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Abstract 

The distributions of the magnetic field inside and around a superconducting 

flux exclusion tube due to currents induced in the material by an external mag- 

netic field are examined. A simple macroscopic model for the superconductor 

is assumed, based on the concept of a field-dependent critical current density, 

and London’s equations are used to calculate the magnetic potentials in the three 

regions of interest. The magnetic field inside the tube was mapped using an 

electron beam, and the results compared with the calculations. It is concluded 

that the major contribution to the magnetic field present in the tube can be ascribed 

to the induced dipole and sextupole current distributions in the superconductor. By 

contrast, the effect of direct field penetration through the narrow slits in the struc- 

ture is very small. 

(Submitted to J. Appl. Phys. ) 
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INTRODUCTION 

In previous reports, 122 we described the construction and the application of 

a magnetic flux exclusion tube 4 meters long and 1.3 cm in diameter to provide a 

field-free electron beam path through a 1-tesla transverse magnetic field. The 

general arrangement of the high-energy physics experiment is shown in Fig. 1. 

The present paper examines the magnetic fields produced inside and around 

the superconducting tube by the currents induced in the superconductor by the ex- 

ternal magnetic field. Although tests with sample tubes indicated that our structure 

should have been capable of shieldingexternal fields in excess of 1.5 tesla, and al- 

though the apparatus was designed with a sufficient safety factor to exclude fields 

greater than these, the high-energy experiment had to be run at 1.0 tesla as we 

found that about 0.5% of the external field did in fact penetrate into the field-free 

region in spite of all our precautions. In order to determine the origin of this 

penetration, we made a series of measurements on the apparatus using the elec- 

tron beam and we have calculated the relevant magnetic fields. We are able to 

account for the observed results and we offer some suggestions for reducing the 

internal field in possible future applications of this type of apparatus. 

As the construction of the tube has been described elsewhere, we summarize -~ 

only those features which are essential for this analysis. The tube consists pf 

two half-cylinders formed from a number of layers of Nb3Sn tape, and separated 

from each other by two narrow slits as shown in cross section in Fig. 2. If we 

imagine the plane containing the two slits to be inclined at a small angle 6 with 

respect to the external field zo, then we could speculate that the internal field is 

due to flux penetration through the slits. This, however, is too simple and inac- 

curate an answer. It turns out that the internal field is due to a superposition of 

a dipole and sextupole distribution in the current density, and, moreover, the 
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field is approximately independent of the width of the slit. The current distribu- 

tions are a direct consequence of the boundary conditions. 

THE THEORETICAL MODEL 

In order to examine the relation between the current density and the local mag- 

netic field in a superconductor, we make use of London’s equations and apply them 

to Bean’s picture” of a hard superconductor. This model assumes that the super- 

conductor has filamentary structure capable of sustaining lossless macroscopic 

currents up to some critical current density, which is a function of the external 

magnetic field. Moreover, this critical current could be a direct consequence of 

Ampere’s law as the flux is progressively driven into an inhomogeneous supercon- 

ductor, or it could be, for example, an intrinsic property of the sponge walls in 

the Mendelssohn model. That is to say, it is not important to the present calcula- 

tion to assume the detailed nature of the process generating the .current density. 

We solve London’s equations 

F x:s= -z 

v x v x T= - T/A2 (1) 

h = Me/n e2 ~1, = (A/p,) 1’2 

where h is the London penetration depth, n the number density of electrons and 

the other terms defined as usual. 

(a) The problem can be treated as two-dimensional because the field external 

to the superconductor varies slowly along the z-axis of the cylinder. 

(b) The permeability of the superconductor is equal to po. 

(c) The current density 7 is quasi-constant in r between the limits R- A 

and R, the external radius of the tube. Here A is the thickness of a 

superficial layer just sufficient to reduce the local internal field to zero 

and it can be regarded as being a field-dependent penetration depth. 
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(d) The slit width between the two cylindrical shells is small compared to 

the actual thickness of the superconductor, so that direct flux penetra- 

tion does not take place. 

