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I. Introduction 

Very recently 1-5 a method has been proposed for the renormalization of 

field theory, by making use of a continuation in the space-time dimensions. 

While this method borrows the technique from analytic renormalization, it is 

much simpler than the latter and more convenient for gauge theories. 

The simplicity of the method and its promising developments perhaps justify 

these straightforward comments concerning the status of the matter and some 

open chances. 

The basic idea is the well known observation that ultraviolet divergencies 

in Feynman integrals may be viewed as a consequence of the space-time dimen- 

sion being 4. Models in two dimensional space-time are free from this desease. 6 

It is convenient to consider the parametric integral representation of a 

Feynman integral in a scalar field theory7 

F(n) (pi)= rQ-9 exp [i$ I- +d 

‘(l -Cai) 

r 3 C(E) n’2 
L 

Ilk 
D(ai, Pi) 2 - i 1 ‘la-i) 

(1.1) 
Q 

when 1 is the number of lines in the graph, k is the number of loops, p the 

dimension of space-time, C(cri) and D(ai, pi) the familiar parametric functions 

determined by the topology of the graph. 

Because of the gamma function one easily sees that any given integral (1.1) 

(fixed I and k) becomes divergent when the dimension of space-time is increased. 

The representation (1.1) suggests a “natural” interpolating function F (d) (pi) 

defined for complex values of d, and identical to F (n) (pi) on integer values of d. 

f 
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In Section II, the arbitrariness of the choice of the interpolating function is 

discussed. 

Given a function Fd (pi) it is possible to study its Laurent expansion around 

d = 4. For those integrals such that the formal representation (1.1) is divergent, 

one now throws away the singular part of the Laurent expansion and keeps only 

its regular (i.e., finite) part. As discussed in Section II, this procedure leads 

to an arbitrary polinomial that may be added to the finite part. It has been 

shown in (5) that this prescription for the Laurent expansion is indeed equiva- 

lent to the more familiar Bogoliubov-Parasiuk-Hepp procedure of Taylor 

expanding in the external momenta. The arbitrariness of the present method 

only amounts to the choice of the subtraction point; this is the usual freedom of 

the renormalization group. 

Example a 

L Let us consider the “propagator” graph 9 a G4 theory (Fig. 1). , I 

Fig. 1 

In an n-dimensional world one finds +oO Fntp2) = s daIdcr2d03 iD(ai, P2)/C((yi) 

0 r 1 C@,) n/2 e 

where 

C(y) = ala2 + cy3 + a2cr3 

(1.2) 

DtaiP P 
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) = (yIo203p 2 - (Cai) C(cui)m2 + ie 
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By doing a scale transformation (8) ai+ Pcx~, and integrating over the p vari- 

able, one has 

in (3 -n) ’ 
Fnb2) = r(3 - n)e2 

s 

dQi ‘(1 -Cf ai) /D n-3 

73 (1.3) 
0 

This may be generalized to an interpolating function Fd(pi); the finite part of 

its Laurent expansion for d-4 is 

1 

FRinb2) = -i 

/ 

doliS(l --c oi) Dtai, P2) 

0 [ 1 ‘tail 3 ‘(@i) 
+ap2+b 1 (1.4) 

The constants a and b are fixed by the choice of the subtraction point. If one 

requires that FRin = 0 then 

1 e 
dai6(1 -> ‘&) ’ 2 

’ FRin(p2) = i 

I 
I C(c5)l 3 pa2a3P 

JO L 

2 
+ C(cui)m2 log l- QIcr2cr3p 

C(ai)m2 

It is not difficult to check that this expression is identical to the B. P. H. pre- 

scription 

FRin@8) = (1 - m2) F(P2) 

where mpf(x) is the Taylor expansion of f(x) around the origin, truncated at 

order ~1. 
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II. Interpolation and Arbitrariness 

