
MICROPROGRAMMED IMPLEMENTATION OF

COMPUTER MEASUREMENT TECHNIQUES

SLAC-PUB-1072
cs 294
(MIX)
July 1972

Harry J. Saal and Leonard J. Shustek

Stanford Linear Accelerator Center

and

Computer Science Department
Stanford University, Stanford, California 94305

Abstract: Microprogramming has been accepted as a valuable tool in several areas of system design.
However, microprogramming has not generally been used as a tool for evaluating the performance of computer
systems. This paper describes the implementation of several techniques useful for program monitoring,
debugging and system measurement using the microprogramable features of an existing computer system. The
measurement system is completely transparent to almost all target programs. Given an existing system with a
writable control store, a microprogram measurement system may be the most flexible, inexpensive, reliable,
and high-speed means of monitoring the performance of a computer system.

OUTLINE

1. Introduction and Overview

2. Criteria for Measurement Systems

3. Previous Techniques for Computer
Measurement

a) Hardware instrumentation systems
b) Software instrumentation Systems

4. Microprogrammed Techniques

a) General capabilities and advantages
b) Examples

1.. Type of data gathered
ii. Sample analyses
iii. Other possible measurements

5. Implementation on the Standard
Computer Corp. IC7000

a) Data collected by measurement
microprograms

b) Use of special hardware features
c) Difficulties encountered and

recommendations for their solution
d) Timing estimates

6. Summary

1. Introduction and Overview

Microprogramming has been accepted as a
valuable tool in several areas of system design.
It is considered highly valuable for the
implementation of emulators for instruction set
processors. Where appropriate, it can provide a

Work partially supported by the U. S. Atomic
Energy Commission.

very cost effective means of implementing a
sophisticated instruction repertoire in a highly
reliable fashion. As well, microprogramming
recently has been looked to as a means of extending
a basic manufacturer provided instruction set by
the implementation of additional application
oriented instructions or processing subroutines.
In addition, microprogramming (particularly coupled
with writable control store systems) is valuable
for research and experimentation in the design of
new computer architectures and processor
organizations. However, microprogramming has not
generally been used as a tool for evaluating the
performance of computer systems.

This paper describes the implementation of
several techniques useful for program monitoring,
debugging and system measurement using the
microprogramable features of an existing computer
system. The measurement system is completely
transparent to almost all target programs. We
address ourselves to the designer of computer
systems, the user of microcomputer systems and to
individuals responsible for the hardware design of
microcomputers themselves.

Computer system design has emerged from the
realm of intuitive, seat of the pants design.
Designers can now take great advantage of highly
detailed and reliable measurements based on past
and present utilization of existing computer
systems. Computer programming can now share many
of the same tools and techniques developed to aid
the computer designer. Programmers may
substantially improve the performance of
significant programs given the proper information
concerning the execution history of their programs,
instructions utilized, interrupt frequencies, etc.
These effects are far from minor; one can easily
achieve a substantial improvement in a complex
program with several hours work and in so doing
improve the performance of a software system by
several factors.

(To be presented at the 5th Annual Workshop on Microprogramming,
University of Illinois at Urbana-Champaign, September 25-26, 1972)

- l-

Computer designers face many critical decisions
prior to fixing upon a given computer architecture
or establishing the best parameters for particular
techniques used in implementing a computer design
(such as page size or instruction stack depth). We
would like to determine the importance and utility
of local or relative addressing as opposed to a
more general addressing scheme. How much use is
made of the various index registers in modern
computer architectures? Shall we use a variable or
fixed size instruction format? Can we establish
which operation codes are most significant in
determining the performance of a computer so we may
concentrate our design efforts in the area that is
most fruitful? We may observe omissions in or
improvements for an instruction set by monitoring
the serial usage of operation codes in an attempt
to observe strong correlations. Designers of
memory systems utilizing caches, paging, or overlay
schemes need accurate information on the locality
and time history of program executions. Operating
system designers can take great advantage of
information on Input/Output activity, channel and
device utilization. etc.

These questions only begin to touch upon the
multitude of decisions faced in the design of any
modern computer system. We emphasize, however,
that these decisions can be based on substantial
and accurate measurements and that these
measurements, as we will see, can be done reliably
and inexpensively using microprogrammed techniques.
They should be available to all who choose to take
advantage of them without incurring extreme costs
or performance degradation.

