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ABSTRACT 

Every resonant dielectric absorber, near enough to one of its resonances 

to be considered composed of two-level atoms, is characterized by a certxin 

time, which we denote 7a and call the lkooperation time!‘. The effects 

arising from this cooperation time have been studied very little and only quaJi-- 

tatively for the most part. R.esults of a theoretical study with R. A. Marth of 

resonant absorbers which are interac%ing with optical pulses shorter than Ta 

will be described, 
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It has been known for some time that tile interaction of spins or two-level 

atoms with a classical radiation field can depend in an interesting way on the 

existence of a certain. coherence time pf a,, defined by 1,2 

Here &’ and w are the density and transition frequency of the atom-s or spins, 

and hi /2 is the dipole matrix element of the transition. Following Arecchi 

and Courtens, ’ I will call 7 a the %ooperation time” for the system of atoms, 

For my purposes here, the significance of 7a I’s that it establishes a 

three-part time scale for the interaction of atoms and pulses of radiation. 

Let’s see how that happens. Clearly a pulse might be either longer or shorter 

than 7a itself, But the mere coexistence of a lot of atomic dipoles, necessary 

for ~a, to be denned, necessarily also implies dipole-dipole forces which will 

act to interrupt dipole-pulse coherence. The associated incoherent interrup- 

tion time T is easily shown to be related to TV: 
. 

2 T =OTa . (2) 

Thus there are three pulse length regimes to consider: Pulses longer than both 

TaandT , pulses shorter than both, and pulses with intermediate lengths. 

It is easy to show’ that pulses of the sort encountered in self-induced 

transparency3 must be of the intermediate variety. That is, 

2 
W7a ’ Tsit’ T;t (3) 

must be satisfied by s.i. t. pulse lengths rSit. 

Now we all understand that unless some Maxwell demon can be recruited 

to organize the chaotic dipole-dipole interactions, all coherent pulses, not - 
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2 just those of the s. i. t. type, will have to be shorter than ~7.. It is the right- -- 

hand inequality in (3) that interests me here. Let me begin by writing a more 

extended chain of times: 

2 -1 
or a ’ rsit > Ta > Tscl > W , (4) 

where 7 scl is the length of a hypothetical “subcooperation-limit” pulse. The 

last two inequalities make it clear that I imagine such subcooperation-limit 

pulses to be shorter than the cooperation time T., but also long enough to 

contain a number of cycles of the carrier, 

In fact, in order to sustain my two-level atom-assumption, I must require 

the s.c.1. pulses to satisfy 

In other words, I imagine subcooperation-limit pulses which are nevertheless 

slowly-varying pulses. 

The first point to settle is the size of the domain left open for s. c. 1. pulses. 

In order for an s. c. 1. pulse to be slowly varying, containing at least hundreds 

of cycles of the carrier, it is necessary that ~~~15 0.1 psec. The remaining 

question is the size of TV. As it turns out, 2,4 for many common resonant 

optical absorbers, (Ruby and alkali metal vapors, for example), 7 awO.lnsec. 

Thus one finds a three-order-of-magnitude range of pulse lengths available 

for slowly-varying subcooperation-limit pulses: 

0.1 nSeC > 7 scl > 0.1 w-c , (6) 

a range comparable to that available for optical self-induced transparency 

pulses: 

0.1~sec>7Sit>0.1nsec . 
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Bob Rlarth and I have taken the point of view that it should be interesting, 

and perhaps important, to understand these subcooperation-limit pulses. 

They are obviously within the ballparkof current experimental capability. We 

have approached a study of s. c. 1. pulses with the idea of seeing in what ways 

they may be the same as, or different from, the familiar longer s. i. t. pulses 

which have been studied in great detail lately by Gibbs and Slusher. 5 

Let me borrow some results from Bob’s thesis research4 to show some 

of the a.nswers he’s found to the questions we’ve raised. Let me mention first 

two temporary but important assumptions made. Since ~~~1 < ~~ by definition, 

and since T; - T a in many systems of interest, he assumes all Meresting 

pulse lengths 7 are enough shorter “&an T$ to make inhomogeneous broadening 

superfluous for steady-state propagation. Furthermore, for simplicity here, 

we assume that the pulse carrier frequency and the common atomic resonance 

frequency are identical. (This latter assumption by itself is removed in Ref. 4. 

As I’ll mention below, the first assumption can also be removed.) 

The important experimental quantities associated with steady-state pulses 

can be identified as follows. The electric field strength is written: 

i??i(t, z) = 6 (t-z/V) Re (G+ ij$ ei’(ty ‘) > , (8) 

where & is the real steady-state amplitude, and the phase + is made up of 

carrier and pulse contributions: 

a(t,z) = wt - Kz + @(t-z/V) . (9) 

Because of the strong field-atom interaction, the pulse velocity V may be quite 

different from c, and the wave vector K may differ from W/C. Note that the 

instantaneous frequency ddi/dt is allowed to differ from W; that is, 4 may be a 

function of time, leading to the possibility of chirping. 

. 
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In Figs* 1 and 2 (taken from Ref. 4) are shown W and 4 as a mnzction of 

pulse length r for four different optically resonant absorbers. The velocity 

curve is rel.a.tively unesciting, since when 7 CT - 10 -10 
a set one sees that 

v-c. This is an important result, however, in two respects. First, it is 

obviously quite different from the very slow velocities associated with s. i. t. 

Second, it ensures that our neglect of back-scattering is an excell.ent appro>5- 

mation. 6 It also means that the pulse is not sharing large fractions of its 

energy with the atoms. 

