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I. Introduction 

Recent experimental evidence on the s-wave pion-pion scattering lengths 1,2 

seems to indicate the need for a chiral symmetry breaking Hamiltonian which 

transforms other than (3, 3*) CD (3*, 3). In order to produce a large isospin 

zero s-wave scattering length, the original Weinberg analysis3 must be modified 

to include isospin two contributions to the sigma commutator. This in turn 

requires the symmetry breaking Hamiltonian to contain-pieces which belong to 

an SU(3) @ (SU(3) representation which has isospin two components in its reduc- 

tion to SU(3) and hence to SU(2). It is also possible that a large value of the 

nucleon sigma term would require these other terms but this conclusion is not 

definitely confirmed. Indirectly, a recent analysis of the hard-pion Ward identity 

approach to the pion-pion scattering problem4 which inforces unitarity within 

certain smoothness approximations, also requires isospin two sigma terms for / - 
the optimal solution. This result is, however, also rather uncertain because - 

of the many assumptions involved. 

Assuming that such additional pieces are necessary in the Hamiltonian, it 

is natural to investigate the consequences of the simplest possible choices. In 

order to have isospin two we require at least the 27 dimensional representation 

of SU(3). The two smallest SU(3) @ SU(3) representations containing this are 

(8, 8) and (6, 6*) @ (6 *, 6) which reduce under parity and SU(3) as 

1’ 6 8’ 6 27’ @ 8- 0 lo- CB %- and l+ CD 8+ 0 27+ @ l- CD 8- 0 27-, respectively. 

The consequences of using the former have been discussed by several authors. 5,6,7 

In this paper we shall explore the later possibility. 

Although both of the above symmetry breaking mechanisms have been 

suggested on the basis of simplicity, no dynamical model has been proposed. If 

we use the quark model where the triplet belongs to (1,3) @ (3*, 1) @ (1,3*) @ (3, l), 
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then a Fermi like coupling could induce either of the above breaking mechanisms. 

For (8,8) one could also have a three point coupling to an octet of vector gluons. 

However, neither of these mechanisms is attractive from a theoretical stand- 

point. 

We shall develop the (6,6*) 0 (6*, 6) representation in analogy to the 

(3,3*) @ (3*, 3) case. 8 In section II we review the (3,3*) 0 (3*, 3) development 

and then in section III we present the (6,6*) 8 (6*, 6) representation. Section IV 

is a discussion of the possible forms of the symmetry breaking Hamiltonian in 

terms of its SU(3) and SU(2) @ SU(2) properties. In section V we apply this 

Hamiltonian to the calculation of the symmetry breaking contribution to meson 

masses, pion-pion scattering lengths, baryon masses, and the nucleon sigma 

term. We discuss these results in section VI. 

. II. Review of (3,3,*) @ (3*, 3)? 

The 3 and 3” representations of SU(3) are defined by the commutation 

relations 

[F,, Ti] = ZT Aa! 2 j ji for 3 

and 

Pa, Wi] = - ;A; wj for 3* 

(1) 

(2) 

where the Al are the eight 3 x 3 matrices of the three dimensional representation 

of SU(3). They satisfy 

and 

7 In this section Greek indices run from 1,. O 8 and Latin from 1, . .3. 
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From the above we write for (3,3*) in SU(3)@ SU(3) 

(3) 

[F;, Tij] = - 1 Aa! T. 2 jk rk 

and for (3*, 3) 

P’,P Wij] = - if w 
2 ik kj 

[F;, Wij] = Ah.?* Wik 
2 Jk 

where FL = i (Fa! + FL) and Fi = $ (Fo - FL). Since Tlj transforms like 

(3*, 3) we can parity double our decomposition by requiring 

PTijP-’ = T+ ji 

so that Tij is now said to transform under (3,3*) @ (3*, 3). 

In order to reduce this representation under parity, we define 

Pij = Tij + T?: 
31 

and 

Mij=i(T ij - T;) 

so that 

P PijP-l=P.., P+ =P.. 
1J ij 31 

P MijP-’ = -M.., M.t: = M.. . 
1.l 1J 31 

The SU(3) content can be made manifest by writing 

Pij = -bJ&.+ -A- PU 
6 OJ1 6 ji a! 

and 

Mij = A- v 6.. -!- 1 ha!V 6 0 1J 6 ji Q! ’ 

(4) 
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We can invert these relations as 

u. = A- P.. 
6 l1 

ui = -L- hQ!P 
6 ij ji 

(5) 

(5) 
v. = 1 Mii 

6 

where the U’s and V’s are Hermitian scalar and pseudoscalar fields, respectively. 

