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ABSTRACT 

The effect of Fermi motion on the extraction of asymptotic total neutron 

cross-sections from deuterium data is examined in some detail. Particular 

attention is paid to the threshold condition on the nucleon cross-sections. Using 

realistic hard-core wave functions to describe the deuteron, we find that, with 

this added correction, the Glauber mean inverse square radius of the deuteron 

is experimentally determined to be 0.0212 f 0; 005 mb-1 in good agreement with 

values calculated using hard-core wave functions. Previous discrepancies in 

TN and NN scattering are shown to be eliminated. When applied to the real 

photoabsorption total cross-section our correction considerably reduces the 

neutron-proton difference making it consistent with zero in the asymptotic 

region. We also examine deep inelastic electron-deuteron scattering and show 

how the theory gives an excellent description of the quasi-elastic peak. For 

scattering into the continuum we find that the correction far away from thres- 

hold is - 5% , whilst near the threshold it can become very large (- 30%). In 

terms of the neutron-proton ratio the correction is generally very small (i.e. , 

the smeared ratio is an excellent approximation to the unsmeared) unless this 

ratio drops below - l/4 near threshold. 
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Introduction 

An important source of high energy interaction data relies on the accurate ex- 

traction of neutron cross sections from deuterium scattering measurements. Since 

the deuteron binding energy is small (- 2,2 MeV) it is tempting, especially in the 

asymptotic region, to write the deuteron cross section (ad) as the sum of the free 

nucleon cross sections (CJ , an) 
P 

=u +u “d p n 
Intuitively one does not expect the 2.2 MeV binding energy to be significant in 

a region where the energy scale is many GeV. However, it is generally well known 

that there are small, but important,corrections to this approximation, even in the 

asymptotic region where total cross-sections are essentially constant. Of these 

corrections only the Glauber correction 1 , which arises physically from the shad- 

owing of one nucleon by the other, has been given adequate attention. Its effect 

(to be discussed in Section III) tends to deplete total deuteron cross-sections by 

roughly 5%. This is the only correction which is usually made to Eq. (1) when ex- 

tracting on from ffd. 

Recently it has been suggested that there is another important, calculable cor- 

rection to Eq. (1). 2 The origin of this correction stems from the fact that the 

bound nucleons undergo Fermi motion and are thus off of their mass shells. The 

qualitative features of this effect and its origin have been discussed in some detail 

in paper I 2 to which the reader is referred. The main effort of the present paper 

will be devoted to a quantitative evaluation of this l?smearing” correction with 

emphasis on asymptotic cross-sections. 

The fact that the target nucleons are moving affects the cross-sections in two 

distinct ways : 1) the total center of mass energy seen by the constituent nucleons 

is “doppler shifted ;lr and 2) the flux of incident particles in the rest frame of the 

moving nucleon is different from that in which the cross-section of free nucleons 
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is measured. If the free nucleon cross-sections are strongly energy dependent, 

the first effect could be expected to be large; this is the conventional smearing 

effect. If they are slowly varying, as they are at high energies, one would expect 

this effect to be negligible. In paper I we pointed out that there is a phase space 

restriction on the nucleon momentum due to the fact that the constituents are not 

free nucleons but bound nucleons; this can, and does, deplete ad. It is also found 

that the flux factor depletes od relative to that of (cn + up). These effects depend 

crucially upon the distribution of nucleon momenta and in particular upon the tail 

of the distribution inside the deuteron. In Section III a quantitative calculation 

using conventional wave functions (see the Appendix) shows that these ‘1smearing’1 

effects can be of comparable importance to the shadow correction in the asymptotic 

region. 

As emphasized in paper I, the Glauber effect is expected to be negligible in 

deep inelastic electron scattering,‘so that the smearing effects become the dom- 

inant calculable correction to the radiatively corrected deuteron data, In par- 

titular, near the inelastic threshold where the differential cross-sections are 

strongly S dependent our correction dominates the measured cross-section. We 

shall discuss this in detail in Section IV. 

