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ABSTRACT 

A rigorous, model-independent treatment of posi- 
tivity and duality is reviewed and experimental impli- 
cations are discussed. Under the assumption that 
dibaryon resonances do not exist or do not participate 
in duality, it is shown that the least massive spin J 
meson which couples to baryons must have I = 0 and 
P=C=(-l)J for all J 3 o(O), the leading effective tra- 
jectory intercept. When degeneracy occurs, the cou- 
plings of the I= 0, P = C = (-l)J mesons must dominate. 
The mass inequalities Mws M 

P 
, Mos MK*, Mf sMA2, 

M SIVI f H.+.* follow immediately. Among the implications 

for J > 2 is some rather strong support fog a Jp=3- 
assignment for the @(1675) as well as a KK decay mode 
for this resonance. At present, there is very little in- 
formation about higher mass states with I= 0. The 
identification of any Regge recurrence with J 3 4 among 
the high mass I > 0 states would immediately provide an 
upper bound on the mass of a required I= 0 meson with 

the same spin and P = C = ( -l)J. The experimentally 

possible Jp assignments of 2- for q’(958), 2- for 
Al(lO70) and 3- for the KN(1420) would be in dramatic 

disagreement with positivity and a dual role for these 
resonances. Inequalities involving meson and baryon 
masses are also obtained. In terms of baryon and lead- 
ing meson trajectories, the result is that o!M3aB- l/2, 

which forces the leading meson trajectory to rise at 
least as fast as the leading baryon trajectory. A pos- 
sible stronger inequality, aM 3 aB+1/2, which is sat- 

isfied by the observed low-spin resonances, is dis- 
cussed. Inequalities are found among couplings of 
arbitrary spin baryons to recurrences on the leading 
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meson trajectory. For o-nucleon coupling 

gy’ + i(f/2m)a” \ with MU< Mp one finds that g2 2 

(fM /2m)2. .nW ‘7, 
If, - $1. 

With w-p degeneracy, gi - g: Z(Mw/2m)2 

Stronger inequalities follow from the addi- 

tional assumptions of nonet w-$J mixing with SU3 in- 

variant couplings to the baryon octet and decoupling of 
$ from the proton. The strongest inequality for cou- 
plings is found to be satisfied as an equality if numer- 
ical values given by vector dominance are substituted. 
Under the same additional assumptions, it is shown 
that the next lowest mass J= 1, nonstrange meson 
above the o and p should have P = C = -1 and I= 0, which 
are just the quantum numbers of the 4. Other possible 
low-mass J= 1 resonances are the A1(1070), B(1235), 
D(1285) which satisfy M 

Q 
< MAI, MB, MD. Since the 

2+ nonet also exhibits nonet symmetry, Mf, may pro- 

vide a similar lower bound on the masses of J=2 non- 
strange mesons which lie above the f and the A2. The 
agreement between presently available experimental 
data, previozs models for couplings, and results ob- 
tained for BB systems from positivity, duality, and the 
assumption of no dual dibaryon resonances, tends to 
indicate that duality does apply to BE systems. This in 
turn provides some general support for the existence of 
exotic mesons which couple to baryons. 

INTRODUCTION 

Duality in one form or another has generated many predictions which 
are relevant to experimental meson spectroscopy. l Unfortunately, specific 
dual models such as the Veneziano model I32 frequently disagree with exper- 
inrent and have well-known problems associated with ghosts. 4 Another 
troublesome fact is that general aFeLts involving duality, when applied 
to particular processes such as AA - M , lead to conflicts with the naive 
quark model which has been useful in understanding hadron spectroscopy. Of 
course, the naive quark model may be wrong. In any case, there is appar- 
ently need for caution regarding predictions of the familiar approaches to 
duality. 

We will describe here a relatively new method6 for obtaining predictions 
from model-independent features of duality in the zero-width approximation. 
This method involves a minimal set of assumptions, has no diseases or dif- 
ficulties, and conflicts with no well-established experimental data. In this 
approach, Regge behavior and factorization are replaced by the more gen- 
eral requirements of power boundedness and positivity. The zero-width ap- 
proximation is used because it leads to rigorous results for resonance poles 
instead of inferences drawn from imaginary parts of assumed asymptotic 
forms. Our results are in the form of mass and coupling constant inequal- 
ities. There seems to be a tendency for some of the inequalities to be ex- 
perimentally satisfied as equalitios. 



