‘-32/~+16) cm 

m2 

m2 \ 
(-3p2-8p+4) jj Qn _ e + (p2+ 12/~+4) 

k2 
+ (-7p2 + 12/J - 12) - 

k2 
,“2” + (p - 2)2(1 - + p2) 2 1; 

The total cross sections are plotted in Fig. 4. m is fixed at 2 GeV. co and a’ 

decrease when k is increased except near the threshold. For the spin 1 particles, 

the cross sections increase as the energy is increased. The rate of increase of 

the cross section with energy is more pronounced for /J = 0 and /.J = 1 than that for 

p = 2. Let us consider the range of kcm relevant to pair production from a 

nuclear target. From A = 2kEm and Eq. (III. 2) we have 

k cm w m(1 + Q)+/[ 4x(1 - x)] ‘. (III. 11) 

Now most of the pair production of heavy particles occurs within Q ~1. We are 

also not particularly interested in x - 0 or (1 - x) - 0. Hence the range of k cm 

of interest to us is not very large, roughly m<kcm < 3 or 4 m. From the ratios 

of the cross sections given in Fig. 4 in this range of kcm, we can estimate the 
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cross sections for pair production of particles with spin 0 and spin 1 from 

the total cross sections for the production of spin & particles given in Paper A. 

Qualitatively we obtain: 

u” M 09/(3 to 4), (III. 12) 

u1 (p = 0) = 0+10 to 20)) (irr. 13) 

a1 (p = 1) = .4 (3 to 5), w. 14) 

and 

a’(/~ = 2) = u3 (8 to 10). (III. 15) 

Substituting Eqs. (III. 4, 5 and 6) into Eq. (II. 18), we obtain da/dgdp for the 

reaction y + Z- p + p+ + anything for particles with spin 0, & and 1 as follows: 

2x(1 _ 4x(1- 
(1 + Q)2 (1 + Q)4 1 

x , (m. 16) 

2x2 -2x+1 
(1 + q2 

+ - 
(1 + Q)4 I x , (III. 17) 

and 

2x(1 _ 4x(1 - x)Q 

(1+ g2 (1 -I- Q)4 

+ -& (p4+ 8/J3. 8p2 - 32~ -I- 16) 1 

(1+ Q)2 x(1 - x) 

- & (-p4+ 4op2 -48pt.16) ’ 
(l+Q)2 

(p - 2)2 
48x(1 - x)(1 + Q) (-3F2 - 8 /.L + 4) + 2(p2 + 12p -I- 4) x(1 - x) 

(cl - a2 
96 x(1 - x) (- 7p2 + 12~ - 12) + 2(/..~- 2)2x(1 -x) I 

\ 1 X . (III. 18) 
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We observe that (du/dJ?dp) for spin 0 and spin 4 become independent of m 

when the transverse momentum pB is much larger than m, i.e., Q = y2e2 >> 1. 

For the spin 1 case this would be true only when p = 2. When p# 2, the terms 

in the last curly bracket are independent of angle except through tmin in X. The 

origin of this peculiar angular behavior comes from the enerP-v dependence of 

the cross section for y + y - W+ + W- given by Eq. (III. 10). When kcm is large, 

oty+y--- W+ + W-) is proportional to kzm/m4 if p # 2 and it is proportional to 

l/m2ifp=2. In order to see whether unitarity is violated at high energy 

for the interaction y + y - W3‘ + W-, we have to decompose the matrix element 

into helicity amplitudes and project out each partial wave amplitude. This 

question is under investigation. It is very likely that the unitary bounds for 

partial waves are exceeded as kcm - co similar to the interaction24 e++e--+W’-+-W-. 

We conclude that if W? bosons exist and if they are produced electromagnetically 

via y + z - W+ + W + anything, both the total cross section and the angular 

distribution will be strongly dependent upon the magnetic moment. 16This can be 

used to determine p. 

