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ABSTRACT 

Old fashioned (time-ordered) perturbation theory evaluated in the infinite 

momentum frame is shown to provide a viable calculational alternative to the 

usual Feynman procedure for quantum electrodynamics. The renormalization 

procedure can be implemented in a straightforward manner. We also introduce 

a convenient method for automatically including Z-graph (backward-moving 

fermion) contributions. We have calculated the electron anomalous moment 

through fourth order in perturbation theory in agreement with the Sommerfield- 

Petermann results, and have calculated representative contributions to the sixth 

order moment. Our results agree with those of Levine and Wright. The validity 

of the infinite momentum method as a renormalizable calculational procedure 

in quantum electrodynamics gives field-theoretic parton calculations for com- 

posite particles a rigorous basis, provided that a covariant regularization 

procedure is used. These new techniques also show how to renormalize field 

theory quantized on the light cone and how to implement the Feynman gauge. 
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Over the past few years it has become very evident that the use of an 

infinite momentum reference frame’ has remarkable calculational and peda- 

gogical advantages for obtaining covariant current algebra,2 parton model 394 

and eikonal scattering 5y6resul ts . We have found that old fashioned (time-ordered) 

perturbation theory for quantum electrodynamics evaluated in an infinite 

momentum reference frame represents a viable, instructive, and frequently advan- 

tageous calculational alternative to the usual Feynman diagram approach. The 

renormalization procedure can be implemented in a straightforward manner. 

We have calculated the electron anomalous magnetic moment through fourth 

order in agreement with the Sommerfield-Petermann result,’ and have cal- 

culated representative contributions to the sixth order moment. Our results 

agree with those of Levine and Wright8 and represent the first independent 

confirmation of their result for these contributions. 

An outline of our techniques follows; a more complete discussion will be 

published separately.’ 

The electron vertex in quantum electrodynamics may be computed in per- 

turbation theory using the standard time-ordered momentum space expansion 

of the S-matrix. Although the final results are independent of the choice of 

Lorentz frame, it is very convenient to choose a limiting reference frame in which 

the incident electron momentum P is large. 1 In a general frame, a Feynman 

amplitude of order en requires the evaluation of n! time-ordered contributions, 

but in a frame chosen such that 

p = (JPV,iTl,P) - (P+&P) (la) 
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4 = (y, c.+o) (lb) 

(2q.p = -q2 = y:) only the relatively few time-ordered graphs, in which the 

momenta of all the internal (on-mass-shell) particles g = xiF+ril have 

positive components along F (0 < xi < l), have a surviving contribution in the 

limitP+ a. In general, the limit P a 03 is uniform with respect to the 

i 
d3Pi d2ki ldx i -= 
2Ei 2xi 

phase space integrations for all renormalized amplitudes. Thus the order Q! 

correction to the anomalous moment a = F2(0) is obtained from only one 
5,6,10 

forward-moving time-ordered graph (see Figure l), up to 3 time-ordered 

graphs yield the Feynman amplitude for the order o2 corrections; between 1 

and 15 forward-moving time-ordered graphs contribute to various Feymnan 

amplitudes at order 4. 

As emphasized by Drell, Levy, and Yan,4 time-ordered graphs with 

backward-moving (xi -C 0) internal fermion lines can give surviving P2/P2 

contributions in the P + 00 limit if the line extends over only one time interval. 

These additional contributions (which correspond to contact or lfseagull’r inter- 

actions analogous to the e2g+flA2 interactions in boson electrodynamics) can 

be automatically included by making a simple modification in the forward- 

moving contribution: if a forward-moving electron (xi > 0) extends over a 

single interval I then instead of the usual spin sum 

c 
spin 

u(pi)‘ii(pi) = fii + m, 2 P: = mi , @a) 
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we write 

$i + yo(Eo-EI) +m Pb) 

where E. is the total incident energy and EI is the sum of the energies of all 

of the particles occurring in the intermediate state I. It is easy to check that 

this replacement (which corresponds to using energy conservation between the 

initial and intermediate energies to determine pp rather than the mass-shell 

condition) automatically accounts for the contribution of the corresponding nega- 

tive ‘moving (xi < 0) positron line. A similar modification for the energy of a 

forward-moving positron (spanning one time interval) accounts for the cor- 

responding negative moving electron line. With these changes all l,Z -graph” 

contributions are accounted for, and one need only consider time-ordered diagrams 

where all internal lines have xi > 0. 

The renormalization procedure for quantum electrodynamics using old 

fashioned perturbation theory closely parallels the explicitly covariant Feynman- 

Dyson procedure. Reducible amplitudes with self-energy and vertex insertions 

may be renorrnalized using subtraction terms corresponding to &n, Z2 and Z1 

counter terms. The integrand for the subtraction term is similar in form to the 

integrand for the unrenormalized amplitude, except that the external energy 

used for the denominator for the subgraph insertion is not the external (initial) 

energy E. of the entire diagram but is the energy external to the self-energy or 

vertex subgraph only. For example, the renormalization of the scattering 

amplitude shown in Figure 2a requires 6m and Z2 subtractions (Figure 2b and 

Figure 2~). The integrand of the renormalized amplitude for C#J’ theory is con- 

structed from 

(Eo- E1)(Eo-i2)(Eo- E3) - (Eo- E1)($ E2)(Eo 
1 

- E3> + (Eo- El)+- E2W1- E2> (3) 
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where Ei is the total energy of the on-shell particles occurring at interval i. 