We begin by considering the amplitude for elastic scatteringof two spin- 
less particles. Duality is associated with the statement that the amplitude 
can be represented by a sum of s-channel poles 

M(S, t) = 2 & 2 Aintn 

i=O i n=O 

or by a sum of t-channel poles 

B. sm 
Jm 

(1) 

(2) 

provided that there are no u-channel poles or other singularities. Subtrac- 
tions may be needed in Eq. (1) and (2). Due to positivity of residues of elas- 
tic partial wave amplitudes and properties of Legendre polynomials, the co- 
efficients Ain are all positive for poles above threshold. If the t-channel 

amplitudes are not elastic, then we cannot make a similar argument for the 
signs of B. 

1m’ 
However, it happens that because of duality, some of the B. 

Jm 
must be positive. If tk is the lowest lying resonance pole with spin J, then 

the coefficient BkJ of the highest power of s in the polynomial residue can be 

shown to be positive. This implies positivity of residues of those poles 
which in Regge terminology would be recurrences on the leading t-channel 
trajectory. A statement of the relevant theorem7 is as follows: If (a) M(s,t) 
is an analytic function whose only singularities are simple poles at s = si > 0 

and t=tj>O, i,j = 0,1,2, . . . , where si and tj are real constants, (b)M(s,t) 

is polynomially bounded away from its poles as ISI + 00 for fixed t, (c) resi- _ 
dues of poles in s are polynomials in t, and(dj with the possible exception of 
a finite number of these residues, the coefficient of each power of t in each 
polynomial residue is positive, then(i) residues of poles in t are polynomials 
in s, and (ii) the coefficient of the highest power of s, say sJ, in the residue 
of each leading pole (the lowest-lying pole with a olynomial residue of a 
given order) in t is positive for J ,> Jo, where s- 3 OM(s, 0 ) - 0 as s + 00. 

Conditions (a), (b), and (c) are satisfied by the zero-width approxima- 
tion to any kinematic singularity-free scattering amplitude which has no u- 
channel poles. For the scattering of particles with spin, one can construct 
certain linear combinations of kinematic singularity-free helicity amplitudes 
which sat@ condition (d). Polynomial boundedneca insures convergence of 
partial fraction expansions8 so that M( s, t) can be expressed as a sum of 
poles in s (with subtractions) without the explicit appearance of poles in t. 
This is a necessary requirement of duality. Since effective trajectory inter- 
cepts fall in the range 1 = o!(O) > 0, our results should apply for 53 Jo = 1. 

This would become J 3 Jo = 2 if the Pomeranchukon were included in dual 
amplitudes and if ~~(0) = 1. It should be pointed out that the theorem is 
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nontrivial in two respects. First, in problems with spin and internal sym- 
metries, s-channel poles with positive residues are dual to t-channel poles 
with both positive and negative residues due to signs of crossing matrix ele- 
ments. Second, the theorem applies even when the t-channel reactions are 
not elastic in which case there is no a priori knowledge of the sign of the 
residues of t-channel poles. 

BARYON-ANTIBARYON CHANNELS 

We now describe the application6 of the theorem to the process BIB2 

BIB2 with arbitrary spin baryons BI and B2. The purpose of such consid- 

erations is to derive mass and coupling constant inequalities for the mesons 
which can be exchanged in this process. It is undesirable to consider only 

the spin 5 nucleons because P = -C = (-l)J mesons do not couple to N%. 

