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ABSTRACT 

We use Wilson’s theory of broken scale invariance to study the 

anomaly of axial current in a world with one space and one time 

dimension. It is shown that in the Schwinger and Thirring models, 

Wilson’s approach and perturbative approach yield similar results 

for the PCAC anomaly. 
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I. Introduction 

In recent years the problem of PCAC anomaly in the presence of electro- 

magnetism has been studied extensively in the framework of renormalized 

perturbation theory. ’ It was found that the anomaly is related to the breakdown 

of the naive Ward identity caused by the presence of triangle graph in the re- 

normalized perturbation theory. The anomaly also leads to many low energy 

theorems for the electromagnetic decays of neutral pseudoscalar mesons’ and 

other electromagnetic processes. 
3 

Another approach to the problem of PCAC anomaly was proposed by Wilson. 4 

He applies his formulation of broken scale invariance and operator product 

expansion to this problem. He shows qualitatively that the anomaly is related to 

the short-distance behavior of the product of currents. 

Recently Crewther , 5 following the suggestion of Wilson, has proved that in 

fact the anomaly can be explained by the short-distance behavior of the product 

of currents. He also relates the anomaly constant to other physical constants 

in high-energy electroproduction and electron-positron annihilation processes. 

So far, the anomaly has been studied either entirely in the framework of 

renormalized perturbation theory or in the framework of Wilson’s theory of broken - 

scale invariance. However, the connection between these two different approaches 

has not been examined. 7 In the perturbation theory one can treat anomaly success- 

fully. Yet it is not at all clear whether Wilson’s theory of broken scale invariance 

can be applied. On the other hand, in Wilson’s approach although we have interest- 

ing results relating the anomaly to other physical quantities, we don’t know how to 

calculate these quantities in strong interaction. It is therefore very desirable to 

find models in which both the perturbation theory and Wilson’s theory of broken 

scale invariance can be applied. 
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It is the purpose of this note to study the PCAC anomaly in some solvable 

models. The-models we discuss are Schwinger model8 and Thirring model. 9 

Both are field-theoretic models in one space and one time dimension. These 

models have been very useful to provide testing grounds for theoretical ideas. 

Although they are very special models, nevertheless, any general feature of 

quantum field theory should remain true. We will show that in these models the 

anomaly is related to the short-distance behavior of the product of two currents, 

and the results so obtained for the anomaly are the same as those obtained by 

perturbation theory. 

In Section II we discuss the anomaly in one space and one time dimension 

using Wilson’s theory of broken scale invariance and operator product expansion. 

The PCAC anomaly will also be related to the fictitious decay no - y in one 

space and one time dimension. 

In Section III we discuss the Schwinger model which is the quantum electro- 

dynamics in one space and one time dimension. The model has been solved 

explicitly by Schwinger. Our intention here is to use the explicit solution for 

studying the problem of anomaly. We shall obtain PCAC anomaly as an operator 

equation. We show further that the anomaly is given by the formula we derived 

in Section II. 

The Thirring model is considered in Section IV. The solution of the Thirring 

model both with or without coupling to external classical electromagnetic field 

are known explicitly. 10,l.l In this section we use the Thirring model as our 

skeleton theory in the sense of Wilson. 4 Johnson’s solution 10 will be used to 

obtain the solution we need when we couple fermion in Thirring model to the 

radiation field. The PCAC anomaly as an operator equation can be derived. We 

then use the method described in Section II to the anomaly. We find that both 

-3- 



results agree to all order of coupling constant. The conclusions of perturbation 

theory will also be mentioned. 

In the last section we make some pertinent remarks. First remark concerns 

the nonvanishing mass of the photon in one space and one time dimension and its 

effect on the anomaly. We also comment on the intimate connection between 

anomaly constant and Schwinger terms in the models considered in Section III 

and IV. 

II. Wilson’s Theory of Broken Scale Invariance and PCAC Anomaly 

One of the applications of the theory of broken scale invariance is the resolu- 

tion of difficulties with naive current algebra calculation 12 of lr” “27. Wilson 

explains nonvanishing 71” - 2y decay in terms of the short-distance behavior of 

the product of currents. 4 

We sketch Wilson’s explanation below. The invariant amplitude for the 

no - 2y decay is 

T&P, k) = E PvappakP T(k2) . 