The plan of the paper is as follows: in Section II we briefly review the theory 

presented in paper I. In Section III we limit ourselves to the case where the mass 

of the incident particle is small and finite as in pion, nucleon, or real photon scat- 

tering. We find that the effective measured Glauber parameter <r -2 > is decreased 

by about 30%. Its magnitude (0.0212 f .0066 mb-I in TN scattering and 0.0213 f 

0.0038 mb-1 ’ m NN scattering) is consistent with < r -2 > ” .022 calculated using 

“realistic” hard core wave functions, (“soft” wave functions such as the Hulthen 

-2 give values of <r > 2 .0251 mb-l). In real photoabsorption we find that when 
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proper account is taken of this effect the difference between the neutron and proton 

cross-sections is considerably reduced and is consistent with zero. In Section IV 

we examine inelastic electron scattering and show that the theory gives an excellent 

description of the quasi-elastic scattering peak in deuterium. For scattering into 

the continuum our effect introduces large corrections to existing data in the im- 

portant threshold region. We confirm the existence of a cross-over point (i.e. , 

the point where the smearing correction to (1) changes sign) and show that it is 

essentially wave function independent. Finally, we present a calculation of the ex- 

pected smeared neutron to proton ratio in deep inelastic electron cross-sections 

based upon various models for the unsmeared ratio. We find that the smeared 

ratio closely follows the unsmeared ratio except when the latter drops below N l/4 

near threshold. In such cases the smeared ratio remains relatively large although 

the unsmeared ratio can become vanishingly small. 

Note that we have used conventional hard-core wave functions throughout in 

describing the deuteron momentum distributions. This is discussed in the Appen- 

dix where we give details of the wave functions used and discuss their applicability 

to the present problem. 

II. THEORY 

This Section contains a review of the results of paper I. We shall present the 

results in two cases: a) where the incident particle has a small but finite mass; 

and (b) where the incident particle has a virtual mass which can become large (as 

in electron scattering). In part (c) we discuss the identification of the virtual 

scattering amplitudes. 

A. Hadronic Scattering and Total Photoabsorption 

The analysis is based upon an incoherent impulse approximation (for a review 

of the corrections to this the reader is referred to paper I). This approximation 

excludes shadowing corrections. We shall discuss these in Section III. 4. The 

square of the deuteron scattering matrix elements is simply written as the sum 
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of the squares of the corresponding nucleon scattering matrix elements. In terms 

of Feynman graphs the process is approximated by the graph shown in Fig. 1. We 

thus have 

IT I2 = 
d3ps 

(Es7M) If@,)1 2 [tT,I 2 + ‘Tp’ 2] (2) 

where the ITI 2 represent the squares of the T matrix elements suitably summed 

and averaged over initial and final states; 1 f Qs)l ,2 is the probability that a par- 

ticular nucleon has momentum qs in the rest sys tern of the deuteron; E s =qT2 

is the energy of the spectator nucleon and M is the nucleon mass; fQs) is simply the 

Fourier transform of the deuteron spatial wave function. Ambiguities arise in 

identifying the non-relativistic wave-functions found in the literature with the 

relativistic case used here. In particular, we choose the following normalization: 
I- 

(this is discussed in the Appendix). 
. 

f @s) [ I 
l/2 

Es/M = Up$Q2 + Wp(Q2 

The S-wave transform is 

* 
‘pQs)= + r 

d--J 

u(r) 
j. ( I,qsI r) r2dr 

0 

(3) 

@a) 

and the D-wave transform is given by 

j, ( l..p,l r ) r2dr- w’) 

By introducing into Eq. (2) the usual flux factors which take matrix elements 

into cross-sections we can write (in the deuteron laboratory system) 

d3ps 1 l/2 

ad = 
(Es/M) bin + up’ (5) 



Pa q where v f f - 
M 

with p the 4-momentum of the struck nucleon and q that of 

an incident particle of mass Mi and energy Ei = q” . We shall parameterize _ 

the a’s in terms of the relevant total center of mass energies of the incident 

particle-nucleon system: for a nucleon at rest (on shell) 

S=M2 + 2MEi + M2 i 

whilst for an interacting nucleon (off shell) 

S’ = (p + sJ2 
02 2 = P +2Mv’ f M i 

We thus obtain 

?T 
ad(s) = - 2$M I 

* &ldps 

0 
Es/M 

If (E,)I 2 s’ 
Se 

dS’ T) rg(S’) + on (S’)’ 