Furthermore, restrictions on the baryon spins would leave open the possi- 
bility of obtaining inconsistent results for different amplitudes. The first 
step is to find .amplitudes which satisfy requirements (a) -(d) of the theorem. 
This problem has been solved6 under the assumption that dibaryon reso - 
nances do not exist or do not participate in duality. If we denote s-channel 

helicity amplitudes’ for BIB2 - BIB2 by M$ Aor = < FPIMI ho!> and intro- 

duce a set of amplitudes 

FS ma = (-I)@ [S1’2 tan (s,/2)] A-cr+p-P MLpAa , (3) 

then a function which has been shown to satisfy the requirements of the the- 
orem can be written in the formlo 

j,+j, (s2t)-min(A-a, &-p) 
+ 2bFS 2 s 

Ima + c FAcYha ’ 1 (4) 

where a, b, c are real constants with jbl< lacl, so= (ml+m2)2, A = 

(ml -m2f ad j,, j,, ml, m2 are the spins and masses of Bl and B2. In- 

ternal symmetries are easily included since the conditions of the theorem 
are satisfied if the diagonal helicity amplitudes in A are also diagonal in all 
internal quantum numbers. For simplicity we initially neglect isospin, 
strangeness and SU(3) and focus our attention on parity and charge conjuga- 
tion. A is free of kinematic singularities and, in general, the highest 
power of s appearing in the polynomial resid;le of a spin-J, t-channel pole 
in A is associated with a power of sJ in each of the amplitudes FS 

FS and F:LYAcL 
Ml-@’ 

PPAQf ’ 
Since t-channel resonances with P = -C decouple”, l2 from diagonal s- 

channel helicity amplitudes, the residue of a P = -C, t-channel pole in A is 
proportional to b, the coefficient of the off-diagonal amplitude. Thus, the 
sign of the resi&:e 01 z:y F = -C, t-channel pole in A can be made negative 



since b has an arbitrary sign. Consequently, the P = -C poles cannot be the 
lowest-lying~t-channel poles for a given spin without contradicting conclu- 
sion (ii) of the theorem. This result is inescapable because we are dealing 

with the t-channel poles of FS 
l-@AQ 

with arbitrary helicities for arbitrary- 
spin baryons. 

A more involved argument can be made to rule out leading C =(-l)J+l 
resonances. Straightforward application of the helicity crossing matrixI 

reveals that the coefficient of sJ in the residue of a spin-J, C = (-l)J+l, t- 

channel pole in FS is the negative of the corresponding coefficient of sJ 

in F;-pp+- 
PLPPP 

Consequently, if the C = ( -l)J+l pole is the lowest-lying pole 

with spin J, then we have a contradiction with the theorem unless the coef- 

ficient of sJ is zero for every diagonal FS amplitude. However, application 

of the theorem to A shows that the coefficient of s’ must vanish for all off- 

diagonal amplitudes F,$hly if the coefficients of sJ vanish for diagonal am- 

plitudes. This complete decoupling is impossi&le for a pole which really 
corresponds to a spin-J resonance in some BIB2 channel. We conclude that 

the lowest-lying spin-J meson which couples to baryons cannot have C=(-1)““‘. 
This result, together with the previous exclusion of P = -C, implies that in 
the absence of degeneracy, the leading t-channel poles must have P=C=(-l)J. 
If degeneracy occurs, then the couplings of the leading P =C = (-l)J mesons 
must dominate over the couplings of their degenerate partners. 

We now discuss the inclusion of internal symmetries. If each ampli- 
tude in A describes scattering in the same s-channel isotopic spin state, 
then the sign of particular t-channel isotopic spin exchange contributions to 
A will depend on signs of s-t, SU(2) crossing matrix elements. Only the t- 

, channel I = 0 amplitudes always contribute with a plus sign. I4 Thus, unless 

the 1=0, P= C=(-l)J resonances are leading, we can find some A which 
leads to a contradiction with the theorem. It is particularly easy to see why 
strange mesons cannot be leading. Exchange of strangeness can only con- 
tribute to A through an off-diagonal contribution which is associated with the 
indefinite sign of b. The considerations which are necessary for incorporat- 
ing SU(3) invariance are essentially the same as for SU(2). I4 The conclu- 
sion is that the lowest-lying spin-J meson which couples to baryons must 

have 1=0, P=C =(-l)J or, in case of degeneracy, the coupling of the I=O, 

P = C = ( -l)J meson must dominate. In an SU(3)-invariant theory, the I = 0 
meson must also be a unitary singlet. This result should hold for all 
J z Jo > Q! (0) the relevant effective trajectory intercept. We expect that the 

Pomeranckk should be excluded and therefore we take Jo = 1. In any case, 
the result should hold for J 5 2. 

