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Abstract 

The question of whether there may exist a discontinuity at x = 0 in the-pion 

spectrum of an inclusive reaction initiated by two unequal particles is raised. 

While such an occurrence is impossible in a model with only short-range corre- 

lations, it is a distinct possibility in the diffractive excitation model when the 

energy is high enough. We relate the discontinuity to the properties of the 

spectra of single diffractive excitations. Arguments are given as to why the 

discontinuity, if it exists, is not likely to be substantial. 
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I. INTRODUCTION 

In the fragmentation picture, ’ or more specifically in the diffractive excita- 

tion model, 2 all produced particles found in the final state of a high-energy col- 

lision are identified as fragments, or the decay products of the excited states, 

of the initial particles. This interpretation is made even in the central region 

near x= 0. For this reason, the usual nomenclature of “pionization” and “frag- 

mentation” regions is unsatisfactory in that it is. biased toward a model which 

presupposes the existence of a region that does not involve fragmentation. We 

favor the use of the words “central” and “end” regions, the former referring 

to the region where the spectrum is flat in the rapidity plot. 

If indeed all secondary particles are fragments of the initial particles~, it 

is conceivable that different particles prefer to fragment differently. In the 

language of the diffractive excitation model, the probability of excitation to cer- 

tain massive states may be different for different hadrons. Suppose that it is 

easier to excite a pion than a proton. Then the pion spectrum for the inclusive 

reaction of a np collision should in the rapidity plot have a flat plateau on the 

pion side that is higher than the flat plateau on the proton side. A schematic 

representation of this is shown in Fig. 1. The overall distribution is the sum 

of the two parts so the transition across y = 0 is smooth, as indicated by the 

dashed line. However, in the x-plot in the infinite energy limit, the different 

altitudes of the two plateaus in the y plot imply a discontinuity at x = 0 as indi- 

cated in Fig. 2. Present data on 7rp collisions do not show any obvious indication 

of this discontinuity, but since they are at energies less than 30 GeV, the extensive 

overlap of the right and left regions can easily smooth out the distribution at x = 0. 

It is not our intention here to suggest the inevitability of a discontinuity at 

x = 0. One result of this study is that if the discontinuity exists, it is not likely 
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to be a glaring one. But, more importantly, we want to point out the possibility 

of its existence and to relate the behavior of the pion spectrum near x = 0 to the 

behavior of the leading-particle spectrum near x = 1. 

A model based on short-range correlations in the longitudinal momentum, 

such as the multiperipheral model, 3 firmly predicts the absence of a discontinuity 

at x= 0. This is because a pion in the central region is far removed in rapidity 

from the ends and therefore carries no information about the initial particles. 

The assumption of double Pomeron dominance in the Mueller analysis 4 leads 

immediately to this result. Thus the experimental discovery of a discontinuity 

at x = 0 would create an insurmountable difficulty for the weakly-correlated models. 

The confirmation of no discontinuity there, however, is quite acceptable to the 

diffractive excitation model. 

II. THE SPECTRUM NEAR x = 0 

In the following, we shall consider hadron collisions in the infinite energy 

limit. In the diffractive excitation model, the two incident particles are excited 

into two massive states (fireballs), which then decay into two clusters of particles 

with invariant masses MI and M2. The invariant distribution f(x) defined to be 

f(x) = x0 da 
= PO 

dc 
dxdp; dp,, dp; 

where x = 2p,,/& and x0 = 2po/& , can be calculated according to the 

relation’ 

g@‘$ x)nldM19 x>o 

= x 0 e gtM2, x)n2dM2, xc0 
2 

(1) 

(2) 

(3) 
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where da/d Mi is the cross section for the production of a cluster of mass Mi 

whatever the other cluster may be (including the possibility that it may be un- 

excited). g(Mi,x) is the probability that a particle is observed at x among the 

cluster of particles of mass Mi, * it is normalized such that its integral over all 

x is unity. Finally, ni is the multiplicity of the particles in the i-th cluster that 

are identical in type to the observed one. 

The question we address ourselves to is whether f-(0+) might be different 

from f (0 -) where we define for E > 0 

f(O&) = lim f(*t) (4) 
E +o 

The probability function g(Mi, x) is obtained by Lorentz transforming a Gaussian 

distribution (chosen for simplicity’s sake) in the cluster rest frame to the center- 

of-mass frame. Using E to denote the average energy of a pion in the cluster 

rest frame, we have -2,s 

1 
-z 

g(Mi’X) = (A) e 
-;k2/‘E2 dk 

- dx (5) 

-1x1) + - (x0 +IXI+ 
I 

We have assumed that the average energy E of apion is the same in either cluster. 