X involves the integration of W1 and W2 with respect to t and Mf2. For 

many simple form factors given in Section II of Paper A, this integration can be 

carried out explicitly. In the following we give expressions for X corresponding 

to atomic, nuclear, nucleon and meson production form factors and discuss the 

accuracy of the W. W. approximations by comparing with the results obtained in 

Paper A for spin $ particles. 
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(i) Electron Pair Production (and Bremsstrahluny) 

Most of-the electrons and positrons are produced within a very small angle 

(a few units of m/E). For the production of electrons at such a small angle, 

the nuclear form factors can be ignored, but the atomic form factors must be 

taken into account. The atomic form factors have two parts: elastic and inelas- 

tic. The elastic form factor is a function of t only, but the inelastic form factor 

is a function of t and Mf. However, one can sum over all the excited states of 

the atom using the sum rule and obtain an inelastic form factor which is a func- 

tion of t only. Since we are interested in the range of t much small compared 

with mi, WI can be ignored. Thus we shall use the form factor of the form 

w2 = we21+ wy , 

where 

W;’ (q2, M;) = 2 Mid (M; - M;)G;l (t) 

Wpl (q”, M;) = 2Mid(Mf2 - M;) GFe’(t) 

where Gil (t) and G2 inel tt) are normalized such that 

G;l (w) = Z2, Gfel (m) = Z, and G;‘(O) = G2 inel(0) = 0 . 

We notice that both elastic and inelastic atomic form factors have t dependence 

which is exactly opposite to that of nuclear form factors. The elastic and inelas- 

tic form factors for ahydrogen atom are known exactly; they are 

G;‘(t) = (1 - F(t))2 , 

where 

Gyl (t) = 1 - IF (t) I2 , 

F=(4a:m; + y2 o 
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For other light Z elements, the atomic form factors can be obtained from the 

Hartree-Foch method or some improved version of it. For high Z elements 

Thomas Fermi model of the atom is adequate. 

It is shown in paper A that the correct energy angle distribution from an 

arbitrary atomic form factor can be written as 

+ - 
(l+Q)4 I[ x - 222 f(@Z)2) , 

where G2(m) = Ggl (m) + G?‘(m) = Z 2 + Z , 

(III. 19) 

el 
x=x +x inel = lm2(1+Q’2 [C@+) + Gy’(+)j ?+ki & , (me 20) 

min 

and f((oZ)2) is the Coulomb correction due to Bethe and Maximon 25 : 

% 1.202 z - 1.0369 z2 -k 1.008 z3/(1+z) 

where z = (~/137)~. The terms proportional to G2(m) and f((oZ)2) can be re- 

garded as the correction to the W. W. approximation which yields exactly the 

term proportional to x . The terms proportional to G2(m) are due to the off- 

the-mass shell correction to the reaction r+y -) e++e-. This statement is based 

on the following observations: 

1. We have also obtained a similar formula using a nuclear form factor 

for production of heavy particles and in this case we found that this term is 

missing if m2(l+Q)2 is much larger than the inverse square of the nuclear radius. 

Thus when the form factor cuts off the high t events this term disappears. 
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2. According to the argument given in Section II, the contribution due to 

the longitudinal photon diminishes as the incident photon energy increases. But 

the term proportional to G2(a) does not have this property, hence it is not due 

to the longitudinal photon. 

Equations (III. 19) and (III. 20) are probably the best justification for 

choosing the upper limit of t integration for 

esting to observe that after integration with 

proportional to G2(+ in (III. 19) disappears. 

x to be t 
up 

= m2(l+Q)2. It is inter- 

respect to the solid angle, the term 

Thus the expression for dcr/dp 

obtained from the W. W. approximation is exactly the same as that obtained from 

the lowest order Born approximation for both nuclear and atomic form factors. 

The energy-angle distribution of bremsstrahlung can be obtained from that 

of pair production by the following substitution rule: 

2cY3 - 
k 

= _ %k%i 
(l+Q)2 (l+Q)4 1 G2(“) 

I[ x - 2z2 f((a?z)2) 
II 

(III. 21) 

(III. 21’) 

where E is the incident electron, y=k/E, y=E/m, Q=y2 0: . x , G20 and 

f((aZ)2) are the same expressions as those in (III. 19). The minus sign in the 

- right-hand side of (III. 21) comes from the fact that in the pair production there 

is an odd number of antiparticles, whose states are normalized such that ti = -1. 