The value of T(k2) when k = 0, T(O), can be expressed as 

E pvolp T(O) = + dxdy x y <O 
7r aP 

where Fn is the pion leptonic decay amplitud e, and j , j5 
P A 

are hadronic current 

and axial current respectively. Using the technique of Ward identity and care- 

fully analyzing various limiting processes, Wilson shows that the amplitude T(0) 

(or equivalently the anomaly constant S) is determined uniquely by the leading 

short-distance behavior of 
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From the theory of broken scale invariance, the leading behavior of the above 

expression scales as (e ) -9 for x and y of the order of E. Wilson’s analysis also 

shows that in general one should not expect T(0) to be zero. 

The leading singularity of T ~0 I jp(x) j V(O) j:(y) IO > is determined by Schreier’ 

using the arguments of conformal invariance. Crewther5 uses this explicit form 

to calculate the anomalies. He is able to relate T(0) to the short-distance 

behavior of the q - number part of T( jt*(x) j V(O)) and the c - number part of 

T( j;(x) j E(O)) which are related to various high energy inelastic processes and ~ 

are in principle measurable. 

In what follows we shall apply Wilson’s idea to the world with one space and 

one time dimension. Our purpose is to study the PCAC anomaly or equivalently 

the decay r” -, y from this point of view. 

Let us imagine a fictitious decay 71” -, y in one space and one time dimension. 

The matrix element describing this decay is 13 

Sfi = (K.F.) e. Ed * *%J , (20 1) 

where (K. F.) denotes kinematic factors, e o is the unrenormalized coupling 

constant and 

T’(k) = E “khT(k2) 

(2.2) 

l)T* <O I aYj5(x) j’(O) IO > 
Y , 

where z3 is the wave function renormalization constant for the photon. The 

form T’(k) = E ” khT(k2) follows from invariance under parity and is consistent 

with gauge invariance. 
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For the definition of the Fourier transform of time-ordered product, we 

follow the prescriptions given by Wilson. 14 Here we also make one subtraction 

in the Fourier transform to make it well defined and gauge invariant. 14 Explicitly , 

the Fourier transform in Eq. (2.2) is defined as 

d2x( eVikx - 1) T* iOl~Yj5(x)jP(0)iO> 
Y 

= Lim 

7+0+ 
{Jrd~‘+ jll dx” /jdxl(ewtix - I)T<OI a’j$x) jP(0)lO>, 

(2.3) 

where the symbol T stands for the usual time ordered-product and 7 -+ O+ means 

the limit as q approaches zero from ?7 > 0. 

By differentiating with respect to k and setting k equal to zero on both sides 

of Eq. (2.2), we find 

T(0) = - & + d2x ehPxAT*iOI ayj5(x) j (0) IO> (2.4) 
7r LZ3 l 

Y I-I 

Our main goal in this section is to relate T(0) (or equivalently the anomaly 

constant S) to the short-distance behavior of the product of currents. For con- 

venience, we define 

I= d2x ehP 5 T* ~0 I a'j$x) jp(0)lO>, 

and 

x = &J 
Y 

%T* ~0 ljp(0)j$x) + jy(0)j$x)IO> 

(2.5) 

(2-Q 

In virtue of the current conservation and symmetry of jP(0) j;(x) + jy(0) j:(x) under 

the interchange of indices P, y, the divergence of Xy is 

(2.7) 
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This is precisely the integrand of I. Note that we do not have to worry about the 

Schwinger terms because the point x = 0 is excluded from the integration region 

with our definition of T*. Using the Ward identity in Eq. (2.7)) one can write I 

as 

I= d2x ayX 
Y’ 

Were it not for the discontinuity of Xy at x0 = 0, I would be zero. As we have 

mentioned before, I is defined precisely as 

I= Lim 
GO+- 

11 dx” + j.qm dx’) ( dx’ “‘Xy 

dx’ aoX 0 

(2.8) 

In deriving the second expression of I, we have made use of the fact that the 

spatial integration of $X1 is zero. 

From Eq. (2.8), it is clear that I is related to the behavior of X0 around 

X0 = 0. As it has been discussed in detail by Wilson, 4 the x1 integration can be 

divided into two pieces, with one piece satisfying I x1 I > > 1;, . It is easy to 

convince oneself that one can let 77 - 3+ inside the integral with Ix1 I > > ‘I with- 

_ out making errors and the integral becomes equal-time commutator which is 

zero in this region. Only the x’ integration with x1 of the order 7: or smaller 

will contribute to integral I. This argument suffices to show that I depends 

uniquely on the short-distance behavior of X0 or the product of two currents. 
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We turn now to the short-distance behavior of the product of currents. 