For the remainder of this paper we will not
consider the exact use to which such measurements
may be put. Several examples of information
available from such measurements will be provided,
but they will in no way attempt to suggest the
entire spectrum of data analysis that is
appropriate for computer design and effective
usage.

2. Criteria for Measurement Systems

To be effective, any measurement technique
should meet these four criteria:

1. It should be inexpensive and easy to use.

2. It should be easy to modify so that
exploratory investigations can be quickly refined
in areas of interest.

3. It should enable one to measure any program
which could be run on the original non-measured
system. In this manner, one can investigate a
large number of programs without restricting
oneself to those written in one particular
language.

4. It should not disturb the original program
being measured to any significant degree.

3. Previous Techniques for Computer
Measurement

Computer measurement techniques are not a new
subject. An excellent survey of traditional
techniques may be found in the paper by V.G. Cerf
(CERF70).

a) Hardware instrumentation systems

Hardware analyzers (ROTH61, BONN69, COMP70) do
not interfere with the system beinq measured nor do
they place constraints on the types of programs
which may be monitored. Their major limitations.
however,- are that they require additional external
hardware and substantial knowledge of interfacing
techniques in order to extract the appropriate
signals and register contents useful for later
analysis. Their flexibility is a function of their
cost and the extent to which one is willing to
attach outboard hardware to an existing computer
system. Certainly, they have achieved substantial
acceptance in those areas, such as channel or
central processor utilization, where appropriate
signals can easily be extracted from the lights on
the maintenance console of modern computer systems.
More sophisticated applications of hardware
techniques have been proposed (ESTRF7) but have not
seen any widespread acceptance.

b) Software instrumentation systems

Software techniques generally fall into two
sub-categories, imbedded and external. The
imbedded, or in-line measurement technique, has
often been applied at the level of the source
program language (INGA71, WORT72). By writing a
pre-processing system-for, say, FORTRAN, one can
insert monitoring statements into the original
program itself. These counting statements
accumulate information concerning the execution
history at the source language level. One may also
explicitly imbed data collection points in the body
of programs, such as an operating system (OEN169,
PINK6F). This technique, although easy to
implement, and quite useful to programmers,
language designers, and compiler writers, does not
provide appropriate measurement data for the
computer system designer.

External software methods generally utilize a
sampling technique (JOHN71, STEV68). A regularly
scheduled clock interrupt iS used to activate a
monitor process which samples information such as
the program counter, type of instruction being
executed, or Input/Output activity in progress for
later summarization. Such sampling techniques,
however, greatly restrict the type of data that can
be collected. Determination of information such as
operation code utilization and serial correlations,
or branch distances, is done in a statistical
fashion and consequently may not be of value for
ascertaining appropriate parameters such as cache
or page sizes in a computer system.

By far, the most flexible software technique is
that of complete interpretation (ALEX72, BUSS70).
Interpretive techniques provide the maximum
flexibility one can achieve but exhibit substantial
costs as an undesirable side effect. Since they
increase program execution time by several orders
of magnitude, they are often extremely expensive to

-2-

use. In addition, not all programs can easily be
interpreted. Input/Output activity, program
interrupts, etc. can often be the bain of an
otherwise excellent interpreter in its attempt to
monitor the execution of a large number of computer
programs. Because of these difficulties, it has
not been economical to conduct measurement studies
on a very extensive sample of arbitrary programs
using a conventional interpreter.

4. Microprogrammed Measurement Techniques

a) General capabilities and advantages

The overwhelming advantage of microprogram
measurement techniques over software
interpretation, in our opinion, is the assurance
that programs are still interpreted correctly. The
kinds of modifications we will describe can be made
to an existing emulator with assurance that the
semantics of the original emulator are maintained.
This is true for all programs regardless of unusual
circumstances (such as program interruptions due to
underflow) and the presence of Input/Output
operations. It is an extremely difficult task to
verify that a software interpreter is, in fact,
correct for any program which is supplied. On the
other hand, an instrumented microprogrammed
emulator will even reproduce any errors or unusual
interpretations given to instructions that are not
properly documented by a computer manufacturer.
This assurance is especially valuable in any
attempt to measure an extremely wide base of
programs with absolutely no modification or
restrictions on their behavior.