Integrating (III. 21’) with respect to the solid angle, we see again that the term 

proportional to G2(m) vanishes, hence we conclude also that for the bremsstrahlung 

the expression for dob/dk obtained from the W. W. approximation is exactly 
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the same as that obtained from the lowest order Born approximation. The term 

proportional to G2(m) in (III. 21’) has an opposite sign from that in (III. 19). For 

the pair production the coefficient of G2+) is negative when 2+3 l/2 >Q> 2-31’2 

and positive otherwise, whereas for bremsstrahlung the opposite is true. In 

Fig. 5, we compare da/dfidp for pair production from Be atom using the W.W. 

approximation and the Born approximation. The difference is all due to the term 

proportional to G2 (m) . Since for the pair production of heavy particles (m 2 0.5 

GeV) we do not have term proportional to G2+), the W. W. approximation for 

&/dSMp or &/dS’Jkdk actually works better for heavy particles than for electrons. 

For muons it is debatable whether G2(m) terms should be kept or not, because 

m2(l+Q) 2 is not in general much larger than the inverse square of the nuclear 

radius. Numerically if we replace G2@) by G2(m2(l+Q)2), we would get a better 

approximation. 

For a hydrogen atom one can obtain analytical expressions for cbr/dCJdp, 

do/dp, &/dSZkdk and do/dk using the form factors given previously. The results 

are given in Paper A. For other atoms, the results can be presented only 

numerically, except in the limits of complete screening and no screening. All 

these are reviewed in great detail in Paper A. In order to understand the 

qualitative features of the pair production and bremsstrahlung, let us use the 

simplest parameterizations of G;‘(t) and Gp’(t ): 

and 

- 26 - 



where a (or at) is a parameter obtained by comparing the resultant expression 

for xel (or xmel) with that obtained from a more accurate form factor in the 

limit of complete screening as shown below. From these simple form factors, 

we obtain 

22 2 at m (l+Q) _ 

aq2tmin+l 

, 

These two expressions reduce to 

el 
X = 22 

[ 
2b 2!zz!y - 1 1 

and 

inel 
X = Z 2QnW$LS-l 

[ 1 
in the no screening limit (a2tmin ’ 2 >> 1 and at thin >> 1) and 

el 
X = Z2 [2Qn am(l+Q) - l] , 

inel 
X = Z [2Qn atm(l+Q) - 1] , 

in the complete screening limit (a2tmin c 1 and aV2tmin CC 1). The no screening 

el limit corresponds to using the constant form factors G2 = Z2, inel and G2 = Z, hence 

any atomic form factor must give identical expressions for x e1/Z2 and x inel/Z 

in the no screening limit. In the complete screening limit, x el and x inel obtained 

from more complicated atomic form factors also have the functional forms given 

above. Thus, we can determine the constants a and a’. The results 14 are given 
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below: 

H-(Z= 1) a = 122.8/m e at = 282.4/me 

a=90.8 Z -l/3 /me a1 = 268 6 Z . -213, m e 

Thomas Fermi a = 111 Z -l/3, m e at = 773 Z -2/3 
‘me 

The simple expressions for x el and x inel are constructed so that they coincide 

with the correct expression in both the complete screening and no screening 

cases. In the intermediate screening case these expressions are 3% larger than 

the correct ones at most. The simple expressions for x el and x inel obtained 

above tell us the following: (1) the parameters Ifa and at I’ roughly represent the 

radius of the atom and the distance between two neighboring electrons respectively. 

These two parameters represent the atomic dimensions and they appear in x 

only as arguments of logarithms, therefore we can understand why x el and x inel 

obtained are so close to the real ones even though the form factors used are 

quite different from the correct ones. (2) We also notice that the angle, energy 

etc.. , of the particles appear also only inside the logarithm, hence x is only 

mildly dependent upon the values of these kinematical parameters. In other words, 

the dependence on angles and energies in da/dQdp and &/dGkdk are mostly 

determined by the cross sections of y+y - e++e- and e--e-t-y respectively. 

