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ABSTRACT 

We obtain theorems on the convergence of separable approximations 

for t-matrices which derive from local potentials. We prove that conver- 

gence is impossible in the operator norm and the Hilbert Schmidt norm. 

This result is universal tnd independent of the particular method used to 

construct the separable approximation. 
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I. INTRODUCTION 

This paper studies the convergence of separable expansions for the off- 
-l 

shell two-body t-matrix. Numerous authors’ have constructed different 

schemes for obtaining specific finite rank approximations for the t-matrix and 

have studied their convergence in differing model problems. The general aim 

of all these works is to obtain an accurate expansion of the t-matrix which will 

be suitable for solving Faddeev’s equations for the three-body scattering prob- 

lem. Here we study the convergence of separable t-matrix expansions in an 

abstract format and obtain a theorem which states that convergence in the 

operator norm is impossible. We prove this general result for any t-matrix 

which is derived from a potential that has some local part. 

II. THE NON-COMPACTNESS OF THE t-MATRIX 

In this section we shall pro%e that a t-matrix ?lerived from a local potential 

is non-compact. It is this non-compact property that makes the convergence of 

finite-rank approximations difficult. Here the t-matrix we examine is the solu- 

tion of the Lippmann-Schwinger equation 

t(z) = v - v g,(z) t(z) (1) 

for a two-body interaction v, a complex energy variable z, and a resolvent 
. 

g,(z) = PO - z) -’ expressed in terms of the free hamiltonian ho. The nature 

of the solutions of this equation expressed in momentum space have been studied 

in detail by Faddeev. 2 The conditions imposed by Faddeev on the local potential 

in Eq. (1) are that it satisfies a boundedness property, A, in momentum space 

1+0 A: iv($$)l <_ c/(1+ $~I) t e>$ 
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where C is a constant, The potential is also assumed to satisfy a smoothness 

property, B, defined by the Holder condition, 

B: Iv& 3) - v(F+ AT-j&I 5 Cl A:l’/(l+ IF-31) 
1+e 

for all IA31 (1, p >O. When Eq. (1) is written as an integral equation in 

momentum space it takes the form 

t($, jp; z) = v(F--3) - 
/ 

v( 
F-&t@' $i ; z)-d3$i' 

2 --7r -z P 
(3) 

The results of Faddeev that we need in this work are- that when the conditions 

A and B are satisfied then Eq. (3) has a unique solution for all z not at the 

bound-state energies of h = ho + v. In this case the solution to Eq. (3) satisfies 

the estimate 

It6 3 ; z)l, i c&1+ lF-31)1+6 (4 

In what follows we shall analyze t(z) as a linear operator on the Hilbert 

space, Z, of square integrable functions in the three-dimensional momentum 

variables, i.e., the norm of f e&J? is 

(c If2 
I lfl I, = 

\-I 
lf(F;i 12d3g (5) 

We now want to show that t(z) is non-compact in r%, This result is the content 

of the following two propositions. 

Proposition 1. Let condition A be satisfied by the potential v and$&z # 0 then 

t(z) is non-compact in c;Ce. 

Proof: 

We first note that A implies v g,(z) is compact. In fact v go (z) is a Hilbert- 

Schmidt operator. This follows by direct calculation. The Hilbert-Schmidt 
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operator norm is defined as 

2 
1 ko(z)vI 1,. S. = 

r (6) 

2 2.;72 Re G 
swt z I 

Iv@ 12d3j? 
I 

The last integral on the right exists if 8 > l/2. So g,(z)v is compact. 

Now let us demonstrate that t(z) is non-compact. First we note that the 

condition that v is local means that v is a multiplication operator when expressed 

in coordinate space. Thus it is non-compact. Since the Fourier transformation 

from coordinate space to momentum space is a unitary transformation v is non- 

compact in ri9. Now we suppose t(z) is compact. We know vg,(z) is compact, 

and so will be the product vg,(z)t(z). Equation (1) tells us that v is the sum 

of two compact operators. Thus v must be compact. This is a contradiction. 
\ 

So we have shown that t(z) is non-compact. This establishes proposition 1. 

We extend the domain of validity of proposition 1 to include the entire z 

plane, excepting a small neighborhood around the bound-state poles of t(z). 

This extension follows at once from the following lemma. 

Lemma 1. Let conditions A and B be satisfied then the difference t(zl) - t(z,) is 

compact for all z 1 and z2 in the upper (or lower) half z-plane which excludes 

the discrete spectra of X. 