They satisfy the well known commutation relations8 (from Eq. (3)) 

CF,, Uo] = [Fi, Vo] = 0 

Up] = ifolp,Uy , [F,, VP; = ifap?/VY 

which identify U. and V. as SU(3) singlets and (Uol 1 and {V,\ as SU(3) octets. 

Also, 

r$ uo] = - i g VQ, [F’i, Vo]= i& Ua! 

[FL7 “p] = -i daPrVy - i 

F”,* vp] = i dorpy Ur + i 

For calculations involving (3,3*) $ (3*, 3) it is customary to work directly 

with the U’s and V’s since their commutation relations are simple and the 

properties of f 
WY 

and d 
aPr 

are well tabulated. 9 However, as we shall see, 

for more complicated representations, it proves simpler to work directly in 

terms of the analogues of the T.. . 
13 

Thus, for example, instead of writing the 
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perturbing Hamiltonian as 
11 

H 1 = CQOUO + C38U8 

we could as well use 

H1 = 1 cgoPii + -J- c h8P 
6 &-- 38 ij ji ’ 

This later approach reduces calculations such as those in section V to trace 

calculations with the { h”l matrices. 

III. The (6,6*) @ (6”) 6) Representation 

We develop this representation in analogy to section II by writing the 

commutation relations 

[Fa) Ti] = ; TjSyi for 6 

and 

_ iFcry WJ = *- ; s; wj for 6” 

where the Latin indices now run from l-6 rather than the l-3 in section II. The 

eight 6 x 6 matrices, 
QI 

i t S , are the representation of the SU(3) generators in 

the 6 representation of SU(3). In the Appendix these matrices are explicitly 

presented using the phase conventions of R. Behrends et al. 
10 They satisfy -- 

and 

s;*= spi 
Jl 

[sly, SP]=2if Sy 
@PY 

For (6,6*) we write 

Tij] = 1 Sa*T 
2 ik kj 

(6) 

[F;, T. ] = 
lj 

-; 239” T jk ik 
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and extend this to (6,6*) @ (6*, 6) by introducing parity via P TijP -‘=Tijas 

before. The parity content of this representation is reduced by 

Pij = Tij + T!. 
Jl 

Mij = i(T ij - Tii) 

as in Eq. (4). 

Now, however, the SU(3) decomposition is slightly-more complicated due 

to the presence of the 27 dimensional representation. We write 

Pij = 1 a..u + 1 S; U 
A- JIO die 

+ T? U 
a! 3Jl -t 

Mij = 1 is..v -I- -%% +T’V 
6 11 0 fi ji a ji 0 

where - is summed from 1 to 27. The matrices 6, {So-[, and {TOi satisfy 

TR(a i) = 6, TR(6 8) = T@T- ) = 0 

T,(s%‘) = 10 “+, TR(S@Ta) = 0 

T 
R 

frO+‘)= 6 
00’ ’ 

We can explicitly construct the {To) by writing the Clebsch-Gordon series for 

6 @ 6* = 1 g, 8 @ 27. We do not present the general result since we shall need 

27 only T.. 
1J 

(corresponding to the I = Y = 0 member of 27) in our subsequent calcula- 

tions . It is given by 

T!.7, ’ - 
lJ v/30 
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Using the trace relations, we invert Eqs. (7) as 

u. = A- Pii, 
di- 

V = 1 Mii 
Ov6- 

ua = 1 Sa!P V@= 1 S;M.. 
dir 

ij ji’ dir J1 

UQ= TOP ij ji’ 
= TOM 

‘0 ij ji 

(8) 

The U’s and V’s are scalar and pseudoscalar fields, respectively and (Uo\ 

and {V,!, {U,\ and (Vo-/, and {U@tand {Vg\transform as singlet, octet, and 

27-plet representations of SU(3) respectively. _ 

The commutation relations of the U’s and V’s are easily written down from 

Eq. (8) in analogy to Eq. (5). However, it is more convenient to use the relations 

for Pij and Mij directly. These are found from Eqs. (6) to be 

I 

IF,! , ‘ijl= _I S”*p 
2 ik kj 

- _1. SQ!P 
2 jk ik 

,Fa,’ hIij. = + Sk* Xj - + “; Mik 

P”,’ pij] = - ; S;;Mkj - i Sa’ M. 2 jk rk 

r& Mijl = i sQ!*p * 
2 ik kj 

+LSQ!P 2 jk ik 

(9) 