The use of simple form factors above is a generalization of work of Schiff 26 who 

first used this kind of form factor to simulate the elastic part of the Thomas- 

- Fermi form factors and obtained an approximate expression for do/dQkdk. What 

we have shown then are essentially that (1) the method can be used for any atom, 

not just the Thomas-Fermi atom; (2) the method can be applied to inelastic as 

well as elastic; and (3) it can also be used in the calculation of the pair produc- 

tion. The accuracy of this generalized Schiffts approximation is not worse 14 

than the case treated by Schiff. 26 
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ii) Coherent Production from a Nucleus 

When we produce muons or particles with heavier masses, the magnitude of 

t min is such that the presence of the atomic electrons can be completely ignored 

but we have to take into account both the elastic and inelastic nuclear form 

factors . For muon production within a few characteristic angles (characteristic 

angle is defined as 0 c = m/p), we need to consider only the elastic form factors 

of the nucleus. This part of the production is usually called the coherent pro- 

duction. A simple expression for X can be obtained if we use the simple elastic 

form factor given by 

W2(coherent) = 2 Mi d (Mf2 - Mi2) Z2/(1 + t/d)2 , (III. 22) 

where d = 6/(1.2 fermi x A l/3 2 ) = 0.164 A-2’3 GeV2. Substituting these form 

factors into Eq. (II. 19)) we obtain 

~(coherent) = Z2 
! 

(1+ 2b) In ’ + b 
-1 

1+ c-l 
- (l+ ;, z ) 

I 
(III. 23) 

where b = tmin/d and c = m2(1 + Q)2/d. 

In Table I, we give the numerical results of the W. W. approximation using 

Eqs. (III. 23) and (III. 17) for a Be nucleus and various masses of leptons. The 

results from Paper A are also shown for comparison. We see that our W. W. 

formula reproduces the exact results very well in a wide kinematical region. 

One should note, however, that all of the entries of Table I satisfy the conditions 

of our W. W. approximations given by Eq. (A. 2). How does the form factor 

affect the energy-angle distribution for the production of different heavy lepton 

masses? We show in Fig.6 da w* w* /‘doy;w; as a function of y e for 

various lepton mass m. duw.w. is the cross section for the coherent production 
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w. w. 
from Be using the formula just discussed and dad = ~ is the same cross section 

with a unit form factor. We see that the effect of the form factor is less than 30% 

for the muon production whereas for the production of heavier particles the effect 

is larger. 

Elastic Production from a Proton 

The integration with respect to t can also be carried out when the form 

factors involved are the so called dipole form, popularly employed to describe 

the form factors of the proton and the neutron. Approximating 

(1+7)-l by (1 - r) and assuming G 
mp 

= Gepx 2.79, we obtain: 

2 

W - - 2P 2Mp 6 (Mf2 
Gzp+ 7Grn 

- Mp2) 1+7- 

=2Mp d (Mf2- Mp2’ GEp 1) 

and 

wlP 
= 2 Mp d (Mf2 - Mp2)$ Gfp , 

(III. 24) 

(m. 25) 

where r= t/(4 Mp2), pp = 2.79 and G ep = (1 + t/. 71r2. Substituting Wzp and 

Wlp into Eq. (II. 19) we obtain 

(t-tmin ) (1+ -(/J2 -l)\ +2ttminTIJ2 

(1 + t/. 71)4 
(III-. 26) 

This integration can be done easily if we change the variable: (1 + t/. 71)-l= 1 - z. 

The result is 

X= (A-t4Xmin)Qn* + Xmin 1 - - l 
1 \ 

min \zmax ‘min I 

+ P - a - 6Xmin) (Zma - Zmill) 

+ (-B + ; A + 2 Xmin)(zkax - zkin) 

+ ~ ~ - A - Xmin) (Zig - “iin), P. 27) 
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where 

x min =. tmin/. 71, 

X max = m2(1 + Q2/. 71, 

Z min = xmin/(l+ xminl> 

Z =x max max/(l + xm,>9 

A = 1 + tmin (1 + Q/(4 Mp2’, 

and 

B = (~1~ p - 1) 0.71,‘(4Mp2). 

This expression for x is substituted into Eq. (III. 17) to obtain da/dpdfi 

from a proton. The comparison with the Born approximation is given in 

Table II. The agreement with the exact result is good up to m = 4 and k = 200. 

Even at m = 6 and k = 200, the result seems to be correct within a factor of 

tW0. 