THE I@ CHANNEL 

Under the assumption that KK res_ona.nces do not exist or do not partic- 
ipate in duality, the amplitudes for KK- - KK can be treated in a fashion 
similar to the treatment of BIB2 * B1B2. This yields information about 
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the coupling of I=0 and I= 1, P =C=(-1)J mesons to Kz. One finds that the 
least massive spin-J meson which couples to KKmust have I= 0 or, in case 
of degeneracy, the coupling of the I= 0 meson must dominate. 

MASS INEQUALITIES, JP ASSIGNMENTS AND KE COUPLINGS 

From the preceding analyses, we immediately obtain the mass inequal- 
ities MU d Mp, MU d MK.+, Mf s MA2, Mf d MK+,* for J=l and J=2 mes- 

ons. These inequalities are clearly in agreement with experiment15 to 
within small fractions of resonance widths. Since we have used the zero- 
width approximation, the w and the p as well as the f and the A2 should 
probably be considered as degenerate, in which case we should examine the 
coupling constant inequalities which insure positivity through the dominance 

of the I= 0 coupling. For the couplings to Kg we have y2 2 

2 2 
wc ?ype and 

Ym ? YA2J3 * The couplings of the f and A2 to Kgare directly measurable 

but the data are imprecise. The f does appear to couple to Kz. 16 

The g(1680) is thought to be the spin-3 recurrence of the p and spin 3 is 
experimentally favored. la, I.7 Since the g couples17 to KK , the theorem 

requires an I G= O-, JP =3- meson with mass d 1680 MeV which also couples 
toKK. The only plausible candidate listed in the data tables is $11675). 
From the theorem and the apparent +-gdegeneracy, we conclude that the 
partial width of the as yet unobserved KK decay mode of the @(1675)must be 
at least as large as the partial width of the observed, l7 charged KK decay 
mode of the g. If the g(1680) couples to any baryon, then the baryon-anti- 
baryon analysis also supports the Jp = 3’ assignment for the +(1675). 

The data tables15 indicate the presence of many possible high mass 
states with I > 0 among which may be some Regge recurrences with J 3 4. 
The results obtained here indicate that the identification of any J ,> 4, I > 0 

’ state would immediately provide a reliable upper bound on the mass of a re- 
quired I= 0 meson with the same spin and P = C = (-l)J. 

Since the least massive spin-2 meson with I= 0 and P = C = +1 appears15 
to be the f(1260), the experimentally possible Jp assignments15 of 2’ for the 
q’(958) and Al(1070) would be in dramatic disagreement with positivity and a 
dual role for these resonances. Experimental evidence againsiihe 2- as- 
signment for the q’(958) has been reported at this conference. Similarly, 
there is no lmown spin-3 meson with I= 0, P =C = -1 and sufficiently low 
mass to avoid difficulty with the possible JP =3- assignmentlS for the 
KN(1420). It should be emphasized that the conclusions drawn here do not 

depend on an assumption of Regge behavior or the assi 
P 

ent of particles 
to trajectories as is the case with previous arguments based on duality. 

MESON-BARYON COUPLINGS 

Application of the theorem to A immediately provides bounds on the 
strength of the leading spin-J t-channel exchange contributions to off- 
diagonal helicity amplitudes MS 

PPAQ’ 
Thus, one finds inequalities among 

couplings of arbitrary spin baryons to the leading spin-J mesons. As an 
example, we consider the simple case of vector-meson coupling to nucleons. 
It is an easy task to caku1at.e t-channel vector-meson exchange contributions 
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to the N% N% amplitudes, F:flAa, in terms of the couplings gJ* +(if/2m)#V qV 

where m is the nucleon mass. Withp=@=+ andh=u==+ in Eq. (4), the 

implication of the theorem for the w-exchange contribution is found to be 

a2g2 +2b(Mwf/2m)2+c2g2 3 0 . 