Microprogram measurement techniques can collect
data at an extremely high rate; this promotes
substantial use of these techniques and, as well,
provides a much closer approximation to real time
behavior of an existing system. (In fact,
post-measurement analysis of measured data is far
more lengthy than the collection of the interpreted
data itself). These techniques do not require the
existence of any operating system for performing
data collection and device handling. Thus we can
measure programs which contain bugs or are
operating systems themselves with no restriction.
Conventional interpreters generally cannot be used
to interpret an entire computer system at once.

Microprogram techniques may be used to monitor
any one of the programs in a multiprogrammed system
through slight modifications of the system
environment. We recommend, for example, that one
bit in a program status word be dedicated to
enabling and disabling the program monitor. The
microprogram system can then selectively monitor
one of a large number of programs which is being
controlled by a complex operating system.

b) Examples

We have constructed a series of measurement
microprograms for the Standard Computer Corporation
IC7000 computer system (STAN69)*. These were

*This system has been provided for our research
purposes by the Standard Computer Corporation of
Santa Ana, Calif.

intended to illustrate some of the possible
techniques; others are undoubtedly just as feasible
and useful.

i. Type of data gathered

Two classes of instrumentation systems were
implemented on the IC7000 to collect data. The
first of these produced a tape from which we
extracted the complete history of the execution of
programs by recording all successful branch
instructions and relocation information. The
second accumulated, among other things, the
distribution of individual operation code usage and
a matrix of operation code pair executions.

ii. Sample analysis of measurement data

Some brief samples of straightforward analyses
of typical measurement data are shown in Figures 1
through 3. Figure 1 indicates the distribution of
use of main storage by a given software module.
Correlating this information with the user's
program quickly leads him to focus on those areas
which deserve maximum attention and optimization.
The branch trace data can also be used to provide
an unusual debugging aid to the user since after
the completion of execution trace measurement, it
is possible to print a list of the last one hundred
branches executed by a given program. This has
proved extremely valuable for understanding the
sequence of events leading to a program interrupt
which then caused termination of a user's program.
We have also incorporated as the standard
microprogram for our IC7000 a compatible emulator
which always maintains (in control store) the
addresses of the last two branches successfully
taken by each of the Central Processor and the
Input/Output Processor. It would be
straightforward to extend the instruction set to
allow access to this pair of words for use by a
target debugging system.

Figure 2 shows a plot of operation code
utilization on a dynamic basis for a variety of
measured programs in the CPU. The operation codes
were sorted by frequency of use separately for each
program measured. The vertical axis indicates the
fraction of instructions not accounted for by the
number of sorted operation codes shown on the
horizontal axis. This data may be compared to that
collected on the CDC3600 by Foster et al (FOST71).
Figure 3 indicates the fbequency of pairs of
operation codes executed during a FORTRAN
compilation. We have shown only those transitions
which were greater than 1 percent of the total
number of instructions executed. This simple
structure represents over 80 percent of all
instruction pairs executed by the compiler. This
type of information in extremely useful in deciding
which microprogram routines are the critical ones
in determining processor speed, and which are
candidates for control store swapping or
replacement by target-level programs.

We reserve comments and analysis of this data
for future publication and merely present some
examples of the most straightforward type of
analysis possible from our microprogrammed
measurements.

-3-

Microprogramming provides a convenient
alternative to software interpretive techniques. A
microprogrammed emulator is, indeed, an interpreter
for a computer instruction set. If we can modify
an existing emulator in such a manner as to collect
our desired measurement information without
introducing any changes to the semantics of the
emulation itself. then, (except for oossible time
dependent problems) by-definition, we'can correctly
execute any program which would run on the original
emulator.

iii. Other possible measurements

There are a variety of other aspects of
computer utilization which can also be effectively
measured using microprogrammed techniques. Many of
these, when used without simultaneously measuring
high rate events such as operation code tracing,
have a negligible effect on system performance and
may therefore be continuously used to monitor
activity and make information available to the
software. Channel and device statistics are
particularly easy to accumulate; channel wait and
overlap time, which must usually be gathered by an
external hardware monitor, is a typical example.