Production Accompanied by Meson Production 

So far, all of our discussions were limited to elastic cases Mf2 = Mi2. We 

now consider the meson production case where A # 0. Let us immediately 

remark that our formula does not work as well as for the other cases because tmin 

is not so small as can be seen from Eq. (II. 10). Furthermore, the form factors 

do not decrease fast enough when t is increased. Accordingly, the form of the 

cutoff function C(t) is important as we discussed in the,subsection (II. B. iii). We 

have tried the cutoff function 

CNW = 
1 

(1 + t/[ (1 + I)Nm2]) ’ 
(III. 28) 

which was indicated by the analysis of the exact formula. As for the form factors 

W2 and W1, we have used the parameterization of suri-Yennie. 27 We have 
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tried Cl(t) and C,(t), both of which give correct order of magnitude but Cl(t) 

was somewhat better. In Table III, we compare our formula (with C,(t)) with 

the exact results. Considering all the ambiguities of our formula for this 

case, the numerical agreement is quite encouraging. 

IV. Concluding Remarks 

From the numerical results given in this paper, we see that the W. W. 

method does give amazingly reliable answers. For the spin i case, the W. W. 

method is about two orders of magnitude simpler to handle than the Born 

approximation. For the spin 1 case the W. W. method is about three orders 

of magnitude simpler. Therefore the W. W. method can be used to determine 

whether certain experiments are worth doing or whether certain complicated 

calculations are worth performing. .Even after the experiment is done and more 

respectable calculations are performed, the results of the W. W. approximation 

are often useful because they show the gross features of the cross section much 

more transparently than the more complicated calculations. Besides the 

derivation of our version of the W. W. method, we have also derived several 

useful formulas which are very convenient to have in the laboratory. For 

example, Eq. (III. 17) with X given by Eq. (III. 23) can be used to estimate the 

muon flux from an electron machine. [See also Eqs. (IV. 1 and IV. 5) of Paper A.] 

The information on the muon flux is important because it is a source of the muon 

secondary beam, a background to many experiments and also an important 

health hazard. We hope that various formulas given in this paper for the pro- 

duction of heavy leptons and W bosons are useful to the experimentalists who 

are trying to discover these particles. The reader is referred to the review 
28 

paper by Martin L. Per1 for the summary of experimental works concerning 

heavy leptons. We finally mention that many interesting processes in the 
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“Positron-Electron-Proton Colliding Beam Machine” being proposed by people 29 

at LBL and. SLAC can be calculated by combining the pseudo photon flux from 

the electro& or positron) and that from the proton given in this paper. 
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Appendix A 

Kinematics. near the Minimum Momentum Transfer 

As we discussed in Section II, t is minimum whenF+//&- s, therefore 

t min = (fE+-a-lF+l?- qo2 l 

Now we shall assume 

[Eandk-E] 77 [m, k.p/Mi, (k.p)‘andA]. 

(A. 1) 

(A. 2) 

Under these conditions it is easy to calculate 

~-i;*-Fl= [(k-E)2+2k.p-m2]6 M (k-E) [l+(k.P- i m2)/(k - E)21 

and 

,q = [ e _ E - qoj2 _ m21 i M (1( - E)[l - qo/(k - E) - $ m2/(k - EJ2J - 

Therefore 

(IF-- F‘I - p+)2 = (FE + q(j2 (A. 3) 

and 

Substituting q. = A + t/(2 Mi) into Eq. (A. 4) we obtain 

t min 
l- k-p 

Mix - E) 1 
+ 2n kq = t’ l/2 - min+ 2A(tjnin) . 

(A. 4) 

(A. 5) 

The conditions (A. 2) are necessary and sufficient conditions to obtain this 

expression for tmin. On the other hand under these conditions, tmin given by 

- 36 - 



Eq. (A. 5) is necessarily much less than k. p, which is precisely the condition 

required for the derivation of the W.W. approximation. Since k. p- m2(1+1)/(2x), 

one can express t min in terms of P and x: 

t = min ( *J2 + A & . (A- 6) 

Again choosing the Z-axis along F- F in the laboratory system, we can 

obtain the expression for t in the vicinity of tmin in terms of the laboratory 

quantities as follows: 

t = 4; + q; - 9; = (T;-F-s+)2 - 4; , 
where 

and 

M kq 1 2 
+ 90 + Yj qJP+. 

Since we are interested only in the region where k * p < < qf , the term 

5 q: /p+ can be dropped. We obtain 

Cl: M &in + 9: 3 

t = t min’q; 9 

and 

(qz - soJ2 = (k - ~)~/‘(k - E)2 = thin . 