An interpolating function plays a role only if one wants a framework for 

considering field theory models for different numbers of space-time dimensions 

n = s + 1, s being the number of space dimensions. If one only considers 

renormalization, then any analytic extrapolation around n = 4 is adequate and no 

question of interpolation arises. Here it is assumed that the framework 

mentioned above is desiderable. Then in perturbation theory one finds integrals 

like Eq. (1. l), defined for all integers less than some given 2 and one looks 

for an interpolating function. The relevant asymptotic behavior of a unique 

interpolating function should be klRe dl e , where k < nfor IRe dl- -co; this 

is obviously violated along the real axis by lim Fnbi). Therefore if 
n---a 

Fd(pi) is the most obvious interpolating function, we may consider as well 

1 

t 
l 

lFd(pi) = f /fi - % 
dai F (l,:oi) 

I 
/ 0 

i c(q 
J 

d/2 

+ g(d) ‘s@i) > P-1) 

where g(d) is an entire function of d which vanishes at all integers (say sin 7rd) 

and P(pi) a polynomial in the external momenta, with arbitrary coefficients. 

The following requirements on P(pi) seem 17reasonable’7: 

1) It should be a polynomial in the Lorentz invariant variables, say pi l pj . 

2) It has real coefficients. This may be regarded as part of the definition 

of an extended unitarity, for d arbitrary. 

3) P(pi) does not grow faster at co than the Feynman integral itself. This 
dk fixes the degree of the polynomial to be less than or equal to 2 - 1, in the 

quadratic Lorenz invariants. 
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The interpolating function Fd(Pi) may now be continued to the right half 

plane Re d > n and one may write its Laurent expansion for d-4. Because of 

the requirements l-3 one sees that the arbitrary polynomial to be added to the 

finite part of a Feynman integral is indeed equivalent to the choice of the sub- 

traction point in a renormalizable theory. 

One might think that the arbitrariness associated with regularization Ita la 

Gelfand” of the integral (1.1) could be different. It is-interesting to see that it 

leads in a simple way to requirements 1 and 3. 

In fact one looks at regularization of the integral 

+CCl 
f 

Dt(Yi, P2) 

I 

pv-I 
ip C(a) 

e dP , where Im D>O 

0 

In the region Re v cd, if Ee g(p 
v-l ) is a regularization of P v-l as a generalized 

function, then any other regularizations may be obtained by adding to it 8 func- 

tional with support in the origin, say g( 0) = E ’ Cl id’) . (p). All these regulariza- 
i=O 

tions are to coincide in the space of test functions where the functional p 
V-l 

exists . This fixes the degree M of the highest derivative of a delta function to 

be M = -v and leads to the definition of a renormalized integral modulo an 

arbitrary polynomial satisfying the requirements 1 and 3. 

III. Q.E.D. 

The main advantage of the present method over other regularization, say 

Pauli-Villars regularization, is in the renormalization of gauge fields. As 

anticipated in Ref. 2 and 3, this regularization preserves the gauge properties of 

the theory. The Ward identities are satisfied for every value of the regulator 

parameter d. This may be shown most clearly in Q. E. D. by direct calculation 

in the lowest non-trivial order. 
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In a space-time with n dimensions (n = s + 1, s being a positive integer) 

one finds a set of n Dirac matrices yi, that satisfy {yi, yj 1 = 2g. . . The con- 
1J 

tinuation to complex values of the dimension is done after performing sums 

and/or traces of the Dirac matrices. 

A straightforward set of rules is given in the Appendix. One may then 

compute the lowest order nontrivial fermion self energy &Pb 

b 
FIG. 2 

n 
J!e . Q . (p) = m 

(27r)ni 
g , dq y Y’(P-4)+m ?’ 

1 I 

* Qzj, J LtP-Q2 - m2] ts2 - p2) 
inn l. 

-- 
47r a! e 4 

= - (4 n/2 
i2L 23 

e 2 ( > r (2 - + nm] da! 

cwn 
- (I-a)m212- ’ 

The photon has been given a mass p. 