Another area which can profit from the use of
such microprogrammed techniques is software
debugging. Many of the devices which are available
only at the console or from a software interpreter,
such as address and data reference stops, can be
implemented in the microprogram and controlled by
the software. Breakpoints can be established
without modifying main storage, thus allowing even
self-modifying programs to be debugged with these
too1 s.

5. Implementation on the Standard Computer
Corporation IC7000

Figure 4 indicates the organization of the
IC7000 system. It is comprised of two independent
processing units each of which contains a writable
control store of 2048 18-bit words of vertical
microinstructions. These two processors have
entirely different microcomputer organizations, as
well as different responsibilities for program
execution and Input/Output processing but share a
64K 36-bit main memory. Rather then describe the
system in greater detail at this point,- we will
mention those features which are relevant at the
appropriate time. The reader can refer to STAN69
for further information. The microprograms we have
written (SHUS72) provide an environment almost
identical to the original one upon which our system
software executes. The only differences are in (a)
speed of execution, (b) 2000 words of main storage
buffer space now unavailable to user programs, and
(c) one tape drive which cannot be used by a target
level program. Using these measurement
microprograms is utter simplicity; one simply loads
the writable control store from a different
microprogram tape, ensures that a scratch tape is
available for the measurement data, and then, at
the appropriate point, activates data collection by
depressing a maintenance switch not otherwise used
by any system software.

a) Data collected by measurement microprograms

Currently measurement can be performed using
one of four instrumented microprograms. For either
the Central Processing Unit (CPU) or the
Input/Output Processor (IOP), data may be collected
on either program instruction execution or
operation code utilization.*

The execution trace microprogram is generally
limited by the speed of the output tape unit.
Consequently, we have attempted to compress the
measured data at the microprogram level rather than
accumulating unprocessed raw data. For example,
simple loop structure is detected by recording the
address of the last branch instruction and its
target instruction. An output word is generated
whenever either of these two quantities are
changed. Multiple branches in loop mode are
encoded with the appropriate count prior to beillg
entered in the output buffer.

The Central Processing Unit contains hardware
program and data address relocation registers.
Typically we are interested in summarizing data for
a given user program regardless of where it has
been moved about in main storage. Therefore it is
necessary to include in the measurement data
information concerning the relocation status of the
Central Processor. All pertinent information is
recorded whenever changes in relocation are made.
The analysis routine can then follow a program as
it is moved about in the physical address space of
core by the time-sharing system. All addresses
recorded are virtual addresses but they can be
converted to physical addresses at analysis time.

Two types of operation code summaries are
accumulated during the execution of a program. The
first is a frequency count of the execution of
individual operation codes. For the Input/Output
Processor, this is a straightforward task since the
entire operation code information is contained in
the most significant eight bits of an instruction.
The number of words of main storage allocated to
operation code frequency counts is therefore quite
acceptable.

This is not the case with the Central
Processing Unit, which closely resembles an IBM
7090. There are basically two types of operation
codes, the short and long formats, distinguished by
the first three bits. Six of the eight major
prefix operation codes are considered individual
instructions. The remaining two operation codes
utilize UD to an additional nine bits for further
decoding.' We could not afford to accumulate
frequency data for the full 12 bit operation code
field due to the limited size of main storage.
Consequently, the microprogrammed measurement
routine decoded and separated the short and long
form operation codes, thus using 6 plus 2 x 2**9
entries in the frequency histograms. This type of
flexible encoding demonstrates one of the
significant advantages of a microprogram
measurement technique when compared to hardware

*Additional information is also collected whenever
an Input/Output operation is issued. We will not
discuss these measurements in any detail in this
paper.

monitoring. Based on early measurement of
ooeration code utilization, a 32 x 32 matrix of
operation code pairs was aiso accumulated. Over 90
percent of the instruction pair sequences could be
uniquely measured using this size matrix.

b) Use of special hardware features

Many unusual techniques had to be developed in
order to efficiently capture the kinds of
measurement data to which we have previously
referred. We were able to take advantage of some
special hardware features which were present in our
microcomputer system. One might think it an easy
matter to insert measuring routines at all
appropriate places in an emulator. In principle,
this is the case, but since microprogram storage is
an extremely scarce commodity, it was prohibitively
expensive to insert measurement routines throughout
the microprogram. Since our microcomputers possess
a limited subroutining facility at the microprogram
level, it was not even feasible to include a
subroutine call at every point at which we wished
to measure the performance of the system. In
addition, many instructions are executed directly
in hardware at instruction fetch time (most of the
program transfer instructions). Others share
common microcode but are semantically distinguished
by a large number of flip-flops (set by the
hardwired instruction fetch and decode) which
perform extensive residual control.

