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I 

The recurring debates 1 over the formulation and meaning of the Heisenberg 

uncertainty relation for energy and time make clear its unsatisfactory features. 

Some of these features have counterparts in the ambiguous phase- number and 

angle-angular momentum uncertainty relations which have only recently been 

investigated thoroughly. 2 

The most serious questions, however, accompany the notion of a time operator. 

Such an operator, &F say, may satisfy -$ ,Z’] = in and thereby imply the canonical 

uncertainty relation; but it cannot simultaneously be an operator with a continuous, 

unbounded and real spectrum (which one would identify with the values taken by 

the parameter t, physical time). 

This has not prevented the introduction 1, 3, 4, 5 of various operators which 

in restricted circumstances behave very much as a time. operator “should” be- 

have. Often subtle arguments are necessary to show that these operators are well- 

enough behaved, when applied properly. The central unsatisfactory feature of 

these operators, though, apart from their singularites and ambiguites, is their 

ad hoc character. Operators designed for free particle wave packets rarely have -- 

relevance to the decay of bound systems, and conversely. At the most heuristic 

level this appears to be widely recognized, but is never remarked upon explicitly. 
6 

Thus it is remarkable that there already exists one operator which is un- 

ambiguous and non-singular and which serves to define an energy uncertainty 

time in agreement with the familiar decay lifetimes and packet spreading times. 

As it happens, this is not a “time f1 operator but a “reciprocal time” operator. It 

exists for all quantum systems with a density matrix and a Hamiltonian. 

In the following paragraphs we show how the concept of partial stationarity 

leads to a consideration of this operator. Then the notion of a stationarity time 

for a quantum statistical system follows naturally. We show that this stationarity 
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time is precisely the,energy uncertainty time of the system. When applied to a 

free wave packet the stationarity time is indentical with the packet spreading 

time; and when applied to a decaying excited state the stationarity time is found 

to be equal to the usual lifetime. 

It is well-known that the dynamical variables of a system whose density matrix 

commutes with the Hamiltonian are statistically stationary, and conversely. 7 Al- 

though stationarity, or translation invariance, is also useful as a spatial or angu- 

lar concept, 8 we are here concerned with it in the sense of time translations alone. 

For example, if A and B are two Heisenberg operators, stationarity implies that 

the expectation <A(t) B (t -t- T) > depends on the time argument difference T and 

not on the origin of time implied by t. 

Since ih dp (t)/ dt = [*, p (t)] (in the Schradinger picture) , we see that 

stationarity implies dp/dt = 0, and conversely. 7 It is always true that <b> = 0 

so it is natural to adopt the dispersion of i as a measure of the degree of station- 

arity which pertains in any given physical situation. Clearly b is, in some sense, 

a reciprocal time operator. It is Hermitean. Let us define a stationarity time 

Ts by the relation 

l/T;- Ap2. (1) 

We prove below that for any quantum system, 

Tz AH2 >_h2, (2) 

where the mean square dispersion of an operator 0 is computed as usual: 

A02 = <(O- CO >)2>, and <(.:.)> means Tr [p (. . . )]. In other words, we 

prove that the stationarity time Ts can be invoked unambiguously as the true 

energy uncertainty time of the quantum system. 

In some respects our uncertainty time is similar to a class of uncertainty 

times described first, apparently, by Mandelstam- and Tamm. 3 ’ ’ However 
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Ts has several distinctions not enjoyed by the Mandelstam-Tamm set of times, 

the most important of which are: 

(1) Ts refers to the quantum system as whole, through 6, rather than to 

a single dynamical variable of the system. 

(2) While not a member of the Mandelstam-Tamm - set of times, Ts appears 

to bound all of those times from below, thus providing a sharper state- 

ment of the energy-time uncertainty relation. This is easily proved 

for pure -state expectations. 

(3) Ts has a physical meaning which is independent of its appearance in the 

energy uncertainty relation. 

As far as the formal uncertainty principle goes, it is of course irrelevant 

what this physical meaning is and what considerations motivated the study of the 

parameter Ts. Nevertheless, it seems worth a further brief digression to es - 

tablish the sense in which Ts is a stationarity time, or an indicator of partial 

stationarity. Consider two simple examples. The first is a free single-mode 

radiation field, with Hamiltonian X= hwa+a. Assume the system is in the coherent 

state Iv>, so that p =lv><vl , where v = Iv1 exp (i$); and compute the auto- 

correlation of the real “fieldff A(t) = a(t) + a+(t): 

<A (t) A(t + T) > =e lwT+ (2/wTs) ‘~0s (W(t + T)+(b) COS (Ut + $) (3) 

As expected, since [p, s%?] f 0, the correlation depends explicitly on t as well as 

on T. However an apparently general feature is evident here. The importance of 

the non-stationary t-dependent part of the correlation function is directly controlled 

by Ts- That is, if the sationarity time Ts is long, the t-dependence is unimportant, 

and we can consider the system to be stationary. 