The Gaussian peak occurs approximately at x = E/Ml or x = - E/M2. This is as 

expected from simple momentum conservation considerations since Mi/E is the 

average multiplicity of the cluster of mass Mi. Thus in the limit x + Ok, the im- 

portant values of Mi that contribute significantly to the integrals in (2) and (3) are 

infinitely large. Since we work in the s + M limit, this region of infinite Mi is to 

be taken while maintaining Mf << s. Thus in the diffractive excitation model, the 
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pions in the x z 0 region are decay products of very massive clusters, each of 

which has nevertheless the (essentially) maximum momentum K i ” dii/z. 

From (6), we obtain 

2 
dk % 2 22 
dx = - 2xOxM. ’ ‘1 = ’ +‘I 

1 
(7) 

where P is the mass of the pion detected. For simplicity, we shall keep p: at a 

typical value of average <pB) , i.e. (350 MeV/c)2. Recognizing that ni = < Mi/E, 

where < is the fraction of the total multiplicity in either cluster that belongs to the 

particular type of particle observed, we have after collecting formulas 

e-3k2’2E2 d Mi 

By taking 6 out of the integral, we have tacitly assumed that 4 is independent of 

Mi, particularly at large Mi. Since the large Mi behavior of the integrand de- 

termines the small x behavior of f(x), it is evident that scaling is attained if 

da ~ M-2 
dMi i ’ as Mi--+m 

In Ref. 2, this behavior is suggested and then derived in the Regge model. 6 Our 

main point here is that the value of f(x) at x = 0 depends on the normalization of 

du/dMi in such an essential way that we have 

lim 

f(o+) = 
M -+co M; do/dM1 

1 
f(O -) lim 

M 2 -+* M; du/dM2 

We reiterate that d u/d Ml is the cross section for the diffractive production of a 

cluster of mass Ml with the mass of the other cluster being integrated over both 

the discrete state (no excitation) and the continuum. 

-5- 

(8) 

(9) 

(10) 



III. SINGLE DIFFRACTIVE EXCITATION 

The derivation of (10) is based on rather general ideas about diffractive dis- 

sociation, supplemented by the assumption that the pions in the clusters have an 

average energy E that is independent of the multiplicity or the hadronic origin of 

the clusters. However, the cross section do/d Mi is not easily measurable. We 

now want to relate it to the single excitation processes which are experimentally 

accessible. This requires an additional assumption that the diffractive processes 

are factorizable, i. e. , 

do 12 da eQ dul - d u2 
- = 

dMI dM2dt dt dMl dt dM2dt (11) 

where the four quantities are, respectively, the differential cross sections for 

double excitation, elastic scattering, single excitation of cluster 1 and of cluster 

2. Equation (11) is assumed to be valid for all t, Ml, and M2 in the limit of in- 
I 

finite s. An obviously valid special case is when Ml (or M2) remains in the un- 

excited state of the initial hadron. A pictorial representation of (11) in terms of 

the amplitudes is given in Fig. 3, where the wavy lines represent the factorizable 

Pomeron. 

From (11) we obtain by integration 

*=Jdt[2dt [JdM2 &] [%I -‘I 
d”1 

Since we work in the infinite s limit, the limits of integration over t are inde- 

pendent of Ml and M2. The expression for du/dM2 is identical to (12) except for 

(12) 

the interchange of the labels 1 and 2. The integration over the cluster masses 

includes both the discrete and the continuum. 
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We now see from (10) and (12) that if the quantity 

(13) 

is independent of the nature of particle 1, i. e. , if (13) is equal to the same ex- 

pression with 1 replaced by 2, then f(O+) = f(O-). The converse is not true in 

general because of the t integration. However, it would be very surprising if it 

were not true, on account of the characteristically monotonic behavior in the t 

dependence of the differential cross sections, elastic or single diffractive excita- 

tion. 