(A. 7) 

(A. 8) 

(A- 9) 

(A. lo) 

(A. 11) 

Equations (A. 10) and (A. 11) are used in the alternative derivation of the W. W. 

approximation in an infinite momentum frame (see Appendix B). 
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The expression k l p+ at t = tmin can be written as 

2 
t 
min 

= k(E+ - p+ cosok) = $$- 
+ 

(1 + pf 0 12/m2). 

where ok is the angle between ‘I;‘and’F;-&. From the relation, 

SiIIOk sin 0 8 - = 
P IF-g =cy 

we obtain readily the desired relation: 

* * p+)t=t 
min 

~5.& @ok). (A. 12) 

It should be noted that this relation is invariant as long as the energies E and 

k - E are very relativistic and both angle 0 and 0+ are much smaller than 

unity. For example this relation is true also in the center of mass system. 

As mentioned in the text, this relation can not be obtained by vaguely stating 

that 
gclv 

L” is evaluated at t = 0. 
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Appendix B 

Derivation in Infinite Momentum Frame 

Here we shall derive (II. 15) using a frame where the target2i is moving 

with a great velocity in the direction opposite to the direction of (F- F)lab. 

Our infinite momentum frame is obtained from the laboratory frame (or the u 

frame) by boosting in the direction of (F- c),, so that the direction of the 

initial target momentum lies along - sz with E;/Mi = y >> 1. 

The prime is used to denote the quantities in the infinite momentum frame 

whereas the unprimed quantities refer to those in the laboratory system. Let 

us consider the current jP which is related to the tensor L of Section II 
P-iv 

by 7 
L N L 

. . 
PV spins of JpJLJ - 

k, P and P+ 

For the coefficient of W2, we are interested in the quantity: 

jPI?/Mi = j, = jbE;/Mi+ j:,p;!Mi = yjb+ pYjk 

M y(jb + j;> - j;&W, 

where we have used the approximation: 

p E (1 - 1/y2+ * 1 - 1/(2y2). 

Current conservation qP j , = 0 yields 
P ’ 

(B* 1) 

where we have used the fact that the transverse components of the vectors q P 

and j 
P 

are not affected by the Lorentz transformation. G and qk are related to 
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sb = rs(j - PY4, = -Y (92 - qo) + 4,/(2Y) 

and 

s; = - Pvlo -I- Ys, = Y (42 - qo) + (lo&Y) 

Substituting Eqs. (B. 3) and (B. 4) into Eq. (B .2), 

--f?-, 1 
Y(jb+ jL> F=: 

Y 
tq 

Z 
‘_ qo) 2y &Jb - qoj;) - giJLJ . 

L \ 

. 

we obtain 

(B. 3) 

(B-4) 

(B-5) 

P3.6) 

Substituting Eq. (B. 5) into Eq. (B. 1), we obtain 

92 

j 0 = qz - q. +j (jb- j;) - qztqO Ci Tl 

Substituting [ see Eqs. (B. 3) and (B. 4)] 

jb = r(jz - j,) + jz/GW 

and 

j; = rtjz - j,) + jo/CW 

into Eq. (B .6), we finally obtain 

-92 

jo = qz - q. (jz -job- gt, TL*Tla (B. 7) 
z 0 

Now this relation is actually exact because we can make y as large as we 

wish. Eq. (B. 7) is obviously equivalent to Eq. (II. 15), which we derived 

in the text by employing a somewhat mysterious gauge transformation (II. 14). 
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Appendix C 

Concept of a -Pseudo Photon Beam 

In our W. W. approximation the cross section for y + Z - Q+ + Q- + anything 

is proportional to ( - $g pvLPV)t = t * From k = p + p+ + q, this factor can 
min 

be written as a function of four variables: m2, k. p, k. p, and t = -q2. Under 

our approximation the statement t = tmin is equivalent to setting t = 0 and 

k. p+ = km p E/(k - E) when evaluating this factor. Equation (II. 18) can be 

written covariantly as 

dc da 

= 
yy-Q+ +I- 

d(p . k)d(p l Pi) d(p.k) $ Pi& P) ’ 

where 

da yy-Q++Q- = 
d@-k) 

qPv 
LPV 

2 
. 