Before proceeding further, we should like to comment on the validity of 

assumptions which are the basis of our calculations. First, the assumption of 

a constant current density across the thickness of the superficial layers with 

infinitely sharply defined boundaries on the current density versus distance curve 

is only approximately correct. There must always be exponentially decreasing 

regions on the curve. This has been recognized by Bean4 who, has shown that the 

assumption will remain asymptotically valid provided the field-dependent penetra- 

tion depth A greatly exceeds the London penetration depth, which is certainly the 

case in the present application. Second, the restrictive condition on the slit width 

is not as severe as would appear at first. As we will show in a subsequent section, 

the field can leak into the shielding tube when the width of the slit is much larger 

than the London penetration depth. 
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SOLUTION TO THE BOUNDARY VALUE PROBLEM 

There are three regions in which to calculate the potentials, and because 

the current density is in the z direction, the vector potentials are also in the z direc- 

tion. Internal to the tube, we expand the potential as: 

co xi =Gz +DnsinnB 

n=O 
(2) 

2 = 2 nrnB1 (Cncosn8 + Ensinn@) 
n=l 

This satisfies V X v Xxi = 0 and Ai is regular at r = 0. 

The external potential is composed of two parts, one due to the external field (B,) 

and one due to the current distribution: 

xe=Gz r(sin 8 cos 6 -cos 8 sin8)+ AncosnO 

I L 
(3) 

axe 
- = Bo(sin 8 cos 6 - cos 6 sin6) ar - 2 -r-n+-i (AncosnB +BnsinnB) 

n= 1 
where 6 is the angle between B, and the x-axis as shown in Fig. 2. 

This is regular at r = cc, contains the uniform dipole field, and satisfies _ 

vxvx-z=o, 

Inside the superconductor, the potential has the form: 

ccl 
-Xs=Bz @ncosnB+sinn6)+ezr2 

CC 
n=O 

This must satisfy the field equation V x V x xs = p. 3 The terms with a’n and 

bi represent the solution to the inhomogeneous equation when the current density 
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is defined by: 

T=Szjo C( ancosn 0 + bnsinnB) . (5) 

This satisfies London’s equations and is in accord with the assumptions about 

the current density in the superconductor. 

The boundary conditions on the current density are: 

(6) 

R-A $+, R-A T+c+8’ 

Clearly the limit 2 -7r + E + 6’ is the limit where the external field B. is parallel 

to the surface of the tube. 

As we have assumed that the current density is independent of r, the integral 

over r contains no information. In addition, these boundary conditions are inde- 

pendent of whether the slits are narrow or wide. The cosnf3 terms are symmetric 

over the limits of integration and thus all terms of an equal zero. This leaves us 

with the following conditions on the b,‘s: 

2 
n=l 

+ [cos y(cosne - cosn(e + 6)) + siny(sinne -sinn(e +8)1 =O 

Consequently, Eq. (4), the potential inside the superconductor becomes: 

Go 
Xs=5Jz 

CC 
anrn+ fin/r” 

I( 
y, cos no + sin n0 

n=O 

) +ezr2 2 & sinnO . 
n=() n - 

(7) 

(8) 
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The condition we seek is zero magnetic field inside the superconducting 

tube. This implies that the D1 coefficient in Ai is identically zero and the other 

coefficients will be zero unless there are some irregularities which make the 

shielding less than optimum. 

The boundary conditions on the vector potentials are: 

aA. aA 
-$=zs ; -+-$ at r=R-A 

(9) 
i3A 8A 

at r=R 

To satisfy these conditions, we find that all cosine terms are zero except 

for: 

QlYl = -B. sin 6 , C1 = -B,sin? 

The boundary conditions also dictate the first three coefficients of the sine 

terms: The n = 0 and n = 2 coefficients are zero in the potentials and the current 

density. The n = 1 coefficients are: 

bl = -2$cos8/A 

9 = -B,cos6(R-A)/A 

P, = B,cos 8(R -A)3/3A 

B1 = -B,cos6 (R-A)‘j/3A 

D1 =0 

(10) 

What remains for the higher order terms are five coefficients, four equations, 

and the condition on the b,‘s specified by the boundary condition on the current 

density in Eq. (6). This leads to an arbitrary situation: since bl, bo, and b2 are 
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already determined, we can obtain a unique solution to 

b3 according to the condition on the b,‘s and letting all 

find that 

b3 = 
-6BoCOS sin E - sin (E +a) 

5A sin3e -sin3 (E +6) 

/3, = -b3(R - A)5/30 

b3 
B3 = 30 (R5 - (R - A)5! 

this problem by setting 

bn=Oforn>3. We 

Collecting the coefficients in Eq. (lo), (ll), and (12), we obtain the follow- 

ing solutions for the potentials and an expression for jo: 

xi = -rezpo sinscos 8 +b3 cos8r2 sin38/R(R-A)] 

xs =cz rsinacose + 
Bo2 cos 6 sine 

A 

2b3cosS sin30 
A 

(12) 

?= -ez 
2Bocos6 sine - sin(e +S) Ap +3 sin3e - sin3(E+6) sin3 8 

0 1 
The simplest unique solution for the current density is a mixture of dipole 

and sextupole terms. In Fig. 3, we define the six current loops over the surface 

of the cylinder which reduce to two current loops when 6 5 E . 
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DOES THE EXTERNAL FIELD PENETRATE THE SLIT? 