IV. Hamiltonian Forms 

To construct a suitable symmetry breaking Hamiltonian for the strong 

interactions, we wish to include terms which conserve parity, isospin, and 

hypercharge. Thus, we can include components proportional to Uo(singlet) , 

U8 (from {Ucr 1) and U27 (from {U,l), i. e. , we write 

H1 = c68sfj Pji + c T27P 627 ij ji (10) 

Two special cases of this general form may be of interest. If we set C627 = 0, 

then H’ contains only singlet and octet pieces and thus represents an octet 
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dominance type breaking which will, for example, lead automatically to the 

Gell-Mann-Okubo mass formula for the meson and baryon states. 

It is also interesting to ask how H1 transforms under the subgroup 

SU(2) @ SU(2)? since the (3’3”) @ (3*, 3) symmetry breaking scheme seems to 

indicate that the breaking term may be approximately in a (0,O) representation. 11 

It is easy to see that if we are to induce isospin two components in the sigma 

commutator, then we have to include an SU(2) @ SU(2) piece from the (1’1) 

representation (the highest representation contained in (6,6*) @ (6*, 6)). Thus, 

the two most interesting cases are the (0,O) and (1,IJ representations contained 

in (6,6*)@(6*,6). 

Because we have parity 

for (1’1) we have two cases 

4-j 1-, respectively . 

doubling, we have both a (O,O)+ and a (O,O)-. Also, 

which reduce under SU(2) as O’& i-@ l+ and 

From these, clearly the (0, O)+ state and the O+ 
1 

member of a (1’1) are the suitable candidates for forming H’. By using a group 

theoretic reduction or simply by examining the commutation relations directly, 

it is easy to see that 

p66 tramsforms like (0’0) with respect to SU(2) x SU(2) and 

has positive parity, 
3 

c 
P.. 

11 
transforms like the O+ (SU(2)) member of a (1,l) 

i=l representation of SU(2) R SU(2). 

Examining the general form, Eq. (lo), for H1, we see that the choice 

cso : c68 : c627 - 1: 
-4 3 --&= : g (11) 

t We use the conventional notation of labeling SU(3) representations by their 
dimension but SU(2) representations by their spin content. 
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implies H1 - (0, OF in SU(2) @ SU(2) and 

2 1 
cso : c68 : c627 - 1 :g :x (12) 

implies H1 - (1,l) in SU(2) @I SU(2) (the I = O+ member). Note that each of these 

separately requires a 27 plet piece in H1 but the mixture, Cso : C68 : c627-1:G 0, 

removes this dependence while maintaining a mixture of pure (0’0) @ (1’1). 

V. Calculations 

In this section we shall employ the most general form of H1 (Eq. (10)) and 

use it to find the (6’6”) @ (6*, 6) contributions to A) meson masses, B) pion- 

pion scattering lengths, C) baryon masses, and D) nucleon sigma terms. In 

(A) and (B) we shall use the soft meson approximation, but this is not needed 

for (C) and (D). We shall also neglect the possible effects on the breaking of 
I 

scale invariance by a scalar meson, 
12,13 effectively assuming our symmetry . 

breaking H1 to have dimention, I = 3. Additional factors due to such effects 14 

can easily be included in our results. We shall use the simple assumption that 

H is given by Hc + where Ho is invariant under SU(3) .& SU(3), does not 

contribute to meson 

(A) Meson Masses 

Using the usual 

masses, and gives a uniform mass, MO, to the baryon octet. 

soft meson reduction, the meson mass is given by 

<QH1lpcu> = - 1 <Ol [F;, [F;,F+‘]]lO> 
F2 

1c 
where to this order we assume that the PCAC constants are all equal, IJ 

Fn= Fk= FT = F, i.e * , 

c)pAF = m”, F$?. 

