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Abstract 

A theory is presented to account for all the experimental observations of fluxoid 

quantization and phase transition in superconducting cylinders, without invoking the 

large, unlikely, misalignment between field and cylinder required in previous theory. 

Correct values are obtained for the ratio of periodic to background quadratic coeffi- 

cients in the resistance vs. field plot, and for the 0” K penetration depth. The new 

theory predictsfor the first time actual penetration depth and superconducting area. 

From the earliest observation of periodicity in the transition temperature in 

units of the flux quantum h/2e by Little and Parks’ (L-P) through to the most recent 

by Meyers and Meservey’ (M-M), a quadratic background has been observed upon 
n 

which the periodicity lies. Tinkham’ derived an expression to explain the background 

seen by L-P. Yet, as hepointedout, unless their hollow cylinder were misaligned with 

the magnetic field, H, by as much as 9”, his theory differs by a factor of 100 from their 

result, and “a physical misalignment of this magnitude is unlikely, . . .I’. P-L4 ob- 

served “the nonperiodic quadratic background which appeared in all of the samples and 

which varied in magnitude depending upon the diameter of the cylindrical sample, the 

wall thickness, and the orientation of the sample in the magnetic field.” Yet Tinkham’s 

equation predicts no dependence on the cylinder diameter for an aligned cylinder. 

On the other side of the coin, the recent experiments of M-M2 show excellent agree- 

ment with Tinkham’s theory. Therefore, the theory developed here will attempt to ex- 

plain these two apparently disparate sets of results. Our effort here is in no way meant 

to lessen the value of Tinkham’s basic analysis underlying the specifics of his theory, 

as we follow the same basic approach. 
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Consider a thin superconducting cylindrical shell of len&h D, thiclgless ~1, ancl 1)1eqn 

radius R >> d, in an axial magl&ic field 2. The penetration depth h > d, so 

the field is approximately uniform across the IvaIl. Since the wave function 

of the superconducting electrons is single-valued, we may apply the Bohr- 

Sommerfeld quantum condition to the electron pairs. 

where q is the quantum integer. 

The canonical momentum, p = 2m?+ 2 ex, where 2m is the mass, 2e is 

the charge, and v is the average center-of-mass velocity of the pairs. x is the 

magnetic vector potential so that the magnetic flux density?i?=F x z= pot Sub- 

stituting into Eq. (1) and using Stokes’s theorem, we have 

(2) 

.v= c2;AR) &f -xR’B) . (3) 

The kinetic energy density associated v,+th tra;-,ped fiux quanta is 

2 1 =znm - aR2B ) 

A = m/ne2 =,UOX2, n is the number density of superconducting electrons, 

z~d + = h/2e is the flus quantum for pairs. 



I 

As pointed out by Tinkham, 3 near Tc “due to inhomogeneity, one is dealing 

n-ith isolated threads girdling the flux.” However, he does not pursue this 

amect of the theory near T C in terms of the kinetic enerD of the shielding cur- 

rents of these filaments. It is likely that the regions of the grain boundaries be- 

come normal first, leaving s.Qerconducting regions of thickness d and average 

width w, each being a singly-connected surface with circulating current density 
b 

Jc’ 
as illustrated in Fig. 1. Parks end Littie A po tilted out that even with super-- 

conducting and normal regions. pairs can still t- yaverse the cylinder circumfer- 

ence, and E is preserved. The London equation determines J c’ 

giving the approximate solution 

(5) 

. (6) 

Since Jc = the shielding contribztiz~ to the kinetic energy density is 

A transport current, Ip, parallel to zi+ ’ = zis, is impressed on the cylinder 

(as is done experimentally to measure t‘ YE resktance change of the cylinder as 

5 Is varied) by means of leads at each end. These electrons have total velocity, 

TV.7 _, :vit;h a component of velocity v S’ due to I-1, around the cylinder in addition to 

A’), 3 .A... component of velocity v 
I? 

they have parallel to the cylinder’s axis. The effect 

of t’z transport current has been neglected in the previous analyses. l-6 Consider, 

tT1-3- power supply and normal leads to be equivalent to a superconducting wire at- 

+--.‘q*+ to the ends of the cylinder in a pl.ane parallel to%. <,lii 2 ;t. .A In t1ii.s case as before , GIL LI) 

EgAm (1) holds. 7 



I . 