There exists a component B. sin6 of the external field in a direction along 

the axis of the slit. This component of the field penetrates the slit and super- 

imposes itself upon the internal field generated by the sextupole current distribu- 

tion. To determine the intensity of this field, let us consider what happens in a 

slit narrow compared to its length, with walls constructed from superconducting 

material. Assume that London’s equations (1) are applicable. 

In each wall, the local field generates a current distribution: 

- 
j=-Ho&e -x/ 4A > (14) 

where A is a characteristic of the material and x is measured from the edge of 

the material inwards. Integrating this equation over x, we can estimate the av- 

erage field intensity in the slit induced by this current distribution: 

H1 = - Hoh/a per unit length . (15) 

If the width “a” of the slit is considerably larger than the penetration depth 

of the superconductor, the field generated by the induced currents is negligible. 

Consequently the external field penetrates the slit. Only when the slit is narrower 

than the penetration depth of the superconductor is the external field impeded from 

entering the interior of the tube. These conclusions appear to be more or less 

independent of the shape of the slit. 

Using a conformal transformation which maps the interior of a cylinder of 

unit radius in the z plane into a trough of width 7r in the w plane, as shown in 

Fig. 4, we can calculate the shape of the field in the interior of the cylinder. 

The calculation is not particularly sensitive to the thickness of the superconduct- 

ing shell. 
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The transformation of interest is: 

z= 
i - tane/2 sinw 
i+ tan e/2sinw (16) 

On the positive x-axis, the slit is transformed onto the u-axis. On the neg- 

ative x-axis, the slit limits the upper extent of v to cot2 e/2. In the w-plane, the 

lines of flux run parallel to the v-axis with a density of B. sin6 between the super- 

conducting walls at f 7r/2. 

The inversion of Eq. (16) gives us a map of the B field and its corresponding 

potential in terms of x and y. In particular, we have: 

4y2 + (l-x2-y 2)2 
tan2 e/2((1+~)~ + y2 

2 
= 

2 cash v sinh2v 

(17) 
4+ _ (1-x2-y2)2 
sin u 2 = tan2 E/2 ((1+x)2 + y2)2 

cos u 

Since z= V xx= V X (B . v), the field lines are the loci generated for con- 

stant u in the second of the two equations (17). 

COMPARISON WITH EXPERIMENT 

If B. is 1 tesla and the thickness of the superconductor is taken as 0.76 mm, 

then the maximum current density becomes 2 x 10’ A/m2, which is consistent 

with our measurements. 

The residual internal field can be calculated from the vector potential and 

we find that 

3i = B. sin6 (18) 

We compare this expression with the measured displacements of the beam 

after it has passed through the “flux-free” region. The results are summarized 
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in Table I: 

Table I 

B. 0’) 
Displacement (mm) Bend Angles (mrad) 

south down south down ZiY- - Bix 
(tesla) (tesla) 

0.5 0.52 0.45 0.097 0.084 0.0043 0.0037 

1.0 1.27 0.75 0.237 0.140 0.0104 0.0064 

1.25 1.85 0.75 0.346 0.140 0.0152 0.0064 

Ignoring the dipole terms and considering only the horizontal displacement, 

we find that sin6 is approximately 0.01 independent of Bo. The overall diameter 

of the apparatus is 8.9 cm which implies that our accuracy for rotational align- 

ment was approximately 0.09 cm. This is certainly consistent with the techniques 

used to align the tube. 

The field from the slit can be evaluated using the complex functions of Eq. (17). 

Alternatively, we can estimate the field intensity at x = 0 which is everywhere par- 

allel to the x-axis. The field intensity in the slit is B. s in 6. Now the equations 

(17) tell us that the field lines inside the cylinder spread out as they leave the slit. 

Assuming a uniform density along the y-axis (x = 0), the intensity becomes: 

Bx=() - -Bo2resin6/2r=Boesin6=.001T. (19) 

Thus, for the conditions of our experiment, where B. = 1 tesla, the slit width 

is 0.1 cm and the tube is 2 cm in diameter, the penetration appears inconsequential. 