Upon integration over the loop momentum variables (xi,xii), the second and 

third terms yield, by definition, the correct 6m and Z2 counter terms (assuming 

covariant regularization). On the other hand, if scaled variables 

‘r;a = x$+T) +q 
(4) 

5 = (l- x)C+Z) -T;I 

are chosen to parametrize the momenta of the internal particles, thenrL .-$’ 

cross terms are eliminated and the integration for the renormalized amplitude 

from the sum of the three terms is point-wise convergent. In the QED case, 

the appropriate Dirac numerator must also be constructed such that the (co- 

variantly-regulated) subgraph integration defines the correct counter terms. 

This procedure leads to finite, renormalized pointwise-convergent (and 

numerically integrable) amplitudes for the case of all self-energy or vertex in- 

sertionsa’l!C he analysis of infrared divergences (via a photon mass regulator) 

may be carried out in parallel with standard treatments. 

In general, we have found that the P + ~0 limit is uniform (i. e. , can be 

taken before the d2k, dx loop integrations) for the renormalized amplitudes, 

and there are no subtleties involved at the boundaries of the xi integration. On 

the other hand, the evaluation of the (divergent) renormalization constants 

themselves requires caution. Since covariance is not explicit in this approach, 

one must be careful to regularize using a covariant procedure, such as the 

Pauli-Villars method or spectral conditions. The standard covariant expres- 

sions for the renormalization constants are obtained if regularization is per- 

formed before the P -6 03 limit is taken. 9 
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With the above considerations, it is straightforward to calculate renor- 

malized amplitudes for quantum electrodynamics directly from time-ordered 

perturbation theory and the interaction density e: $ yPz/ A’:. The covariant 

Feynman amplitude is obtained from the corresponding (forward-moving) time- 

ordered graphs with the same topology. The Dirac numerator algebra is the 

same for each of the time-ordered amplitudes and is identical to the corresponding 

Feynman calculation. Our techniques also show that quantum electrodynamics 

may be calculated on the light-cone in the Feynman gauge, rather than the 

Coulomb gauge. 15 

For the calculation of the lepton vertex, the Fl and F2 amplitudes can be 

obtained simply from standard trace projection operators. 12 The integrand in 

the variables xi, zil is then obtained from the product of phase space, the 

numerator trace, and the energy denominators characteristic of old-fashioned 

perturbation theory!” One important feature of this method, besides providing a 

new and independent calculational technique, lies in the fact that the resulting 

integrand appears to be a much smoother function of the variables xi, ril than 

the corresponding Feynman parametric integrand obtained by the usual techniques. 

As a result, the numerical integrations (which are often the most difficult part 

of higher order calculations in quantum electrodynamics) converge considerably 

faster. 

As an indication, the numerical integration of the contribution of the sixth 

order ladder graph (Figure 3a) to the electron’s anomalous magnetic moment 

from old fashioned perturbation theory required lo5 evaluations of a smooth 

well-behaved six-dimensional integrand to obtain a 1% level of accuracy. 
14 
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In contrast, the standard Feynman technique, which involves a five-dimensional 

integral, required 2 x lo6 evaluations of the integrand for comparable accuracy. 

Our result is 

-2 Pd Fig. 2a = (1.77 f 0.01) 2 
7r3 

in precise agreement with the result of Levine and Wright.8 Our results for 

the fourth order magnetic moment using P I-* 00 techniques agree with the 

Sommerfield and Petermann calculations’ ; again, the integrands were found 

to be smooth and rapidly integrable by numerical techniques. 

The sixth order ladder graph is a highly reducible graph requiring several 

vertex renormalization counter terms, but only one time-order survives in the 

infinite momentum limit. We have also calculated a representative irreducible 

graph, Figure 3b, which has eight surviving time orders. In this case there is 

an eight dimensional nontrivial integration to be performed and the algebraic 

work is much more complex. cx3 Our result for this graph is 2(1.11* 0.23) - 
3 T-r3 

which is consistent with Levine and Wright’s result 2(0.90 rt 0.02) E obtained 
lr3 

from a seven dimensional Feynman parametric integration. Work is continuing 

to improve the accuracy of our result. 

The validity of the infinite momentum reference frame method as a re- 

normalizable calculational procedure in quantum electrodynamics gives field- 

theoretical parton model calculations a rigorous basis provided that a covariant 

regularization procedure is used. Our work also demonstrates that the infinite 

momentum method provides a useful calculational alternative to standard co- 

variant techniques. The P - * method is closely related to field theory quantized 
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6,15 
on the light cone. Our method shows how to renormalize the theory and how 

to work in the Feynman gauge. 

Time-ordered perturbation theory is the natural setting for bound state 

problems, and because of its manifest unitarity it has advantages for both 

physical insight and the application of approximation methods. The infinite 

momentum reference frame method provides the calculational tool which allows 

the practical implementation of these features in relativistic calculations. 
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Figure Captions 

Figure 1 

Figure 2 

The six time-ordered contributions of the Feynman amplitude for 

the proper electron vertex lYp in order o. For the components 

p = 0 or /L = 3, only the contribution of the diagram (a) survives 

in the infinite momentum limit P + 00 of Equation (1). In addition, 

the ft Z-graph” contribution for the /J = 1,2 components which 

arises from diagram (b) is automatically included by using the 

modification of the spinor sum for diagram (a) given in 

Equation (2). 

Illustration of the renormalization procedure in old-fashioned per- 

turbation theory. (a) A representative time-ordered diagram for 

Figure 3 

the self-energy modification of the Compton amplitude. @) and (c) 

The corresponding 6m and Z2 counterterms. The integrand for the 

6 m term is proportional to (El - %) -1 . 

Representative reducible and irreducible contributions to the sixth 

order magnetic moment of the electron or muon. The ladder graph 

(a) is obtained from a single time-ordered contribution at infinite 

momentum (out of a possible 7!), but requires renormalization of 

the fourth order and second order vertex insertions. The Feynman 

amplitude for irreducible graph (b) receives contributions from the 

eight time-ordered graphs with positive moving internal lines. 
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