/ t = tmin 

(C. 1) 

(C* 2) 

This equation says that if we know the cross section for the process y + Y--L Q’ + Q-, 

we can obtain do/dpdJ2 provided that we set k . p+ = k . p E/(k - E). From 

k - q = p -I- p+, we obtain 

k.q=-p.k-p+.k = -p-k k/(k - E). (C. 3) 

Differentiating Eq. (C. 3) with respect to E, we have 

d@.P)=- (Piok) 9 . 
(k- 9) 

Hence Eq. (C. 1) can also be written as 

d@* k;&kq) = 

do yy-Q++Q- 
d(p.k) f” 

(C. 4) 

(C.5) 
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where p is the pseudo photon flux with the covariant spectral distribution given by 

pd(k. 4).= (oV$ X ‘H . (C. 6) 

Let us consider the expression d(k . q)/(k . q) in some detail. If the photon 

represented by k’ = -q were truly on the mass shell, then 

k * q = -k . k’ = -kokb(l - cos Bkk,) 

and we would have 

d(k l Q/01;. 4 = dkb/kb (C-7) 

in any coordinate system where kb is the energy of the pseudo photon. 

However when the photon is slightly off the mass shell, as in our situation, 

this is no longer the case. For example in the laboratory system this 

relation is obviously not true. In the infinite momentum frame where the initial 

target is moving with a great velocity (j? --) 1) opposite to the incident photon, this 

relation is true even if q2 = -tmin # 0. Writing k * q = k (q’ 
0 0 - q’ cos Bk), we have 

k. = kty - PY) = k/W, 

= qoy - PYs, ‘OS ek - Y&o - s, cos e& (C- 8) 

and 

q’ cos ek = -m. + Ys cos ek- - Y(qo - qz cos ek) =- 4;. 

Hence k* q = 2koqb = - 2 kokb and we obtain the relation (C. 7). The direction of 

the pseudo photon flux is parallel to the momentum of the target particle in the 

infinite momentum frame. cos ok can be approximated by unity because at 

t=t min’ cos 8 k~ i - i et = i - i e2x2/(i - x)2 = 1. Using Eqs. (A. 11) and 

(C .8) we obtain the energy of the pseudo photon in this infinite momentum frame 

l/2 kb = -qb=Yk*p/(k-E)~y(tm’.) . 
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The maximum energy of the photon which can be emitted by a particle with an 

ultra-relativistic energy yMi is roughly yMi. Thus 

kb’kb max = (tm’.)1’2/Mi . (C. 10) 

This quantity is very small compared with unity under the condition (A. 2). 

Hence we conclude that only the relatively soft component of the pseudo photon 

beam is relevant in the W. W. calculation. Using the concept of the equivalent 

radiator introduced in Section IV of Paper A, we may summarize the contents 

of this appendix as follows: “In the one photon exchange process, the target 

particle, viewed in the frame where it is moving with a great velocity opposite 

to the incident particle, is equivalent to a beam of real photons produced by 

an electron after it passes through a target of thickness (3/4)(a!/n) X radiation 

lengths. ” 
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Appendix D 

Generalized We. W. Formula 

Our results can be generalized to the treatment of an arbitrary one photon 

exchange process, 

a + Pi - b + c -I- pf, 

in terms of W1 and W2 of the target and the differential cross section for the 

process a + y - b + c, where particle a is no longer massless, ma # 0, and 

the particle c is no longer the antiparticle of b, mb # mc. As far as the deriva- 

tion of the W. W. formula is concerned, all of our arguments go through if we 

replace kp by a p, Pi by bp and~,~ by C~ and use a different LQpv 

L3/J* = (q.bcp - q. c bJ(q. b cV - q. c bV). 

The generalized version of Eq. (C. 1) is 

do(a + pi -b+c+pf)- 

I d(a . b) d(b l Pi) = w.w . [ 

1 

c11 X 
- (D.1) t=t 

min 
~ ““i 

Equation (D. 1) can be derived under the conditions 

E2a > > [ (a + b)2 and rn:J , 

(a - b)2)6 and 
rn: - (a - b)2 

Mi 
_ and 

Eb > > mb . 