We observe, parenthetically, that this result does not depend on the thickness of 

the superconducting shell. 

The sign of 6 can also be determined. The initial coordinate system is given 

such that a negative particle moving in the positive z-direction bends down, for 

negative y. This implies that B. is along the negative x-direction. The beam 
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inside the tube is deflected in the negative x-direction (south), implying that B 
Y 

is in the positive y-direction. Thus the sign of 6 is negative. 

The beam also bends down, but we cannot conclude much about the value of 

the x component of Bi because the tube does not quite clear the fringe fields. How- 

ever, the deflection is consistent with the sense of the dipole components along 

the y-axis. 

Of particular interest is a possible modification to the present design which 

would further inhibit penetration of the external field. One possibility would be 

to add an inner shell of superconductor whose slits were rotated by 90’ with 

respect to the outside slits. Clearly this inner shield will exclude the uniform 

BiY component, but it seems fairly sure that some small percentage of the dipole 

field will actually penetrate into the interior. 

We can also calculate the torque r’ and pressure on the tube,: 

This gives the torque per unit length of the tube, and the effect of E is ignored. 

The product jz Br, where Br is the field in the superconductor, contains 

products of sine, sin38, ~0~6, c0s3e. These functions are orthogonal over 

the limits of integration and the only contribution to the torque comes from the 

sin2 0 component. 

E-6 
2Bicos6 sin6 

Z 
~ A R3 - (R - Q3 > 

0 

(20) 

(21) 

The torque is thus 1.6 X lo5 Nm/m, given the previous values of A and sin 6 . 
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Similarly we can obtain the radial compression on the superconducting 

material, and we find that 

R 

dFn 
-j--q- = er 

4 Bt cos2S sin28 

R-A 

where the sin6 terms have been neglected. When the integration over r is made, 

we have: 

dFn - 4 Bf sin2 0 cos28 RA2 - 2 RB: sin20 cos26 
- r-z = 
de 

WoA2 pO 

and the pressure 

P= 
-2Bt sin2 8 

cos2 6 
I-10 

Integrating over e , the total force per unit length is: 

F = 
-Bf Rr 

pO 
cos2S = -2.5 X lo4 N/m 

(22) 

(23) 

(24) 

(25) 

for a 1. O-T field. The negative sign indicates a compressive force. 

CONCLUSION 

It appears that this analysis accounts for the major features observed in the 

behavior of the beam and the superconducting tube. Thus it seems that we are 

justified in ignoring the detailed physics of the superconductor in a magnetic 

field, and in using classical electromagnetic theory to evaluate the external fields 

created by this apparatus. We note that this type of apparatus is subject to con- 

siderable forces and as we found in our original attempts to construct it, the 

equipment must be designed to withstand them. 
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The principal question, however, is: can we completely eliminate the in- 

ternal field given the small unavoidable misalignments? The complex nature 

of the field inside the tube suggests that an inner tube made of two semi-cylinders 

with the slits displaced by 90’ relative to those in the outer tube would shield 

most but not all of the field. As the internal fields are of the order of .02 tesla, 

this suggests that a thin continuous layer of a high Hcl superconductor, such as 

lead plated on the inner stainless steel support tube, could exclude this residual 

field by the Meissner effect. The two semi-cylinders of Nb3Sn are then mounted 

rigidly on this tube. 

We wish to thank Dr. M. Rabinowitz for his useful comments and Prof. M. Per1 

for his continued support of this project. 

-14- 



References 

1. F. Martin, S. J. St. Lorant and W. T. Toner, SLAC-PUB-1040 (1972), to 

be published in Nuclear Instruments and Methods. 

2. A. C. Newton, F. Martin, S. J. St. Lorant and W. T. Toner, SLAC-PUB-1102 

(1972), submitted to the Review of Scientific Instruments. 

3. C. P. Bean, Phys. Rev. Letters 8, 250 (1962). 

4. C. P. Beau, Rev. Mod. Phys. 36, 31 (1964. 



Figure Captions 

Figure 1. Schematic layout of the spectrometer with the superconducting tube. 

Figure 2. Cross section of shielding tube showing the relative positions of the 

slit and external field. 

Figure 3. Cross section of shielding tube showing the distribution of the sextupole 

current loops. 

Figure 4. Transformation of the cylindrical geometry to a trough representing 

the width of the slit in the tube. 
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