As a second simple example, consider a free particle of mass m moving in 

I -4- 



one dimension and described at time t = 0 by the wave function 
r 

,l I 

/ 
2+5(x,0) =C eikx exp - ih2x2 where C is the normalization constant. In this 

case a simple calculation shows that the stationarity time is inversely propor- 

tional to h2; specficially, Ts = g (m/hh2). This is natural since when h- 0 the 

state is a free particle energy eignenstate and thus completely stationary, re- 

quiring an infinite stationarity time. The position variance F(t, T) = < Ax (t)Ax (t + T)> 

is worth examining. In this case we find 

F(t, 7) =<Ax(o)2> + 5; + ; <Ax(o) > 
2 t(t + 7) . 

T2 
S 

(4) 

Thus, again, for times t short compared with the stationarity time Ts the cor- 

relation function effectively depends only on 7, and the system is essentially 

stationary. 

We now prove the uncertainty relation Tf As2> 31’. We work in the (neces- 

sarily discrete) basis of eigenstates of p, and write those eigenstates Irn> , so 

that p = cm pm 1 m > <m I. We have l-> pm ) 0 in general, and in the special case 

of a pure state all of the p’s are zero except one which is unity. 

First we calculate the dispersion in energy. A short calculation leads to 

A=2 = c, pm (A*2)m + 2 P, smm- I c P,re,12 2 p 

where (AS? 2)m is the dispersion calculated in the pure state 1 m> < ml and 

q& = < k I XI k >. Clearly then, 

AX’2 1 c pm(A.z2) = c 
m m m,k;tm 

Pmc”emk *km l 

Next consider (l/T:) = Ab2. One finds the result: 

ti2A b2 = c pm (Pm 
k, m 

- Pk)2 tirnktikrn l 

Since 1 1 (pm - P~)~, a comparison of Eqs. (6) and (7) proves the inequality 

(5) 

(6) ’ 

(7) 

A;Ye2 -> -h2 A p2 or, what is the same things, Tz A3V2~ fi2, the energy-time 

-5- 



uncertainty relation given in (2). 

The circumstances under which the equality holds are easily deduced. In 

the case of a pure state density matrix one always has the minimum energy-time 

uncertainty product Tf A% 2 = h2, and conversely. 

In thisbrief notewe have not explored all of the implications of the ideas pre- 

sented here. There seems to be nothing especially quantum mechanical about the 

underlying notion of s tationarity time. Perhaps all statistical theories in which 

the statistical distribution and the random variables both obey a dynamical law of 

motion should be expected to have sensible stationarity times. As a final step 

here, however, we should make clear that the stationarity time Ts is intimately 

related to all of the commonly accepted measures of an energy uncertainty time. 

First, let us show how Ts is related to the lifetime of an unstable excited 
10 state. Consider the well-known Weisskopf-Wigner model for excited state de- 

cay. In this model the lifetime of the excited state 7. is given by 

1 

TO 
=(2K/fi2)I<f/HIIi>!2 p(uf), (8) 

where Ii > and If > are the initial and final states, HI is the interaction Hamil- 

tonian, and p(wf) is the usual density of final states. For this same excited sys- 
/ 

tern it is also possible to compute Ts. Initially p = Ii > <i 1 , and one finds 

l/T: =h -‘c’ 1 <iI HII x>l 2 , 
X 

(9) 

where the primed sum means that one includes only those intermediate states 

which HI connects with the initial state. In the Weisskopf-Wigner spirit, these 

are of course just the states designated If > above. The sum includes all of them 

in a narrow range of final energies GE = h6w. Thus we find l/T: = bw/2~7~. 

However, in the Weisskopf-Wigner approximation the range of final state fre- 

quencies which occur with appreciable probability is simply related to the state 
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life time, 6u- b/To. Thus we find the canonical result Ts- T 0 
. 

As a second, much simpler, example let us look at the free particle dis- 

cussed earlier. In that case we find, up to an unimportant numerical factor, 

essentially the conventional relation between Ts and the uncertainties in position 

Ax2 and velocity: TE = (8/5)- 
Av2 l 

So, in these two very different contexts of free 

particle and excited bound state, we find that Ts reduces in each ease to an ap- 

propriate familiar heuristic “uncertainty time”. 

The first author wishes to thank a number of colleagues, especially Prof. L. Mandel 
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Profs. S. D. Drell and A. L. Schawlow for their hospitality at Stanford during 

the year 1971-72. 
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