The chirping curve is obviously something new. We see that all pulses, I_ 

not just s. c. 1. pulses, are chirped. In fact, one can easily find from Ma.rthrs 

results 4 a very simple formula for the chirp at pulse center: 

3/2wr 2 , 7 CT a 
. 
% - -3/&c?; , 7 a <7 <cd?- 2. 2 (10) 

-3/4r , 7 > 2 ma 

There are no previous quantitative results on chirping in absorbers. As 

Slusher and Gibbs point out, 5 even estimates of the importance of chirping 

(especially for s. c. 1. pulses) have been difficult to make. 

Of course the results for 7 > ~a (i. e. , for non-s. c. 1. pulses) given in (10) 

and Figs. 1,2 are to be ignoredbecause inhomogeneous broadening is quite im- 

portant for such pulses. However, the s. c. 1.. regime’s expressioncanbetaken 

seriously, and it imparts new information. In the first place, it says that 

rjo7 << 1, since WT >> 1. That is, the chirp definitely can never be large 

enough to affect the bandwidth of the pulse. On the other hand, the chirp is 

certainly measureable interferometrically, at least in principle. The 

accumulated phase shift over a one-foot propagation length is about 7r/2 for a 

1 psec pulse. Y 
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Of course, when chirping is present ibere is no area theorem avajl.able 

to guide the area. of the steady-state pulses. In Fig. 3, also taken from Ref. 4, 

one can see how little the relation between l/7 and the maximum of the enve- 

lope is changed by chirping. 

Now, having shown some of the results, I must sketch the theory. Be- 

cause the s. c. 1. pulses are very slowly varying the two-level model is a good 

one for our atoms. Thus the optical Bloch equations suffice: 

du/dt = $v (19 

dv/dt L- -&I -I- KC!?’ w (12) 

dw/dt = -K&L? v (13) 

Notice that chirping has been allowed for ex@icitly, but not detuning, and that 

incoherent relaxation processes have been ignored as unimportant (for pulses 

sufficient1.y short compared to ~7 2 a = T ). In the familiar way, Bloch’s equa- 

tions must be made compatible with iSlax~~Al*s equations, but we’ll ignore that 

temporarily. 

The theory begins by letting the Bloch equations say what the field must 

be, as follows: First, we recognize that KC!? /W must be very small for slowly 

varying pulses. bet us denote this ratio of Rabi frequency to carrier frequency 

by p. Then we assert that 

w= 5 wnlp2rn , 
m=O (15) 

There is some support for each assertion, but we won’t belabor that point 

here. 
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The point is that Eqs. (11) - (15) can be combined. to yield (to lowest 

interesting order): 

pcy;, z) = p. (16) 

as well as 

w. = -1 

1 WL = ;z (UT) 2 

1 
“2 = 6 w-1 

2-2 
C PO - (w/2)*j . 

(17) 

It is now the task of the Maxwell. equations to pin down the various pulse 

parameters, such as maximum amplitude po9 velocity V, chirp coefficients 

X0’ Xl’ -**9 etc. As I impli.ed at the beginning, Maxwell’s equations are up 

to the task, and among the results are those shown graphically in Figs. 1 - 3. 

At this point let me recall my earlier remark that it is possible to - 

accommodate inhomogeneous broadening into the power series scheme of 

Eqs. (14) and (15). It”s amusing that this is the case, because I believe it’s 

the first time that inhomogeneous broadening and chirping have coexisted 

self-consistently within a steady-state pulse theory for either amplifiers or 

absorbers. 

Although the inhomogeneous broadening results will form the core of 

another paper, 7 let me at least give here the results corresponding to Eqs. (17) 

to show how naturally a detuning frequency y enters into the theory: 

(18) 
-2 

w2(?1) = g (UT) 
2 PO - wm2 -t ; tYT)(X p) 

[ 1+ (VI21 [9+ (r7)21 
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The wO(-y) and wl(y) expressions are identical to l-hose derived in the theory 

of self-induced transparency. 3 Furthermore a 2n unchirped pulse has p0=2/wr 

and x l=O, leading to w,(y) = 0, again in agreement with well known s. i. t. 

results. 3 

A few concluding remarks are in order. I’ve sketched a theory of pulses 

shorter than 7a. Several results can be emphasized: (1) Slowly-varying 

steady-state pulses shorter than the cooperation limit are predicted to exist; 

(2) s.c.1. pulses travel at velocities on the order of c; (3) all S.C. 1. pulses 

are chirped; (4) the chirp can never be large enough to contribute to the pulse 

bandwidth, but may be detectable interferometrically; and (5) inhomogeneous 

broadening can be added to the theory relatively easily. 

Finally, a remark about the theory itse1.f: Because the presence of chirping 

demolishes the s. i. t. area theorem, 3 the usual identity of pulse area with 

dipole turning angle‘ is invalid. The usual theories of steady-state pulses, 3 

based upon exploitations of this identity, are not very helpful guides to a 

chirped-pulse theory. We have used a new approach, embodied in the expan- 

sions (14) and (15), w&ich is closer to perturbation theory in spirit, 
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LIST OF FIGTalE 

1. A plot of the velocity ratio, V/c, versus the pulse length, 7 I for different 

media. The curves correspcnd, left to right respectively, to Na vapor, 

Ruby, Rb vapor, and NH2D. 

2. A plot of the chirp at pulse center I $. I, versus the pulse length, 3-, for 

different media. The curves correspond, left to right respectively, to 

Na vapor, Ruby, Rb vapor, and NH2D. The solid portions of the curves 

indicate positive values of $o while the dashed portions correspond to 

negative values. 

3. A plot of the maximum electric field envelope, gillw, versus the pulse ‘ L 

length, 7, for several values of a = 7-a’. The curves use 

w = 2.35 x 10 15 -1 -18 set , p=4.35XlO esu-cm and y = 0. 
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