According to Wilson’s theory of broken scale invariance, the short-distance 

behavior of the product of currents is determined by the dimensional argument. 

In the world with one space and one time dimension, we have 

T(j:(x) jv(0)) = ZV)log(-x2 + i E) 

+. 0 0 0, 
(x # 0) l (2.9) 

Here l l 0 l denotes the less singular terms which break the scale invariance. 

The dimensionless constant R however is not determined by the dimensional 

argument. It is model dependent, i. e. , R is determined by the skeleton theory. 15 

One peculiarity of the models we will consider in one space and one time 

dimension is the following: the axial current is related to the current by 

.5= e .v 
5 d 

(2.10) 

Notice that Eq. (2.10) implies that gauge invariance of the axial current is 

guaranteed by that of the current jv . It is easy to derive from Eqs. (2.9)) (2.10) 

the short-distance behavior of X . 
Y 

Xy= - @(&) +** l , with e> 0 (2.11) 

The evaluation of the integral I is straightforward. 

I= Lim R 
T 2 “2 -I- 77 

77-4-l+ -77 +ie 2 
x1 x1 - T2+ie 

= - 2iR 

Consequently, the constant T(0) in the decay r” -c y is 

(2.12) 
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The anomaly in the PCAC equation is related to T(0). If we write 

apji = ?I aP j5 ” +Sec 
P 

TV apA” 

(2.14) 

where I1 a’j5’l 
II 

is the expression in the absence of electromagnetism, e = a, e. 

is the renormalized coupling constant and $ is the renormalized pion field. Then 

the anomaly constant S is given by 

eS= - Fn T(0) e. Z3. (2.15) 

This together with Eq. (2.13) implies 

S = R. (2.16) 

Thus, we have established that the anomaly constant in the PCAC equation is 

uniquely determined by the short-distance behavior of the product of currents. 

Equation (2.16) is our essential result for the anomaly in one space and one time 

dimension. The corresponding equation in 4-dimensional space time, S = KR, 

was first derived by Crewther. 5 

It is also possible to describe the anomaly in the divergence of axial current 

without any reference to the decay x0 - y at all. We begin with 

d2x ehp Xh T* <OIayj$x)j~(0) IO> 

_ We can proceed as before. The final result relating S to the short-distance behavior 

of the product of currents is still given by Eq. (2.16). 

In Section III and IV, we will check explicitly the validity of Eq. (2.16) in 

the Schwinger model and the Thirring model. 
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III. Schwinger Model 

The Schwinger model is the quantum electrodynamics with massless Dirac 

field in one space and one time dimension. It is a rather unique model for 

which an exact and divergence-free solution exists. 

Schwinger has shown that the vacuum expectation value of the gauge invariant 

current is related to the external field A by 

eO eO <j,(x) > = - 7 Apt@ + ‘;;- a 
P tb' )DFtx - x’) a; A’(x’) (3-l) 

where DF is the outgoing-wave Green’s function defined by 

a2DF(x, x’) = 6(x, x’) (3.2) 

and < > denotes vacuum expectation value. From Eq. (3.1) it follows that 

the divergence of axial current defined in Eq. (2.10) is 

In fact starting with Schwinger’s general solution for 2n-point fermion Green’s 

functions, it is straightforward to show that Eq. (3.3) holds as an operator equation 

between fermion fields, Jn other words 

apj5 = - eO 
I-L 3;- CPU a$$) (3.4) 

as an operator equation for all external field A. This further implies that Eq. 

_ (3.4), holds as an operator equation with both ji and A being operators. l6 This 

tells us that there is an anomaly in the divergence equation for the gauge-invariant 

axial current, 

Now we turn to the problem of the short-distance behavior of the product of 

currents. The most convenient way to proceed is to start with the relation between 
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17 <AF(x) Av(x’) > and <jp(x) jv(x’) >. They are related in a very simple way by 

the field equation. In terms of the spectral representation 

<Ap(x > = 0 e-ip(x - x’) e(P”) S(p2 - m2)dm2Ap v (p) , (3 m 5) 
tfw 

where 

(3.6) ApV(p) = B(m2) [- gpv + l 0 0 . 1 

with l o 0 0 denoting terms which depend on the gauge. Also, 

<jJx)j ,tx’) > = I 
e emiptx - x') e(p")a(p2 _ m2)dm2j 

p V(P) 
, (3.7) 

The Maxwell equation supplies the link between A ,,(p) and jFv(p). One finds 

that 

2 
e. jp v h-3 = m2B(m2)tpppv - g,,p2) (3.3) 

Schwinger derives the expression for the Green’s function of radiation field. 