In the case of the Input/Output Processor, we
were able to take advantage of a special hardware
trace facility. When enabled by a switch in the
maintenance console, the IOP microprocessor
automatically traps to a special control storage
location, immediately prior to the execution of a
target instruction. The measurement routine at
that location can read the current program counter
and the instruction to be executed next. After
posting the appropriate data in the main storage
buffer, the trace microroutine then exits to the
hardwired scheduling sequence. This time, however,
the instruction is fetched and decoded by the
hardware and executed normally by the conventional
microprogram. When the emulation is complete, the
measurement routine again receives control.

The Central Processing Unit trace program was
able to take advantage of a completely different
mechanism present in the CPU. Under microprogram
control we enabled a mode wherein every transfer
instruction caused a microprogram trap to occur
rather than continuing normal execution. We could
then easily accumulate execution trace data by
inserting one microroutine for handling all
transfer instructions. It was necessary as well to
accumulate all relocation changes as has been
described previously; this required little
modification to the original emulator.

Operation code tracing was substantially more
difficult in the CPU than the IOP. There was no
hardware facility available which permitted us to
gain control in a centralized location prior to
each instruction execution. We were, however, able
to simulate such behavior using
different hardware techniques.

completely

In order to directly emulate the delaying of an
interruption in the central processor following the

re-enabling of interrupt or loading relocation
status, the following hardware controls were
available:

1. It was possible to inhibit a micro-level
interrupt for one target level instruction
execution.

2. It was also possible to force a special
microprogram interrupt to take place after
comoletion of a microroutine.

Through the combination of both of these
features, a trace routine is able to gain control,
request that an interrupt take place upon exit from
the trace routine, but to delay this interrupt
until after the following instruction execution.
In this manner, we are able to alternately trace
and execute instructions fetched from main storage.
This is a substantial advantage compared to the
possibility of having to include measurement
microcode in every emulation routine or to not
utilize the hardware instruction decoding which was
available and used by our emulators. As was
mentioned earlier, even after the operation code
information was available considerable encoding was
required in order to minimize the amount of main
storage used for accumulating frequency histograms.

The microprogrammer is in a continual battle to
overcome the limitations of available control
store. This lack of freedom to incorporate new
measuring routines may rule out the possibility of
extensive microprogram measurement techniques on
some computer systems. We have tried to point out
some special hardware techniques which
substantially reduce the requirement for additional
control storage. Put another way, we recorrmend to
the designers - of microcomputers that they
incorporate the kinds of hardware tracing
facilities mentioned above in order to facilitate
the implementation of measurement techniques.
Providing such hardware is not a major additional
expense in the design of a microcomputer system,
yet it provides an extremely powerful tool for the
system designer.

c) Difficulties encountered.and recommendations for
their solution

Dealing with the Input/Output conflict between
the microprogram measuring routine and the system
being measured was the single most difficult
problem in the implementation. The microprogram
has a formidable task in attempting to appear
completely transparent to an emulated program which
utilizes the same IO channels as the trace program.
This stems from the nature of the interrupt and
status registers as implemented in the Input/Output
Processor. The emulated program expects to have
access to a variety of channel and controller
status registers appropriate to any Input/Output
operation it has initiated. Consequently, it is
necessary for the measurement microprogram to save
these registers prior to any operations which it
initiates on its own behalf. Whenever a target
level program requests the contents of such
registers, we must provide the values saved prior
to our own interference. The microprogram must
dinstinguish interrupts caused by target level IO
operations from those resulting from operations
initiated by the measurement routines. It also

-5-

:

nust defer initiation of channel operations
whenever concurrent activity is attempted by both
the target level and measurement routines.