Also under these conditions tmin can be written approximately as 

t = 
min thin + 2a(tmin)” , 
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where 

A = (h$- M;)/(2 Mi), 

and 

(V.&’ = [a-b - i(rnf+ rnt - $,I /Pa - Eb) . P. 3) 

The subscript t = tmin in Eq. (D. 1) means that when evaluating the cross 

section dg(a + y - b + c)/d(a . b), not only the photon is put on the mass shell 

(t = 0) but also the momentum of particle c has to be set parallel to z- 2 in 

the laboratory system. The consequence of this condition is the approximate 

relation: 

q. a/Es = q. b/Eb = q l c/(E, - Eb) = (tmin)’ . P. 4 

Equations (D. 3) and (D. 4) enable us to write do;l/d(a * b) in terms of the variables 

Ea’ Eb andavb. 

i 
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m=O.1056 

k= 20 

p=8 

1o-31 Cm2/GeV/‘sr 

Ye Born W.W. 

0.0 1584 1543 

0.6 1032 1088 

1.2 310 317 
I 
g 1.8 84 31 
I 

lo-32 Cm2/GeV/sr 

Ye Born W. W. 

0.0 1116 1022 

0.6 728 748 

1.2 231 242 

1.8 70 70 

- 

7 

Elastic Production, &/dpdQ from a Proton 

1o-34 Cm’/GeV/sr lO-36 Cm2/GeV/sr lO-37 Cm2/GeV/sr 10m3’ Cm’/GeV/sr 

m= 0.5 

k = 100 

p = 40 

lo-33 Cm2/GeV/sr 

Born W.W. 

1068 1069 

686 695 

174 173 

38 37 

Table I 

Coherent Production do/dpdQ from Be 
m= 1.0 

k = 100 

p = 40 

lo-35 Cm2/GeV/sr 

Born W.W. 

3274 3280 

1882 1900 

345 345 

46 46 

m= 2.0 

k = 200 

p = 80 

1O-36 Cm’/GeV/sr_ 

Born W.W. 

2228 2235 

1126 1135 

143 144 

12 12 

m=4.0 m = 6.0 

k = 200 k = 200 

p = 80 p = 80 

lO-38 Cm’/GeV/sr 10 -40 Cm’/GeV/sr 

Born W.W. Born W.W. 

1136 1162 1530 1682 

337 348 360 387 

15 15 11 12 

Table II 

Born W.W. Born W.W. 

950 947 3845 3978 

Born W.W. Born W.W. 

I 345 7 3659 6485 8 130 

619 658 2401 2585 2075 2262 3062 4204 

181 186 600 638 438 497 271 499 

47 46 124 135 73 - 90 2 7 

10e4’ Cm’/GeV/sr 

Born W.W. 

2805 4957 

586 1382 



Ye 

0.0 

0.6 

1.2 

1.8 

Table III 

Continuum Production, dg/dQdp, fcom a Proton Target 

m = 0.1056 

k = 20 

p=8 

1O-31 Cm2/GeV/sr 

Born W.W. 

2.758 1.813 

1.725 1.621 

0.800 0.755 

0.420 0.306 

m=0.5 m = 4.0 

k= 100 k = 200 

p = 40 p = 80 

LO-33 Cm2/GeV/sS lO-36 Cm2/GeV/sr 

Born W.W. Born W.W. 

9.734 6.834 2.509 2.428 

5.920 5.509 1.202 1.263 

2.529 2.064 0.118 0.115 

1.096 0.663 0.001 0.001 

m= 6.0 
k = 200 

p = 80 

wO-37 Cm'/GeV/sr 

Born W.W. 

1.141 1.250 

0.222 0.254 

0 0 

0 0 
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FIGURE CAPTIONS 

1. Feynman diagrams for pair production. The segal diagram (the last 

diagram) needs tobe considered only for the pair production of particles 

with an integer spin. 

2. The coordinate system used in the integration over the unobserved particle 

P+ - The subscript s refers to the rest frame of u = p++Pf . 

3. Comparison of angular distributions in the center-of-mass system for the 

reactions y+ y -p++p- for various values of spin and magnetic moment 

of the final particles. 

4. The total cross sections for the reactions y+ y - p+ +p- for various values 

of spin and magnetic moment of the final particles. 

5. The energy angle distribution do/da dE of the electron in pair pro- 

duction from Be, x = E/k. 

6. The effects of the elastic Be form factor on the energy angle distribution 

in the production of a lepton pair. 
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