Where q = L (S ’ - Mi2 - Md 
2 

4M2M2’ 
m 

+ 2MdE& - i (6) 

and Si = M.2 + M 2 
1 d f M2 + 2 [q” (Md -MS) - MdEs] * 2 I$ 1$,1 

Physically 77 represents the covariant flux factor relating 17’1 
2 

to CJ, It should 

be emphasized that there is a further restriction on the S ’ integration coming from 

the threshold condition on a(S’), i.e. , o(S ’ ) = 0 when S’ < M2. This is discussed 

in detail inpaper I. We shall generally work in the laboratory (LAB) system where 

the four-momentum of the deuteron is Pd = (Md, ,OJ so that J& f$ =g. Note that 

this implies that the energy of the interacting nucleon is 

p”=Md - Es = Md (7) 

Equation (6) is the basis for our calculation of the correction for both purely 

hadronic and real photon scattering. We shall parameterize the correction by a 
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parameter p (S) which is defined by 

ad(s) = tqw + cp)) (1 - P(S)) 

so if (T _ fl 
P- n (8) 

,8(S) = 1 - a(SMEARED) 
o- 

p(S) is to be calculated from Eq. (6). We shall discuss -this further in Section III 

below. 

B. Elec troproduc tion 

In the one photon exchange approximation (see Fig. 2) the electromagnetic 

structure of the target can be described by the Lorentz covariant tensor (3) . 

W 
PV = l/2 5 <p Ijpl N>cN ljvl p > (27r) 3 ‘6tp, -P-4) 

where j 
P 

is the electromagnetic c?rrent operator, P the four-momentum of the 

target and the sum includes an average over the initial particle spin. Here q 

represents the four-momentum of the incident virtual photon. The most general 

formforw. consistent with Iorentz covariance, gauge invariance and conservation 
PV 

of parity is 

q q 
W 

w2(s2 v) 
PV 

= -wp , S2) ‘lip ; +) + 
q 

M2’ 6’ p- y- qpHpv- =A ) (10) 
q2 v 

where v = poq/M = 
q2 S-M2 M and the Wi are scalar functions of the independent 

variables q2 and v (and in principle p2; for a free target p2 is of course fixed). 

Sometimes we shall choose the variables q2 and S rather than q2 and v + In terms 

of these Wi the doubly differential cross section is 
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where E’ is the energy of the scattered electron, 8 its scattering angle (in the 

LAB. ) and da the elemental solid angle; a! is the fine structure constant 

(= 1/137).The analogous equation to Eq. (2) for the scattering from the nucleons 

bound in deuterium is 

wd = I-IV J&g% 
S 

h&J 2 [qv + TV] (12) 

If the z-axis is defined to be along the direction of the virtual photon, an ex- 

amination of the various tensorial components leads to the following equations 

wf ts2, v) = j-g& 
S 

~ft&,l 2 [WY (s2, v’) + w; (q2, v’ ) 

+ p: I w; ts2, v’ ) + wz” (q2, v’ 4 
w; (q2, v) = I ;& if&); M2 2 - [-)” [(+if$J 

2 
-9 

v2 2 
M v12SI, 

-4 ’ 
w; (v’, S2) +w; (v’, q2(-j 

These can easily be reduced to a form analogous to Eq. (6). Again, we remind 

the reader that implicit in the definition of the Wi is the constraint that they vanish 

below threshold, i.e. , for S’< M2. 

C. Identification of Virtual Particle Cross-Sections 

In both electromagnetic and strong interaction scattering an ambiguity arises 

as to what one should use for the total cross-sections for scattering from a vir- 

tual particle. Although we shall assume that these are the same as the real particle 

total cross-sections there is nevertheless the problem as to which is the most 

. 
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convenient or relevant variable (e. g. , S or v )O We shall now present a threshold 

argument 4 for choosing a particular variable. 

In writing Eq. (13) we have used the conventional variables q2 and v o However, 

suppose we artificially separate W2 into an elastic and inelastic contribution. 

w2 
elastic = w2 6 (P + qJ2 _ M2/’ + WFelastic (14) 

7 

where the pion threshold is Mth = M + Mn. Now if the nucleon is free, the argu- 

ment of the d -function is 

tP +a2 -M2=q2+2poq 

whilst, if it is virtual, the argument is 
. 

@ + Q2 - 2 = q2+2p*q+p2-M2 

If we define 

‘i3 s y + p2 -M2 
2M 

\ 
(16) 

(17) 

then Eqs. (15)’ and (16)‘ have the same form (i.e. , q2 + 2 FM) in the two cases. 