The numerator of (13) is the sum of the elastic and all single excitation (of 

hadron 1) cross sections. The denominator is the normalization of the asymptotic 

cross section for producing massive MI clusters. Thus the quotient measures 

the area under the asymptotically normalized excitation spectrum. The high Mi 

portion of such a normalized curve is therefore not expected to depend on the 

nature of the particle being excited. The major diferences between normalized 

spectra for different hadrons, if any, should reside in the threshold effects and 

the excitation of low-lying resonances. In Fig. 4, we show a sketch of the excita- 
-2 

tion spectrum (the solid line) along with the Mi asymptotic behavior extrapolated 

to lower values of Mi (the dashed line). 

In general, one expects the spectra to show characteristic differences at low 

cluster masses. The minimal cluster for pion excitation consists of three pions, 

while a proton can be diffractively excited into a neutron and a ?r+. The spin and 

isospin of the initial hadrons may also affect low-energy excitations. Of course, 

what is of interest in (13) is the area under the spectrum curve, which is not 

sensitively dependent on the precise shape of the curve itself. Nevertheless, the 
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quantity expressed by (13) can quite possibly be different for different hadrons 

so that a discontinuity of f(x) at x = 0 cannot be ruled out. 

Having stated the possibility of the discontinuity, we now argue for the in- 

conspicuousness of such a discontinuity. The reasoning depends heavily on the 

notion of duality applied to particle-Pomeron scattering, which has never been 

tested empirically. Assuming its validity, one then expects the low-lying reso- 

nances to be interpolated on the average by the curve dorresponding to the ex- 

change of the leading Regge trajectory. In the present case, it is the f trajectory 

which dominates the asymptotic behavior, and gives-rise to the M L2 fall-off. The 

dashed line in Fig. 4 exemplifies this interpolation. More explicitly, we have 

d9 

dM; dt 
(14) 

where A (Mf , t) is the forward absorptive part of the particle-Pomeron amplitude. 

Assuming 

yv x l/2, not only for large Ml but also for values of Ml in the low-lying 

resonance region whatever the hadron being excited may be, we then get on the 

average a universal excitation spectrum. The area under such a curve with ap- 

propriate threshold factors built in should then be more or less independent of 

the nature of the particle. We thus conclude that the discontinuity of f(x) at x = 0 

is not likely to be a substantial one. 

Experimentally, dul/dMldt can be measured by analyzing the recoil against 

the cluster excitation. Defining s’ = Mf , we have 

(15) 

da xo da 
ds’dt = ---s-- dxdpf 
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where x, x o, and p, now refer to the recoiling particle, and 

s’/s = 1 - x0 (17) 

t=- m2(1-xo)2+ 
[ 

P; 1 /x0 3 

m being the mass of the hadron before excitation. Using (14) and (15), we obtain 

for the recoil spectrum 

-d- ac ,-l/2 t1 -x )-3/z 
xO dxdpf 0 

(18) 

(19) 

Since s’ << s, we have x x x0. It thus follows from (19) that the leading particle 

spectrum recoiling against a cluster is not limiting as s -+ CO , but for every fixed 

s, there is a singularity at x = 1. A careful analysis of the kinematics shows that 

the physical boundary in x differs from x = 1 by terms of the order of l/s. Thus 

if the cross section in (19) is integrated over x, the result is limiting as it should 

be, since it corresponds to J 
(du/ds’dt)ds’. The excitation spectrum of low- 

lying resonances can be obtained by studying the recoil distribution x0 du/dxd p: 

near x = 1 even at the present machine energies. 

IV. CONCLUSION 

We have pointed out the possibility that the invariant pion distribution can 

have a discontinuity at x = 0. In rp collisions at very high energy the events that 

populate the x = 0+ region belong to the type where the incident pion is highly 

excited while the proton is lowly excited. In the x = 0- region, it is the other 

way around. There is no fundamental principle that requires that these two ex- 

citation modes occur with equal probability. However, by applying the notion of 

duality to the particle-Pomeron amplitude (a theoretical conjecture as yet untested 

by experiments) ,one does not expect the discontinuity to be very conspicuous. 
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Nevertheless, continuity should not be taken for granted. An experimental 

verification of the behavior at x = 0 is therefore of great importance. 

We thank the theory group at SLAC for their hospitality during the summer 

of 1972, where part of this work was done. 
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Figure Captions 

Fig. 1. A sketch of a possible pion distribution in the rapidity plot. 

Fig. 2. The same distribution as in Fig. 1 plotted in x. 

Fig. 3. Factorization of diffractive amplitudes. 

Fig. 4. A sketch of a diffractively induced excitation spectrum. The dashed 

line is au extrapolation of the ML” behavior toward lower energies. 
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