It is 

Gpv(x, x’) = xpv(i a) G(i a) S(X - x’) 

where rp v(~) is a gauge-dependent projection matrix and 

(3.9) 

(3.10) G(p) = dm2 B(m2) 1 = 
-p2 + m2 - ie -p2+ei/r- ie 

This indicates that Z3 = 1 in Schwinger model, 

With the aid of Eqs. (3.7 - 3. lo), it is straightforward to derive the 

following expression for the time-ordered product of currents 

2 
T < jp(x)j ,(x’ ) > = eO f (- ap av+gpva2) AF 7,x-x’ ,for x#x’. (3.11) 

\ 
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where AF is the Green’s function satisfying 

t a2 + p2) AFtp2, X - X’) = - 6(X - X’), (3.12) 

together with out-going boundary conditions. In the limit x - 0, the singular 

behavior of AF is given by 
2 

A (3.13) 

where l 000 denotes nonsingular terms which break the scale invariance and are 

of order “02 ‘IT or higher. Incidentally, the limit as e. -t 0 of AF 

& log{-x2 4 i E. ) . 

From Eqs. (2. lo), (3.11) and (3.13), we obtain 

T(j,5(x)jv(0)) = - -!- E 
4Tr2 lJh 

(-2 av+g):a2)10g(-x2+ie) (3.14) 

+ . . . . . 

We see clearly that Wilson’s hypothesis agrees with the result obtained by the 

explicit calculation. Using our result for anomaly in the previous section we 

obtain 

This is precisely the coefficient of e. l ” apA v on the right hand side of Eq. (3.4) D 

We see clearly that the result we derive in Section II agrees with the results 

obtained through explicit calculation to all order in e 0’ 
The perturbation calculation of anomaly in the Schwinger model has been 

studied by Georgi and Rawls. 18 We don’t want to repeat their arguments here. 

It suffices to mention that in perturbation theory the anomaly in PCAC is due to 

the presence of fermion bubble diagram. The result of Georgi and Rawls is in 

complete agreement with ours. 
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Therefore, we conclude that in the Schwinger model both the perturbation 

theory and Wilson’s theory of broken scale invariance can be used. They yield 

the same result as that of the explicit solution to all orders in coupling constant 

eO’ 

IV. Thirring Model 

The Thirring model is a field theory model of massless Dirac field in one 

space and one time dimension with current-current interaction. The solutions 

of the Thirring model both with and without coupling to the external electro- 

magnetic field are known. 10,ll In this section we use Johnson’s solution to 

investigate the ‘problem of PCAC anomaly in the Thirring model. 

Without electromagnetism, the Thirring model contains two conservation 

laws: conservation of charge and conservation of axial charge 

2 jp=O 
P 

and 

akPVj =O. 
V 

(4.1) 

(4.2) 

In the presence of external c-number electromagnetic field, Eq. (4.2) is no 

longer true. Johnson has shown that Eq. (4.2) becomes 

(4.3) 

The axial current e’ ’ ’ J, is invariant under the usual gauge transformation. 

- Equation (4.3) is true as an operator equation for all external c-number electro- 

magnetic field. This then further implies that Eq. (4.3) holds as an operator 

equation with Ap corresponding to the usual quantum mechanical operator of the 

electromagnetic potential. 16 
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We can consider the Thirring model as a skeleton theory in the sense of 

Wilson, for the Thirring model without electromagnetism is scale invariant for 

all values of A, the coefficient of current-current interaction. In this skeleton 

theory, the time-ordered product of two currents is (according to Johnson) 

T<OljP(~)jv(0)IO> = : 1 

1 - (h/2 7q2 
(a, av - gpv 32) DFt5‘) 

for 5fO (I (4.4) 

Now we want to know what will happen if the Dirac field is coupled to the 

radiation field. To answer this question all we need is the expression for the 

vacuum expectation value of jp in the presence of an external field. According 

to Johnson, <jP(x) > is given by 

eO <j'(x) > = - 7 1 

1 - (h/2Q2 
E pa aa E 0 a, C D~(X - x’ )A&x’ )dx’ (4.5) 