The same result follows for the argument of the 8 - function. Hence in order to 

ensure the correct threshold behavior in a simple way, it is obviously convenient 

to consider the W ‘s as functions of q2 and 3 . Equivalently one could, of course, 

consider them as functions of q2 and S from the outset and avoid the threshold 

problem entirely. Both sets of variables have been used in evaluating the smearing. 

As an example, consider the large q2(-q2 > 1 (G~V/C)~ behavior of vW2; 

experimentally this function scales, i. e, , it becomes a function of the single 

-9- 



variable W = - 2 Mv /q2 : 

(18) 

In terms of the w variable, the threshold for F2(u) for an on-shell nucleon occurs 

at w =l. However, when the nucleon is off-shell the threshold occurs at 

w=l+(p2 - M2)/q2. There is nothing wrong with this; however, it is rather more 

convenient (and aesthetic) if we can maintain the threshold value of the scaling var- 

iable at w = 1. Choosing the w = 1 threshold and not the physical threshold for 

the interacting nucleon leads t.o a smeared cross section which is N 2% larger. 

Throughout this work we have used the S I, ( 1 q2 variables rather than the conven- 

tional ( ) v ’ ,q2 using the threshold condition S’ < M2 23 F2@) = 0. 

III. STRONG INTERACTION EFFECTS AND PHOTOPRODUCTION 
. 

In this section we apply the results of Section II to both strong interaction and 

total photoabsorption cross sections at high energies. We first discuss the role 

of the Glauber shadow correction and show how the Doppler effect changes the 

apparent size of the measured mean inverse square radius of the deuteron, < r 
-2 >. 

We then show that in photoabsorption this new effect implies that the asymptotic 

neutron and proton cross sections are equal within errors. 

A. Glauber Effect 

The conventional Glauber shadow correction to Eq. (1) is of the form 

-2 <I: > 2 
Yj p+%-7cp =u (19) 

where, in the correction term, we have set cn=c p. We assume that the scattering 

amplitudes for neutrons and protons are purely imaginary. The energy independent 
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parameter is given by 1 

03 
-2 <r > = l/2 

I 
fp 6) 

Fd (t) fp (0) 
>f; & 
n 

0 

where f(t) is the scattering amplitude for elastic scattering from the nucleon 

(- eebt with b - 9.6 (G~V/C)-~) which is taken to be energy independent. Fdtt) 

is the conventional deuteron elastic form factor defined by 

F&a2) = ei %* 2 I@(r)\’ d3r (21) 

where $(r) is the deuteron wave function. There are two cases where all the - 

relevant cross sections occuring in Eq. (19) can be measured: (i) pion nucleon 

scattering (whereby isospin invariance u =u r+p 7r-n ) and (ii) nucleon-nucleon 

scattering where CJ 
np 

can be measyred. In practice we can, therefore, check Eq. (20) 

directly: the quantity 

-2 cJ+u -u 
<r > =47T P n d 

0 2 
“p 

(22) 

can be measured and checked against Eq. (20). However, our correction adds a 

new term to the right hand side of Eq. (19) which now takes the form 

-2 <r > =(T+c -- 2 
Fd p n 4n up - w w “p 

where p(s) is to be calculated from Eq. (6). This can be reexpressed as 

-2 -2 <r >=<r > - 87r p(S) 
0 U’ 

P 

(23) 

(24) 
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showing explicitly that <r -2 > will always appear larger than its actual value if 

the “smearingl’ effect is neglected. 

B. Determination of < rw2> from Experiment 

We have used Eq. (6) to evaluate p(S) using various wave functions combined 

with fits to a variety of data. The results are shown in Fig. 3 and Table I 5 . 

The shape of p(S) is essentially wave function and process independent (Fig. 3 

shows the results calculated for photoproduction) whereas its magnitude is rather 

strongly dependent upon the wave function. As explained in I this is to be expected 

since p is sensitive to the tail of the momentum distribution and this varies con- 

siderably from one wave function to another. The fact that p is process independent 

merely reflects the fact that total cross sections have similar shapes in the as- 

ymptotic region. Using values of p calculated by making fits to the experimental 

data we have attempted to estimat? <I: -2 > from Eq. (24) using TN and NN data. . 

A basic1 problem here occurs in the evaluation of < r -2 >. from the data using the 

definition (22) since we obviously have to combine different experiments in dif- 

ferent energy regions. 