We also write 

<OIPijlO> = 
vi= 

aij <oIuoIo9 
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neglecting any possible contribution from ~0 I U8 IO > and ~0 I U27 IO >. With 

these assumptions 

<p,IH1lpa> = - 1 
<oIuolo> ‘60 c68 

F2 ~ x TR(SaSa) + x TR(S8Sasa) 

+ c 627 TR(T27So-SOL) 
I 

which yields 

m2 27 = -5 
a 3F2 <oIuoIo9 ‘GO+ 

7ficd -+26c 
5 &- 68 8aa 5 627 5aa 

where 

d I 2 
2 

1 
8crP = - 2&i I 

-1 
0 -1 ’ 

-2 

and 

c 27 = 

CUP 

1 

2&z 

; 1 1 -3 0 1 -3 -3 -3 0 9 \ i 

Note that although the traces involved in finding Eq. (13) can be derived by 

using commutator identities, for the calculations involved here it is simpler 

to compute them by hand using the explicitly form for { So!) given in the 
27 

Appendix. We also remark that dscrp and 5 aP 
are the standard matrices 

obtained from coupling 8@8 to 8 s,(I=Y=o) and8 x8 to 27 (I=Y= 0), 

respectively. 6 
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(B) Pion-Pion Scattering Lengths 

On the soft meson limit, the s-wave, isospin zero scattering length is 

given by 16 

and 

(0) = 
aO 

I 
,/ mTr 

m2 

aO 
(2) = 2 (0) _ $ - 

-ii “0 F’ _ 

where af’ is the s-wave, isospin two scattering lengt:. In the case where the 

sigma commutator has no isospin two piece, A = 
m7r 
2’ In general it is given 

by 

A= _ ’ <ol [F; ,[F;,[F#, H’]]]] 10’ 
F4 

where i = 1 or 2 or 3 (no sum). A more general isospin decomposition of the 

four-fold commutator involves Lo and 

zero and two components of the sigma 

A=+Lo+ ; 

L2 which measure the relative isospin 

commutator. In terms of these 

L2 

but Lo and L2 are also constrained by a Jacobi identity relation 17 which yields 

2Lo - 5L2= 6 

m2, 

m2 7r 
Q-CT’ 

Thus, L2 = 0 implies Lo = 3 2 which yields A = 
F2 

for the pure isospin 

zero case. 

Using our form for H1, we find 

c68 
TR [d4] + - 

& 
TR b+ (h4j 

+C 627 TR [T27tS1)4] 
a 

17 31 13 = -- 
3F4 

<oI”OIo> 17G c(j8 + 
176 

‘627 1 (14) 
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(C) Baryon Masses 

With our neglect of scale symmetry breaking considerations, we write 

simply 

Ma! = MO+ <BaIHIIBa> 

Now we must clearly keep <N I U. IN >, <N I U8 IN >, and <N I U27 I N > all non- 

zero. We denote these by No, N8, and N27, respectively and we let D (F+ D= 1) 

be the mixing parameter in <Ba IU, lBa>. In this notation 

<NIUolN> = <AIUoIA> = <CIUoIC> = <EiU,Iz> = No 

- 2/3 D 
<clu81c’ = (1 - 2/3 D) N8 

-I- 2/3 D 
< *lU&ln’ = (I- 2/3D) N8 

1 - 4/3 D 
< .-‘lu8l=> =--il _ 213 d, Nc4 

<ClU,,IC~ = - iN27 

<JUU~~IA> = - 3 N27 

<ZIU271Z> = N27 

Thus, 

MN = M() + ‘6ONO + ‘6SN8 + C627N27 
(15) 

MC = MO + CsONO - 
2/3 D LC 

(1 - 2/3 D) C68N8- 3 627N27 

etc. , with the obvious replacements for A and z . 

(D) Nucleon Sigma Term 

The nucleon sigma term is given by 

ON = 4 [F~,[F:, Hi]] IN> 
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where i = 1 or 2 or 3 (no sum). To evaluate this we again need No, N8, and 

N27’ To perform the projection we write symbolically 

<NIPijlN> - -i- &jNO+ 
dir- 

1 218. N8 -I- Tyi7 N27 
I.5 J1 

which yields 

N8 
-i 

T,(s’s’) ‘6 TR(S8S1S1) f NZ7 TR(T27S1S1) 

1 N8 c68 ( 3 TR(s8s1S1) + - - 
+ diii (6- 2fi 

C TR(S8S8S1S1) + TR(S8S1S8S1) 1 

+ ; N27 

\ 
TR(S8T27S1S1) + TR(S&27Sl); \ I 

i NO 1 N8 
+ ‘627\,, TRtT 

27 1 1 
ss)+ “\& L TR(S8T27S1S1) + TR(S8S1S27S1) I 

1 - 
C 

1 
+ 2 N27 TR(T27T27S1S1) + TR(T 27S1T27S1$) 

c68 + 
1 - 

‘5 A ‘627 1 
7 

N8 So+ 
17 

+- + 
11 

36 7d5 c68 76 ‘627 1 (16) 