Before proceeding, we point out that in all the experiments to date, 1,2,&S 

connection has been made to the cylinder by means of the thin film on the plate 

upon which the cylinder rests, i.e., at the bottom edge of the cylinder. Thus for 

small B, the spiralling electrons will not necessarily be collected in their first 

traversal of the cylinder, as they may reach the cylinder end at a point distant 
._: 

from the anode. In this case, we assume they will be specularly reflected at each 

‘end, and that for collection there are only discrete angles o-= t n -1 vs 7 as long as 

&is small. 
P 

Consideration that an electron must make an odd number of traversals 

for collection leads to the condition 

2nRk 
tnu= D(Zi+l) ’ (8) 

where kand i= 1,2,3 ,... . k is the number of times the electron has gone around 

the cylinder, and 2i is the number of reflections. when tno is large, one may 

relax the caPture condition, as tunnelling, space charge effects, and small per-- 
V 

- . 
turbations allow collection with an essentially continuously variable tnc =s . For 

b m 
small CT (esserkially small B for the experiments performed): 

“P - 

v;here the path of integration is chosen to iie deeP within the connecting LGre so 

tb+ vt = 0 there. -.A& c* 

2ex. dz= 2eBkaR2. 

S 

Combining Eq. (S), (lo), ZI.IIC~ (II), we obtain the solution for the kinetic: energy 
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1 density associated with transport current, Et1 = z nm 

E t1 = (2f@[( 2i+l)2D2 + (2irRk)2 1 -1 
(qQ -kxR2B)2 , (12) 

for small o (equivalently small B). 

Now let us consider large o (large B). ..-- 

2rnT.‘$-2mvt(2i+l)D (vt/vp) = 2m 
\ 
’ 2 g)(2i+1)D/vp . xrs+vd (1.3) 

Ze??* d?= eB(2i+-1jDRv /v 
s P 

s 
(19 

Combining Eq. (9), (13), and (14)) we find 

= r 
l/2 

V - eRLB + 
S ( 

(eRLB12 
I 

- 8mL%;(2mLvp -qh) 1 i /W-W, (15) 

where L = (2i+ 1)b. Thus, in this case, the kinetic energy density is 

I. 

r 
-- 

R2B2 J i,2 2 2 R2B2J 2 
E 

t2 = - + $f (q$ - ALJ$ f $$- 16-4 + ,& (q+ .tz -+r2 , 
P (16) -. 

where J = nev 
P 

p = Ip/(ZaRd). 

Thus the total kinetic energy density of s, superconducting electrons in the 

cylinder is 

T&E u = 1 for small G, and u = 2 for large C. 

For small ci, we have, on substituti-F % _ ,:g the order para-meter w = - 
A ’ 

E Tl -’ (~TR)-~ (q$ -xR 2 B) 2w+ (8ho)-+Er B2w -t 

+ (2~Rk)~ 1 -1 
(q+ - kwR2B)2w . 



This must be added to the Ginzbu rg-Landau total free energy difference, thus 

AG(;,T) = -a(T)w+ $b(~)~~-f-E~~(w) , (19) 

Y&X the spatial variation of the order parameter ivol 2 is negligible due to the 

thinness of the cylinder. jd- 

a(T) =POH(T)~ h(T)/hO 2 = [ 1 poHi (l-t2)2 (dj’= ~OH&t2)(l+t2)-1 

where HO is the thermodynamic critical field at 0” K, h is the equilibrium 

penetration depth, and the reduced temperature t = T/T~. 

b(T) = a(T) ~CW'~,]z . 

aAG We want ao = 0 to find the minimum free energy difference, and set w = 0 

for the transition condition of no superconducting electrons. Thus 

2 -1 
0 = -p,H,(l~-t”)(l+t2) + “o ALE c+Ec+A E 

0 .A0 t1’ 

E-xpanding to first order in At = - T (?I)? fT << 1, \ve have 
c J c 

for small 0. 

(20) 

(21) 

(22) 

(23) 

&hen k is small and/or L is large, Eq. (23) yields the results of M-M. 2 
The 

- other experimental results 1,495 also come naturally from Eq. (23) without the ne- 

cessity of invoking misa’ligxmxent. Let L:S look at the quadratic coefficients up .a& 

Q, o, and include the possibility of a misalignment angle 0. 