In Table I we present the calculated values of <r -2 > and p(S) for different wave 

functions for NN scattering at E i = 10 GeV. In doing so, we have assumed that 

= “pp which is .borne out by the data 5f, 5g 
59 

‘. The values of p(S) quoted at 

10 GeV for the NN case are a good estimate (within f 5%) of the values in 

7fN as well as NN with S > 4 GeV2 cases. It is also interesting to note that for 

the caseswhere the estimated correction is small (due to wave functions with smal- 

ler high momentum tails) the corresponding values of <r -2> calculated from Eq. (20) 

increase. The resulting compensation means that the combined effect of the two 

corrections is roughly equivalent to taking < r 
-2 ‘0 to be .O3 mb -1 as is usually 

done by the experimentalis ts ! 
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In Table LT. various values of < rB2> and <r -2 >o are shown calculated from 

experiment. The errors shown are purely statistical. These errors are mis- 

leading due to the presence of large systematic errors. For example, one can 

easily estimate the systematic error due to uncertainties in target densities. In 

particular, the liquid deuterium density is known only to f. 6% 6 . This uncertainty 

by itself, assuming no error in measuring the vapor pressure, results in systematic 

uncertainties of ,0065 mb-l for ?rN and .0040 mb-1 for NN. This crude estimate 

is probably at least a factor of two too conservative for the overall systematic error 

in the actual experimental situations (i. e. , Apd /pd 1 1. 0%). For this reason alone 

the NN and nN data can not be considered as a rigorous test of the theory. 

c. cry cn in Pho toproduc tion 
- 

r 

We now turn our attention to the photoproduction cross sections. As in the 

hadronic case, only a shadowing co,rrection has been made to the deuterium data 

7 when extracting the neutron cross section. In this case shadowing is complicated 

by the fact that inside the nucleus the photon can behave like a hadron. Several 

authors have investigated this problem using the vector dominance approximation, 

and we have simply followed the procedure used by the experimentalists , namely 

the work of Brodsky and Pumplin. 8 As before, we can write 

?n ‘?d -c$p + &3 u YP + (GC) (25) 

where GC is the Glauber correction which we take from Ref. 7. Our results are 

expressed in the form (T 
P 

- cn and are shown in Fig. 4. They show that the dif- 

ference is asymptotically consistent with zero and approaches it considerably faster 

than without our correction. We have shown the results only for the Hamada-Johnston 

wave function, but the results for the others can be estimated by using the plots 
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of Pin Fig. 3. We have also attempted to fit the difference by the expected Regge 

asymptotic forms (Pomeron + A2 - exchange) 

“?P - u-- 
=A+Bv -l/2 

=A+BS -42 

The results are shown in Table III. It is clear that the combined errors are 

sufficiently large that it is very difficult to draw any definitive conclusions. We 

should also mention that the values of the fit parameters are sensitive to the cut- 

off in small W. We have chosen to take points for which W > 1.9 GeV. 

IV. INELASTIC ELECTRON SCATTERING 

A. Quasi-Elastic Scattering 

Quasi-elastic scattering is defined by the constraint that the interacting nucleon 
\ 

emerges on its mass shell; in other words, in this special case, S’ = (p + q)2 = M2. 

The scattering from the nucleons can thus be expressed in terms of the conventional 

elastic nucleonformfactors GE(q2) and GM (q2). It is not difficult to show that 

nuclear structure functions now take the form: 

2 -92 W1(% S)= ZM G;(q2)6[ tp+W2 -M21 

=Gl (q2)6 (S - M2) 

(27a) 

‘G2(q2) 6 (S - M2) Pm 

These are to be inserted into Eq. (13). The 6 function allows one of the integrals 

to be performed trivially. It turns out to be most convenient to use the center-of-mass 
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system of the outgoing nucleons in order to perform the calculations. We shall 

employ a tilde to denote variables measured in that system. We find 

+1 
WSMEARED = ?rps 

2 
2t/% 

G2 ts2) d cos a 

SMEAR ED +s 
+1 

w1 = q 
t 

Gl (q2) j-I If Qs)I 2 d cos s + 

6S 

+1 2 

+2&- 
t 

G2 ts2j -‘, M+ If(&$ 2 dcos G 

where 

St = (pd + qJ2 ; lg = 

and by Lorentz transforming the longitudinal and transverse parts of the momentum 

%t = l/2 pt.= l/2 Ff ( 1 - cos e) %- 

,‘Md - v 
= Fs cos 8 ( ) s-1 ES 

d% -7T 

since p 2 2 = p 
x Y 

by azimuthal symmetry. Finally, $7, the tensor term for W2 

smearing, is given by 

where 

PO =MD-Es 

An extensive comparison of this theory with experimental data 9a‘ 
has been 

made. Figure 5 shows an example for 8 =4’ and E. = 16 GeV. 