We would recommend a less ambitious approach
whenever possible. If the measurement data can be
collected on an Input/Output channel which is not
used by the programs being measured, there can be a
substantial reduction in the complexity of
modifications necessary to an existing
microprogrammed emulator. Properly dealing with
the interference of target Input/Output
simultaneously occurring on the channel utilized
for measurement output is a major problem facing
the microprogram measurement implementer. The
exact complexity of this problem is both a function
of microprocessor hardware features and the
generality of the microprogram measurement tools.
We can provide little advice other than indicating
that this is an extremely difficult problem to
master correctly.

Microprogram machines are generally not
completely microprograrrmed. Many aspects of
instruction decoding and operand fetching may be
performed in a hardwired scheduler in the interest
of increased efficiency. This technique conflicts
with microprogram measurement. The hardwired
decoding scheme may automatically set a variety of
residual control reaisters and fliD-flODS t0
simplify the semantii emulation ro
microprocessors have not been des
these registers to be explicit
emulator and thus they are not
measurement routines. This lack
imposes unnecessary complicat
microprograrmner, but could be avo
microprocessor design.

utines. Current
igned to allow
ly read by an

available to
of generality

ions - to the
ided in future

The conflicts of main storage utilization by
the measurement routines and user programs can be
solved in a number of ways. Our system contains an
instruction which returns the size of available
core storaqe in any configuration. By providing
such an instruction and ensuring that all' system;
utilize it in their initialization. the conflict
over main storage buffers may easily be resolved.

A severe problem found in the implementation of
extensions via microprogramming, generally not
found in conventional software interpreters, arises
from the lack of many general facilities at the
microprogram level. Microprocessers may have no,
or at most limited, subroutine calling mechanism.
There may not be any spare internal registers which
can be used for local computation by the
microprogram measurement routines without saving
them. These problems are not insuperable but they
seriously impact both the time and space
requirements of the measurement routines. In
addition, microprogrammers do not have an elaborate
data manipulation- instruction set available for
Droarammina. and it is extremely difficult to
utiiize t&e existing target level instruction
emulation routines. Data compression at the
microprogram level often contributes substantially
to the degradation of processor performance during
measurement by microroutines. Conventional
interpreters generally do not contain large
incremental degradation at this phase of processing
since their overall performance is SO poor.

d) Timing Estimates

Instruction tracing is limited by the speed of
our output tapes. We degrade performance by a
factor of 20 usinq a 60 KB 7-track taoe drive for
recording trace- output. With the tape drive
disabled, the system runs roughly two times slower
than normal execution speed. The results of our
analysis have indicated that approximately 50
percent of all branches change the program counter
by less than eight locations. Consequently, we
could get substantially greater density of
information on the tape if we were to use more
sophisticated encoding techniques in addition to
simple loop detection. Operation code measurements
are not tape bound, since we accumulate frequency
distributions in core during the execution of a
program. This data collection slows down Central
Processor execution by somewhat over a factor of 10
to 1 due to the difficulty of compacting the
operation codes.

6. Summary

Measurements using microprogramming techniques
should not be viewed as a replacement for existing
methods. They do, however, offer substantial
advantages in meeting the four criteria originally
presented for an effective measurement system.
Given an existing system with a writable control
store, a microprogram measurement system may be the
most flexible, inexpensive, reliable, and
high-speed means of monitoring the performance of a
computer system. It is possible to incorporate,
under user control, microprogrammed measurement
techniques within the framework of existing
operating systems.

We recommend the development of microprogram
versions of proposed computer organizations so that
detailed evaluation can be performed by
microprogram techniques, as illustrated above. The
data available through these techniques can be used
to make sound decisions regarding the appropriate
tradeoffs between hardwired, microprogrammed and
software implementations of the architecture of
future computer systems.

REFERENCES

ALEX72 Alexander, W. G., "How a Programming
Language Is Used", University of Toronto,
Computer Systems Research Group Technical
Report CSRG-10, February 1972

BONN69 Bonnet-, A. J., "Using system monitor
output to improve performance", IBM System
J ., Vol. 8, No. 4, 1969, pp. 290-298.