1 
f- 11c +13 

3&- N27 C ‘60 + &- 68 6 ‘627 1 
Note that even if H1 has no 27 plet component (C627 = 0), Eq. (16) still will 

include contributions from N 27’ 

VI. Discussion 

(0) 
Evidence from the K14 decay” 2 seems to favor a value of a0 which is 

larger than the original Weinberg prediction 3 (A= 1). For A= 1, a:‘= .16/mg 
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(0) but increase S rapidly with A. For example if A = 10, a0 2 .5/mr. The 

(0) experimental data indicate a value of a0 of order .5/m,. However, one must 

also realize that there are theoretical corrections to the soft pion predictions. 

A recent theoretical calculation which included unitarity corrections, 4 a value 

ofA=; was found. However, in the same calculation, an effective value of 

A = -$ would be needed,in the simple soft pion formula for a (0) o , to produce the 

calculated s tattering length. Although this calculation may not be quanti- 

tatively reliable, it does indicate that unitarity corrections can enhance the 

effective value of A. In view of this we may conclude that even though the experi- 

mental evidence favors A > 1, it may not have to be as large as A - 10 which 

the simple soft pion formula would indicate. 

However, a simple estimate using the meson mass formula (Eq. (13)) and 

our calculation of A (Eq. (14)) indicates that the use of (6,6*) + (6*, 6) alone for 

H1 is not reasonable. To make this estimate, we set C627 = 0 although a similar 

result holds in any case. Let NE 
<oluolo> C68 

F2 
anda! = - 

‘60 
. Then from 

Eq. (13), 

m2= 
7r 
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from which we find 

(I!= - 
106 il- mPm$ 

7 (2+ m2/m$ 

and 

N= -2 (mi+ 2m$ . 

Using these we can calculate A from Eq. (14)) 

(24 rni - 143 m2’J m2 
A= - 

35 F2 
- -5 

Such a large negative value is clearly ruled our by the experimental data. We 

might note that pure (8’8) breaking would also produce a negative value for A. 

It is clear from the preceeding remarks that (6,6*) @ (6*, 6) symmetry 

breaking cannot be the only contribution to H1. On the other hand, since all 

of our results in section V are linear in H1, these calculations can be used to 

discuss more general schemes 7, 18 which involve using (6,6*) @ (6*, 6) breaking 

in addition to some other contribution to H1. Classification of H1 pieces under the 

subgroup (SU(2) @ SU(2) l8 as discussed in section IV may provide a tractable 

approach to this problem. We shall present several alternatives of combining 

(3,3*) @ (3*, 3)) (6,6*) @ (6”) 6) and (8’8) in a subsequent article. 
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Appendix 

The 6 Dimensional Representation of SU(3) 

We use the phase conventions and notation of Behrends, et al. , 10 to construct -- 

the representation of the eight generators of SU(3) on the six dimensional 

representation. In terms of a spherical basis set, these are 

H1 = $ (ll><ll - 13>c3l)+ ---L 
J3 d-5 

(14><4l - 15><5/) 

H2 = + (II><11 + l2> <2l + 13> <31) - + (l4> <4l + IS> <51) 

El = $ (I:! > <3l + II> <2l) + > <5l) 
\3 

E2 = L (14><6(+ Il><4)+ 1 (12><5/) 
43 6 

E3 = 1 (15~.<6l + l3> ~51) + 1 (12s <4l) 
\3 16 

and E -i = E;. The states { I1 >, I2>, 13,) form an isotriplet, { l4>, IS->) 

an isodoublet, and I6 > 1 is an isosinglet. We transform to a Cartesian basis by 

writing 

S1 = 6 (El + ‘Q 

S2 = -i *(El - Eml) 

s3= 243 H1 

s4 = &-(E2 + Em21 

S5=-i q/6 (E2-Ee2) 

S6 = 6(E3 + Ev3) 

S7 = -i v6(E3-Em3) 

S8 = 2 6 H; 

such that [Si; Sj] = 2 i fijk Sk. These matrices form the 2 dimensional repre-- 

sentation of SU(3). 
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