The data used 9a has not been radiatively corrected, so we have made our 
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comparison by performing radiative correction to our theory, which is shown by 

the solid line in the figure. The fit is clearly an excellent one., Different wave 

functions yield only a very small change to the fit (52 s) ; indeed, they are suf- 

ficiently small to be comparable to corrections due to the finite n-p mass dif- 

ference! 

Previous theories 10 are equivalent to setting$= 1 in Eq. (28a) and dropping 

the second term from the R. H. S. of Eq. (28b). This suppression of the tensor 

terms, whose presence is required by gauge invariance,results in raising the 

low missing mass tail and lowering the high missing mass tail. Although the 

data does not yield positive proof for the presence of these tensor terms > they 

do improve agreement between experiment and theory. 

Final state interactions and n-p interference terms have been neglected in the 

present calculation. The final state corrections are expected to be of diminishing 

importance as the incident energy’and angle are increased (i.e., as _q2 is increased). 

Their effect is to deplete the peak and fill in the low missing mass tail. Only at 

incident energies less than 7 GeV at 6 =4’ was the presence of final state inter- 

actions very noticeable. Yet even here, integrals over the theory and the data 

were in good agreement. The n-p interference term also goes away very quickly 
2 

with increasing (-q ). Thus, at high incident energies and/or large scattering 

angles, it is valid to neglect these effects and make a direct comparison. A similar 

agreement was obtained for energies 7-20 GeV. Furthermore, the 10’ datagbwas 

checked and found to be in good agreement with this theory, although the errors 

on this data were larger. 

Two final remarks concerning the quasi-elastic calculation: First, only the 

elastic radiative deuteron tail peak was included. The elastic peak itself was not 

included. It also fills in the low missing mass tail when appropriately broadened 
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by the resolution. Secondly, smearing from the N* (1238) is seen to raise high 

missing mass data above the theory starting at 1.00 GeV. Incoherent pion produc- 

tion starting at pion threshold (W = 1.072 GeV) also smears down to W = 1. 00 GeV. 

B. Deep Inelastic Electron Scattering 

Recent deep inelastic scattering results in the region S 1 4 GeV2, _q2> 1 (G~V/C)~ 

indicate that the neutron structure functions differ from those of the proton. 3 

In this subsection, we shall investigate this in some detail using the standard wave 

functions described in Appendix A. Using phenomenological fits to F2 = v W2 

for the proton we have evaluated the ratio F2/“F2”; by “F2” we mean the smeared 

value of F2 given by Eq. (13). We made fits to the data in using both the w and w’ 

variables’I (for various values of q2). The results are shown in Fig. 6a-6b. It 

should be pointed out that the smearing integrals depend on the nuclear structure 

functions from threshold up to a value of approximately twice that at which the 
\ 

smeared structure function is being calculated. Thus, if the fits of F2 do not 

represent the data well over the entire region, it is possible for large discrep- 

ancies to arise. In particular, the w fit is a relatively poor fit to the data, even 

in an average sense,whereas the w’ fit averages the data below&l. 8 GeVll 

and is a more realistic representation. Indeed we have found that if the data it- 

self is used directly rather than a fit, the results are in agreement with those 

using the w’ fit, whereas the w fit is in some disagreement for 2.0 GeV~Ws2.4 GeV. 

From Fig.6, we see that the correction is relatively small in the large w region, 

but grows rapidly near threshold (W<_2). This is to be expected from the general 

arguments given in I. InFig. 6 we have plotted the ratio for various values of q2 

in order to illustrate the rather weak q2 dependence of the correction; each q2 

line stops at a W of 2.0 (1.8) GeV for the o (w ‘) fits. We have also investigated the 

wave function dependence; for the class of wave functions we have used, this is also 
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found to be relatively weak (see Fig. 7) (the Hamada-Johnston wave functions also 

lie right on top of the others,). 

An interesting way of representing the data is via the ratio 

N(SMEARED) 
/’ = P(SMEARED) 

where by N (smeared) we mean “F 2” for the neutron ( and similarly for the proton). 