Once the dependence of <j P(x) > on A 
P 

is known, the Green’s functional of the 

radiation field can be solved. 8 We find, in particular, the 2-point Green’s 

function for the radiation field is given by 

G,Jx, x’) = Q, (ia) G (i a) 6(x - x’) (4.6) 

with 

G(P) = 
1 1 ZZ 

2 
eO - p2 + /Y 2 (4.7) 

-p2+ y 1 - is 

1 - (h/2n)2 
- ie 

where 
2 

‘2 e. 1 
P =y- 

1 - (h/2Tr)2 
(4.8) 

Equations (4.6-7) indicate that we have Z3 = 1 and e = e. in this model. 
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As before, we can relate the expression ijPjV > to <APAV > by Maxwell 

equation. Therefore we obtain the expression for T ~0 I jPjV IO >, for the case 

in which the fermion couples to the radiation field, 

T<OIjP(x)jV(x’)IO> = i 1 

1 - (h/2Q2 
‘gp y a2 - a, a,)+(~‘~; x - x’) (40 9) 

for x - x’ # 0. 

Note that the dominating behavior of Eq. (4.9) is the same as that of Eq. (4.4)) 

which is the expression in the skeleton theory, in agreement with Wilson’s 

hypothesis. 

Now the anomaly constant S can be determined by the method of Section II. 

The result is 

s=- a 1 

1 - (h/2Q2 
(4,lO) 

This is precisely the coefficient of e. ePV aPAv in Eq, (4,3). We see clearly 

that Wilson’s approach gives the correct result for anomaly in the Thirring model. 

We would like to mention the result of perturbation calculation in the Thirring 

model 0 19 One can find the expression for anomaly following Adler’s treatment. 

The short-distance behavior of the product of two currents can also be obtained. 

The relation we obtained (Eq. (2.16)) is consistent with the results of perturbation 

calculation, Although the precise expressions for R and S in perturbation calculation 

differ from ours, this is not in contradiction with our conclusion, as it is well 

known that Thirring model allows an infinite number of solutions. This has been 

studied carefully by Hagen. 11 
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V. Discussion 

In the previous sections we have shown that in the Schwinger model and 

Thirring model the anomaly in the divergence of axial vector current can be 

studied from perturbation theory as well as from Wilson’s theory of broken scale 

invariance and short-distance behavior of the product of currents. Both approaches 

give the same result for the anomaly. 

To conclude we would like to make several remarks concerning the model 

in one space and one time dimension. 

(1) It is a peculiarity of model in one space and one time dimension 

that the photon has nonvanishing mass. This is a reflection of the fact that 

the coupling constant e. has the dimension of mass in one space and one time 

dimension. Historically quantum electrodynamics in one space and one time 

dimension was used by Schwinger to demonstrate that gauge invariance does 

not necessarily require the existence of massless photon. 8,17 In view of this 

fact, it is necessary for us to reconsider the method we use in Section II. 

There we assume implicitly that the photon is massless. When we take into 

account the photon mass (= cl), the expression eOTP(k) in Eq. (2.1) becomes 

e,??(k) = e. ePhkhT(k2) 

’ 
Jz3 

f d2x(e-ikx -1) T*<O 1 arj5(x)AP(0) IO > 
Y 

Recall that in Schwinger and Thirring models 
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Therefore 

X d2x(e I 
-ikx - l)T* <O I aorA ,(x)A’(O) 10 >. (50 2) 

Note that since the photon Green’s function has the structure of z3 

k2 - p2 
with Z3 = 1, the factor p2 - k2 in front of the integral in Eq. (5.2) is cancelled 

by the factor of 1 

p2 - k2 
from the integral. We end up with the same result 

even when we set p to be zero (that is, pretending the photon to be massless). 

If we do set /J = 0, then Eq. (5.1) can be cast into the form of %q. (2.2). This is 

the reason why the result we derive in Section II is valid to all order in e. in 

Schwinger and Thirring models. 

(2) In a recent preprint by Adler, et al, , 7 the’problem of the constraints 

on anomalies is discussed in several models. We find that in the Thirring model, 

the Schwinger term is given by 

<Ol [j'(x), j'(x')] IO> = ial(x -x') i t - + 1 

\ 1 - (h/27r)2 1 

Hence the Schwinger term is intimately related to the PCAC anomaly. Same 

comment applies to the Schwinger model. 
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