2 eriodic parabola: (At)p ozo 
, * (24) 
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BackgrolLnd parabola: 

(A-;), = .CY 2 
u b B cl w12 2 2 -gq B cos 0-t- 

EL2 -t (2nRlq21 
4 4R2B2sin20 

I 
, (25) 

i,c&re for small 6 and B the sin 2 0 misalignment term enters in as for Tinkham, 2 

2 and x = 7iR B/Q. Therefore 
.i 

.%= 
o!b 

2 7-l 
2 

cos2Q + 
4(rR2j b \ * -k 

\ x 
CL2 f (2Tpdq2] - (26) 

Equation (26) is a simple quadratic in k, a.nd c.an be solved exactly for 1~ for all 

the different experimental values of ~Y~/cY~, with 8 either = 0 or # 0 as the true 

case may be. The Sn data taken by L-P 194 is sho~m in Fig. 2 for reference. 

Let us consider the L-P” 4 data (a lower limit for 2) 
ab ' 

id get an anproximate L - 
solution for k which reveals the inherent simplicity between the parameters. in 

FL cl! 
their data, 

@b 
- 10 for Sn and N 25 for In. Hence R2 >> --I!? 

d ,,2 
- . We may also 

neglect the sin20 te?rn if R2 cos’0 2 10 
i 
4% R2 sir,2 6 

( 1 cYb d-!-n 

2 Ub ) 
. Therefore’, up to a 3” 

misalignment, the sin 6 term is negligible. A’iso for s > 1, 1; >> 2 ry 1. - X -Mt h 

these approximations, Eq. (26) reduces to 

Q 
The LI~PZT limit of $ comes from t>z >:-h12 

2 
data in svhich 0 = 0 t ald 

ICY ,.T5n.: 
p’ ‘--b G 3R2/d2 so tha:jb;crbj = -$R2, where N-d 

2 
, e.g., N=4 

-:=-a>, y{‘J= de -,iit-i Equation (2s) gives 

1; k (2i+l)D(2xR)-1 [&* (2 - lj]m1’2 (fOrPi-IiN, x 11). 

(27) 

(28) 

Thus with the values of k from v ,,q. (27) or (28), one may obtain values of ho 

an,j Q /u 
p-, b consistent with 2.11 the expsriment,s, wil.houf; invoking misrtticr;llnlent. 
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Furthermore, values of h(T) Card T may be obtained from this theory and the e);- 

perinkntal data, which cannot be obtained from Tinkham’s theory. 2 

From Eq. (S), we have 

-1 
Jp = mvs(2i+l)D . 

Substituting for vs from Eq. (12), a&d solving for A, 

h(T) = (#+OJp]‘/” (I=- q)1’2 d 
-l/4 

(2i-!-1)‘D2 1 l 

Equations (27) and (25) in (30) yield 

h(T) S 
C 
9x/2irRj.~ o J #y$ y- 1y4 (for L-P), and 

h(T) + 
( 
9x/2nRp 0 J py2 [i& z+]-1’4 (for M-M) . 

. Now h(T) = hot1 -t") 42 & 1 2 A$- t) -l/2 
for t’ G 1. (This appears to fit 

the experimental data as well or better than the ECS e,xpression.) Therefore 

(29) 

(30) 

(31) 

(32) 

(33) 

Values of h from Eq. (31) and (32), when ’ A. suos;l-,*;& d into (33), give values of T 

n’nich agree well with e,xperiment. 3-,2,4 Sisze the cylindrical shell may bre& up 

in.to superconducting and normal regions, J 
P 

rnzy be > I /2~Pd. 
P 

When T is given, 

- then from Eq. (3l), (32), and (33), one may calculate the true J and hence the ef- 
.P 

ktive cross sectional area which remains superconducting. 

It should now be clear that the transport current, I 
P’ 

plays 3 vital role in the 

zY~erimental results, though it was totally neglected in the previous mjlyses, l-6 

ha:ring been regarded merely as a means for sensing the phase transition. IP causes 
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a spiralling electron trajectory, a change in the path length of which affects v 
S 

and hence the-quadratic background. For a given flux, the number of quantum 

mechanical wavelengths is conserved, but the electron total path length is a 

function of I 
P’ 

and therefore so is the electron wavelength, with a concomitant 

inverse change in electron momentum. 
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Figure captions 

Fig. 1. Thin-walled superconducting cylindrical shell showing shielding current 

density Jc . 

Fig. 2. Variation of resistance of tin cylinder with magnetic field at its transi- 

tion temperature showing a periodic parabolic array superimposed upon 

a quadratic background (from L-P 194 ). 
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