The quantity of theoretical interest is, of course, 

(i.e., the unsmeared ratio). However, it might be hoped that the effects of smearing 

roughly cancel in the ratio. This ratio is of particular importance in quark parton 

models where it must remain greater than l/4. We have investigated this pos- 

sibility by choosing various simple models for p ’ , using Eq. (13) to generate p. 

The results are shown in Fig. 8. If p never drops below l/4, then p is a good, 

if not excellent, approximation to’p’. On the other hand, if p does drop below l/4, 

then the extraction of the correct ratio becomes a difficult problem. Recent ex- 

perimental results indicate pz 0.35 in which case, the true ratio can probably be 

determined by simply setting p = p ‘. 

Conclusion 

In this paper we have examined in detail the quantitative effects of Fermi motion 

upon the extraction of asymptotic total neutron cross section using the theory of 

paper I. Combined with the Glauber shadowing correction, we are able to give an 

adequate account of Ird, Nd, and yd scattering. This can be seen from Table II, 

where we show that average values of < r -2 > are consistent with values estimated 

from Glauber theory, Eq. (20). Table HI shows the results for yd scattering. 

There are naturally large errors implicit in the data (statistical errors, errors 

coming from using different experimental data and sytematic experimental errors), 

SO the conclusions should not be taken as complete. Furthermore, as already 
-18- 



2 emphasized , there are unknown contributions in the theory which cannot be 

estimated. An example of this is the use of non-relativistic wave functions in a region 

where relativity might be expected to play a role (I$,1 h XC&V/c); this is briefly 

discussed in the Appendix. Another problem is associated with the fact that in the 

finite incident mass case (e.g. , 7r-N scattering), the region which contributes to the 

depletion of cd due to the phase space restriction corresponds to the interacting 

nucleon being far off-mass -shell(% 1 GeV2). One. might even question, in that case 
13 

the whole description of a deuteron as a bound state of two nucleons. There is 

no obvious way of correctly taking account of such difficulties and we have general- 

ly taken the philosophy that in some sense a hardcore wave function “mocks” up 

our ignorance of the short distance behavior in the deuteron. In any case, -the 

effect is certainly present and estimable; whether it is possible that some subtle 

off-shell phenomenon or higher or\der scattering could compensate for the effect 

is certainly an open question. On the other hand, as has been emphasized in I, 

the origin of the effect is, like the Glauber effect, to be found in very simple 

physical phenomena, namely the Doppler effect and the threshold constraint on 

total cross sections; as such , a compensation is highly unlikely. 

As w hl 1 (i.e., threshold) in deep inelastic e-d scattering the sensitive region 

of the wave function corresponds to an interacting nucleon which comes nearer 
2 and nearer its mass shell (e. g., at w = 2: p /M2- 2/3). We might, therefore, 

expect any ambiguity due to off-shell effects to be of considerably less importance 

for small w. This is important because this is the region where our effect is 

largest. We have shown that although the effect is large, the ratio N/P remains 

unchanged when smeared except when it falls below -l/4 near threshold. 

Finally, we should emphasize a point made in I, namely that should there be 

any anomalously large tail to fQ,), then the effects will be drastically increased. 
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Conversely, should there be an anomalously small tail to fQ,), the effects would 

become negligible. It might therefore be hoped that eventually such experiments 

could yield useful information on the short distance behavior of the deuteron. 

We thank our colleagues at Stanford for many helpful and stimulating discussions. 

The support of Group A in the numerical calculation and making available electro- 

production data is gratefully acknowledged. One of us (WBA) in particular thanks 

A. Bodek for many useful discussions and critical comment throughout this work. 
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APPENDIX 

Deuteron Wave Function 

A non-trivial problem arises in the present theory in choosing the ltcorrecttt 

normalized relativistic momentum distribution @&)I2 = gs f(p,) 2. In 

practice, the non-relativistic wave functions were assumed to give an adequate 

approximation. Four such wave functions are shown in Fig. 9, where we have plot- 

ted @Qs) . These wave functions have been adjusted to fit phase shifts out to 

momenta of -350 MeV/c, whereas the phase space effect discussed in this paper 
2 

is sensitive to momenta -750 MeV/c . We thus need to extrapolate these wave 

functions out to momenta -1-2 C&V/c. Whether this is realistic or not is far from 

clear. As an example, one might worry whether the (M/Es) factor should be in- 

cluded explicitly in the wave function so that fQs) rather than @(ps) is to be iden- 

tified with its non-relativistic form. If one does drop this factor, then a typical 

smearing ratio u/u(smeared) cha\nges by-2%. We would argue that since the 

wave function is ttfittedlt to quasi-relativistic data, the more sensiblechoice is to 

identify @(ps) with the usual wave function. This hardly resolves the problem, 

but at least motivates a particular choice. 