The lowest nontrivial order vertex function (Fig. 3) 

P p+k . / / 

FIG. 3 
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rp@, k) = 5 I dq 
&ti~“P”Y”[~ - b-4 + m]rC” [y l b-q+k) + m yQ] 

7F (q2-p2)[@-q)2 - m2][(p-q+k)2 - m2] 

1 
inn 

_ 4noL e-4 
m 42 

dai6(1 -@xi) 

mf 
B2 - n/2 

dcxi S(1 -x cx) 

B3 - n/2 

where 

B = p2al~2 + k2cx2a3 + (p + k)2ala3 - (alp2 + (r2m2 + cz3m2) 

and 

Y = (4 - n) y. (up - a3k)yP y - 1 yp + (al+ a2)k’ - 2-y &y+(~l+ a2jkJ y’.y. (9~ - a3k) 

+ m(n - 4)yPy. k+ 2m(n# + 2kP) - cr3kP+ (a2 + cu3)pP]2mn _ 

2 P + (2 -n)m y . 

atk=O 

g = B(k = 0) = p20+y2 + a3) - (‘ylp2 + cu2m2 + rw3m2) 

7 = Y(k = 0) = (2 - n)ct!t y . py’y * p + 2m n crlp’ 2 P t-(2-n)m y 

By using the identity, proved in Ref. 10 

1 

l-(3 - $, Yl’l 

/ 

(1 - a)(m2 - cx2p2)da! 

0 E 
1 

d Y’ = l-32-$3- 
(d-2)(1 -a)-ICY da! 
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-8- 



one may verify that the Ward identity 

r%, 0) = - p P 
holds for every value of the regularizing parameter d. 

IV. Open Problems 

A number of problems seem to be particularly fit .for investigation by the 

present method. One is certainly the occurrence of Ward anomalies. To study 

the fermion loop anomaly one first has to define y5 in an n-dimensional space. 

The first proposal (3) that y5 = yIy2y3y4 implies that it anticommutes with any 

Yi9 i = 1, * . w 4 but it commutes with any other Dirac matrices. As was 

immediately realized, this leads to ambiguities. 11 It may be useful to recall 

that in an n-dimensional space, n an even integer, one has a set of n Dirac 

matrices that anticommute and a further matrix, defined as the product of the 

n Dirac matrices, that yet anticommutes with all of the n matrices. In an odd 

dimensional space, this last “product” Dirac matrix is to be added to the set 

of the first n, in order to have a set of Dirac matrices equal to the space 

dimens ion. By doing that however it becomes impossible to construct a further 

Dirac matrix that anticommutes with all of this basic set. This impossibility 

is indeed related to the different meaning of the parity operator in spaces with 

even or odd dimensions and to the difficulty 12 to have a CPT invariant Dirac 

theory in a space time with odd dimension. One is then led to consider only 

space times of n dimensions, with n even. The obvious generalization for y5 

is then the Dirac matrix product of all n matrices. Investigations are being 

done to determine the role of the arbitrariness of the interpolating function in 

the Ward anomalies. 
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An interesting problem is the investigation of nonpolynomial Lagrangians. 

As is well known 13 the imaginary part of the momentum space representation 

of the superpropagator in a theory with exponential interaction is fixed by 

unitarity. The real part is undertermined because of the possible addition of 

an entire function. Such an entire function may be eliminated by requiring 14 

that the real part of the momentum space representation S(p2) of a superpropagator 

vanish in the limit p2d co . 

In the framework of this method this requirement amounts to the choice 

of p2 = cc as a subtraction point. 15 If this choice of a special subtraction point 

were imposed as a boundary condition in renormalization theory, then the so 

called “nonrenormalizable” theory could be handled as well as the familiar 

renormalizable theories. 16 
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Appendix 

In an n-dimensional space-time one may determine a set of n Dirac matrices 

yi that satisfy the basic relation of the Clifford algebra: {yi, yj[ = 2gi I. From 
d 

that basic relation one immediately derives: 

c gHyQykyQ = (2 - n) yk 

c gfl ye y” ybyQ = (n - 4)yayb + 4 g ab 

c gHyQyaybycyQ = (4 - n)yaybyc - 2ycybya 

and so on, 

From the integral 

i(ap2+bp.k)=ie 
n-n -i- .b2k2 

I= dnp e 4 e-‘4a 

by repeated differentiation one has 

I/J = J dnp pp 
i(ap2 + bp. k) _ -ib k 

( 
T 42 

7m -i- .b2k2 

e -2a pa e 4 e-‘4a 

I pv = d%p P~v e 
i(ap2 + bp . k) = 

)[ 

2 n/2 -iT b2k2 
1 
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