Proof: 

This result is easily established by direct calculation. We use the well- 

known identity which contains the full off-shell unitarity in the two-body scatter- 

ing problem, viz 

ttq - W,) = (z2 - q tq gotzl) go@,) ttq (7) 
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The right hand side of Eq. (7) can be proven Hilbert-Schmidt by using the left to 

obtain a finite bound on the norm. 

I IWl) - t(z,) 11; s = ttz 3 ; q - G 3; z2) I 
2 3-3 d pd 3 . . 

ZZ lz 2-zll J I 
2 [j- II”‘” 3’; zl)t@‘,& z2,d3i;,, I2 

(jp2 - z,)(P?- z2) 
d3F d3$ 

Ilz -z I 
2 f 

,I 
c It6 3’ ;z,) I lt(+, 2 ;z2) I d3gf 

2 I J LJ ,g’2 - zll rp2-- z21 I 

2d3Fd37 

(8) 

For ,%z z F 0 and employing Faddeev’s estimate Eq. (4)) we can change fie order 

of integration to obtain 

’ 2’ I Itq - t(z,)I 1; s i lz, - z,l 
d3$i! 2’ C d3F I2 

. . , 
I$12 - zll 13T2 - z,l 1 ‘5 1 (1+ lFl)2+2”” 

with 

d3$, 2 
Z2 

--G - zll IP - z,l 

which is valid for z2 and z1 in the same half plane, and 

/I 
,I 

(1 + l;l)2+2, d3p [ = cl < O” for 19>1/2 

We have for all z=o 

I It(z,) - t(z,) I 1; s L 4?T4 c; I JT2 - Jq I2 . . (9) 

But the bound on the right may be continued on to the real axis. So the lemma is 

proved. 
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? I 

We can establish the generalization of proposition 1. 

Proposition 2. Let v satisfy conditions A and B then t(z) is non-compact for all z 

not belonging to the discrete spectra of h. 

Proof: 

This follows trivally from the above lemma and proposition 1. Let z1 lie 

along the upper portion of the cut along the positive real axis in the complex z 

plane, i.e., z1 = s + io where s is positive. Let$m z2 >O. Now suppose t(zl) 

compact. Then 

W,) = ttq -I- W,) - t(q) (10) 

implies t(z2) is compact since it is the sum of two compact operators. This con- 

tradicts proposition l-so t(z,) muqt be non-compact. 

III. THE CONVERGENCE OF SEPARABLE EXPANSIONS 

We now turn to the implications of proposition 2 for the convergence of finite 

rank approximations to t(z). All separable approximations take the form 

ttz 2’; z) = tN(F, 2 ; z) 
N N (11) 

i=l j=l 

where the fi and gj are square integrable and cij(z) are constants and N is the 

order of the finite rank approximation tN(z). We summarize our conclusion in 

two propositions. 

Proposition 3. Let tN(z) be any finite rank approximation described above then 

the Hilbert-Schmidt norm of the difference t(z) - tN(z) is infinity. 
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Proof: 

Assume I I t(z) - tN(z) I I, s = B < cc , for some tN(z). Thus t(z) - tN(z) is . . . . 
compact. The operator tN(z) is finite rank, so t(z) must be compact. This is a 

contradiction, so we must have 

1 It(z) - tN(z) 1 1 H S =W for all tN(z) . . . 

A somewhat less demanding norm for convergence than the Hilbert-Schmidt 

is the operator norm. For any linear operator A on 2, this norm is defined by 

I IAI I = 
IlAfll, - 

g. llfll, (13) 

Our last proposition states that convergence in the operator norm is impossible. 

Proposition 4. There does not exist any sequence of separable approximations 

(z) ; N = 1, co 
i 

such that \ 

lim I I t(z) - tN(z) I I = 0 
N-CO 

(14) 

Proof: 

Assume that Eq. (14) is true for some sequence 
{ i 
tN(z) then t(z) is the limit 

, 
in the operator norm of a sequence of compact operators and is therefore compact. 4 

This contradicts the non-compactness of t(z) so Eq. (14) cannot be true. 

The results we obtain above of course do not preclude a weaker type of con- 

vergence. For example it would be possible 

I I(t(z) - tN(z))fl I, - 0 asN-m 

for a fixed f in X. What our results do provide is a universal upper bound on the 

type of convergence possible for separable expansions, irregardless of the method 

which is used to construct the expansion. 
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In the results stated above we have assumed the potential is a purely local 

one. However the only important aspect of the potential our proofs required is 

that the potential was non-compact. If we add to any non-compact operator a 

compact operator the sum remains non-compact. Thus our results extend to 

potential which are a sum of a local part and a compact part, provided that condi- 

tions A and B are satisfied. 
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