Three of the wave functions used were of the “hard core” type: Lomon-Feshbach, 

Reid Hard Core, and Hamada Johnston (used everywhere except as noted), “Hard 

core” simply means that the spatial wave function is sharply cut off at some finite 

value of r (usually--. 5 fermi). This sharp edge introduces highly oscillatory high 

momentum components in the fourier transform of the spatial. wave function. A 

realistic soft core wave function was also used: The Reid Soft Core. As seen in 

Fig. 9, its high momentum tail is considerably attenuated from that of the hard- 

core types,, This soft core wave function shows the largest effect in p(S) (typical- 

1yp = . 011 for the Reid Soft Core). Thus the soft core wave functions have their 
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largest deviations from hard core types where difference quantities near zero 

are calculated (i.e. , 
-2 the Glauber parameter <I: > and CT - on in photoproduc- 

P 
tion). We emphasize that although there is a discernable effect here, it moves the 

data in all cases by less than a standard deviation. 
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TABLE I 

Values of the parameters < r -2 > and p for various wave functions 12 ; p was eval- 

uated for the p-p total cross-section at an incident energy of 10 GeV. 

Wave Function 

Hamada- Johns ton 

Reid Hard Core 

Reid Soft Core 

Hulth&n , 

Hulthen “hard core” 

< rS2>(mb-l) p (Ei = 10 GeV) 

. 02220 . 0140 
\ 

.02239 . 0140 

.02244 . 0117 

002507 . 00814 

. 02397 . 00756 
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TABLE III 

Fits to the difference g - Ok in the region W> 1.9 GeV 

for variouYwave functionsi2. 

Wave Function Form 

None A + B -l’2 v 

Hamada- Johnston AtBv -l/2 

Lomon-Feshbach A -I- B y -li2 

None A + B S-li2 

Hamada-Johnston A + B S-l’2 

Lomon-Feshbach A + B S-1’2 

A B 

6.6 f 3.2 4.6 f 5.3 

1.2 f 3.2 11.0 f 5.3 

.3 f 3.2 9.6 f 5.3 

6.1 -+ 3.5 7.4 f 8.6 

7 

:4 

f 3.5 17.5 f 8.6 

f 3 0 5 15.3 rfr 8.6 
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1. 

2. 

3. Graph of p(S) versus the incident photon energy in real photoabsorption for 

4. 

various wave functions. 

The difference o 
w 

- oW versus incident photon energy using the Hamada- 

Johnston wave function. 

5. 

6. 

A comparison of the theory to the quasielastic peak in e d scattering at 16 GeV .I 

and a scattering angle of 4 0 \ . The theory is very insensitive to the wave function. 

(a) The ratio F2/F2 (smeared) versus w for various values of q2 using the 

Hamada-Johnston wave function and the w for fit to F2 

(b) The ratio F2/F2 (smeared) versus w t for various values of q2 using 

the Hamada-Johnston wave function and the o’ fit to F2. 

The ratio F2/F2 (smeared) versus w for various wave functions. 

The ratios p = N/P (smeared) and p’ = N/ P each plotted versus x’ showing 

the crucial x1 ~l/4 effect described in the text. 

The momentum distribution 1@(-Ql for various wave functions. 

7. 

8. 

- 9. 

FIGURE CAPTIONS 

Impulse approximation graph. The broken line represents the incident 

particle of 4-momentum q, the single solid lines are the nucleons of momenta 

p (the interacting particle) and p, (the spectator). The double line represents 

the deuteron of 4-momentum Pd. 

Impulse approximation graph for the electron scattering case illustrating 

the one photon exchange; e and et represent the initial and final electrons, 

respectively. 
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- = MODEL 
0 = N (SMEAREDYPfSMEARED), W t 1.8 GeV 
x = N (SMEARED)/P(SMEARED). W < 1.8 GeV 

Eo = 20 GeV 

t?=60” 

N/P MODEL = MAX (0.47. I-x’) 

I 
N/P MODEL = MAX (0.20. I-x’) 
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