Since lb1 d lac], we can choose b = -ac = -a2 and obtain g2 ,) 

Other choices for the helicities yield no new inequalities. 
eracy, the inequality becomes 

(5) 

(Muf/2m)2. 

With w-p degen- 

(6) 

This condition is consistent with Regge-pole models for high eneru scatter- 
ing involving nucleons, vector dominance of the electromagnetic properties 
of nucleons and nuclear potential analyses although fU is not well deter- 
mined. I9 

NONET SYMMETRY 

In order to obtain stronger inequalities for vector meson couplings to 

spin-i baryons, we consider an SU(3) coupling scheme with nonet w-@ mix- 

ing and with the $ decoupled from the proton. 20 Two of the inequalities 
which we obtain are 

fp<2m 5 ‘M gP @ FM 

(7) 

(8) 

where m and M 
4 

are the masses of the proton and the $I, fp and g P are cou- 

plings of the p to the proton and Fv, DV, FM, DM are the f-type and d-type 

coupling factors for the yp and a Ill terms, respectively (FV+DV= FM+DM=l). 

In the vector dominance model FV = 1, FM - 4 - L and fp/gp = 3.7. Substituting 

the proton mass, the @ mass and the F’s and D’s in Eq. (7) gives the re- 
markable, though possibly accidental, result that Ifp/gpI d 3.7. 

In addition to stronger coupling constant inequalities, we find thatnonet 
symmetry together with the theorem leads to further mass inequalities. It 
is found that due to certain w and p decouplings, the next lowest mass J= 1, 
nonstrange meson above the w and p should again have P = C = -1 and I = 0, 
which are just the quantum numbers of the $(1019). Other possible low mass 
J= .! resonanctis are ttie -&--\- _ A:!?fi70), B(1235) and D(1285) which satisfyM+cMAl, 
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MB, Ml, as they should on account of their most likely quantum number as- 

signments. The lower bound provided by the G(1019) could prove interesting 

in connection with J PC assignments for possible resonances in the neighbor- 

hood of the qr(958).15 Since the 2+ nonet also exhibits nonet symmetry, the 
mass of the i’(1514) may similarly provide a lower bound on the masses of 
J=2 nonstrange mesons which lie above the f and the A2. 
be in accord with experiment. l5 

This appears to 

MESON-BARYON MASS INEQUALITIES 

We can extend our approach to include baryon resonances by treating a 
combination of u-channel-exotic amplitudes of the form 

a2(MG-M%) + 2b (M%-+Bs) + c2 (Bz--+BB) 

in analogy with Eq. (4). Here M denotes a meson and B denotes a baryon. 
In order to eliminate the possibility of u-channel poles, we assume that 
there are no dibaryon resonances and that exotic mesons or baryons, if they 

exist, do not couple to nonexotic mesons. We find that the spin- J+ i , t- ( ) 
channel baryon resonances in Bb(MMdBB) must lie above the lowest-lying, 
I=O, P =C =(-l)J, spin-J meson resonances. When stated in terms of 

baryon and leading meson trajectories, this implies that aB d czM+ $, which 

forces the leading meson trajectory to rise at least as fast as the leadi ng 
baryon trajectory! 

1 
The observed low-spin resonances closely satisfy oB 

ScYM--2 which is stronger by one unit than we have been able to prove. It 

might be possible to prove this stronger bound because (Y 1 

‘not exhaust the content of positivity. 12 B s aM+ 2 does 

1 
The closeness with which aB s aM 

-- is satisfied is indicated by the near degeneracy of A(l236) and f(1260) for 
23 J=s and J=2, N(1688) and $(1675) for J= 2 s and J=3. 

CONCLUSION 

In conclusion, we observe that the agreement between established ex- 
perimental data, previous models fo_r couplings, and our results tends to 
indicate that duality does apply to BB systems. This provides some support 
for the existence of exotic mesons5 which couple to baryons. Unfortunately, 
we have only lower bounds on the masses of the exotic mesons. 

We have chosen to state some of our results in terms of Regge trajec- 
tories. However, the derivation of our results does not depend on the as- 
signment of particles to trajectories or on the assumption of Regge behavior. 
In this respect, the present approach is considerably more general than 
other approaches to duality. 1 
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