BUSS30 Bussell, B., and Koster, R. A
"Instrumenting Computer Systems and The;;
Programs", AFIPS FJCC Proceedings, 1970,
PP. 525-534

CERF70 Cerf, V. G., 'Measurement of Recursive
Programs", UCLA School of Engineering and
Applied Sciences Report NO. 70-43, May
1970

COMP70

DEN169

ESTR67

FOST71

INGA71

JOHN71

PINK69

Computer Synectics, Inc., Santa Clara,
Calif., "System Utilization Monitor User's
Manual", M-1001, Nov. 1970.

Deniston, W. R., "SIPE: A TSS/360
Software Measurement Technique", Proc. ACM
24th Nat'l. Conf., 1969

Estrin, G., Hopkins, O., Coggan, B., and
Cracker, S., "Snuper Computer - A Computer
Instrumentation Automaton", AFIPS SJCC
Proceedings, 1967, pp. 645-656

Foster, C. C., Gonter, R. H., and
Riseman, E. M., "Measures of Op-Code
Utilization", IEEE Transaction on
Computers, May 1971, pp. 582-584

Ingalls, 0. H., "FETE: A Fortran
Execution Time Estimator", Stanford
University Computer Science Department
Report STAN-CS-71-204, February 1971

Johnson, R., and Johnston, T., "PROGLOOK
Users Guide", Stanford University
Computation Center, Document No. see-007,
October 1971

Pinkerton, T. R., "Performance Modeling in
a Time-Shared System", CACM Vol. 12, No.
11, pp. 608-610, November 1969

ROTH61

SHUS72

STEV68

STAN69

WORT72

Roth, B., "Channel Analysis for the IBM
7090", Proceedings ACM 16th Nat'l. Conf.,
1961

Shustek, L., "Measurement Miniflow",
Stanford Linear Accelerator Center
Computation Group, Technical Memo CGTM-132,
February

Stevens,
Control
Software
34-38

1972

0. F., "System Evaluation on the
Data 6600", Proc. IFIP Congress,
Session II, Booklet C, 1968, pp.

Standard Computer Corporation, Santa Ana,
Calif., “IC7000 System Summary", Form
807010-3; "IC7000 SPU Inner Computer -
Principles of Operation", Form 807003-2;
"IC7000 ALP Inner Computer - Principles of
Operation", Form 801003-4

Wortman, D., "A Study of Language-Directed
Machine Design", PhD Thesis, Stanford
University, 1972

-7-

COUNT

no3250
500254
000260
000264
000270
000274
000300
000304
000310
000314
001320
000324
500330
000334
000340
000344
O00350
000354
0003h0
000364
000370
000374
000400
"004"4
000410
000414
003420

**.
000430
000434
000440
000444
ooo4so
000454
000460
000464
000470
000474
000500
oooso4
000510
(100514
000320
000524
000530
000534
000540
000544
000530
000554
000560
000564
005570
000574

i******~t*+***************~*****4********~.**9*~
,*******************.**********.*.*******.***,*

i*
I l *
/**

i:
I*

000004
000004
000032 ooooii
002249
001711
OOllll
OOOObi
000868
000641
000bSl
OOOBb8
OOOIbll
000868
002626
001824
001239
005911
007644
004095
002457
001092
001092
001092
oooa19
000273
000000

000000
001092
00109:,
005rai
005130
004b98
000164
0029ea
0029lW

:;:2:
002980
002980
001720
002310
001050
000000
00000 i
000000
000016
000000
000071
000083
OOOCbl
000006
000007

Fig. l--Display of executed locations

3 compiled programs
FORTRAN and BASIC

FORTdAN
compilation

\ I

0 4 6 12 16 20 24
NUMBER OFOPCODES 2118Al

Fig. 2-- Log-survivor function of instructions executed vs. sorted operation
codes of IC7000 CPU.

-8-

CLA

Fig. 3--1C7000 operation code pairs with frequency > 1%.
[The number of lines connecting two operation codes is approximately
the transition frequency in percent; the area of each operation code is
proportional to its total frequency.]

MEMORY
64Kx36 bits

2 psec

CPU IOP
(like 7094)

interprocessor
input/output processor

microprogram -----------.-
control poth

microprogram

I/O channels
0 I 1 I 2
I I I

Fig. 4--1C7000 configuration

-9-

