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vergences are studied in the gluon model. Relations are derived which make 

it possible (in principle) to distinguish the vector from the (pseudo) scalar gluon 

model. In the vector gluon model these relations provide an experimental de- 

termination of the bare quark masses. The additional assumption that the 

residues of any a! = 0 fixed poles in current scattering amplitudes are poly- 
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and vn scattering (which are related to deep inelastic data), the sigma term in 

pion-nucleon scattering, baryon mass differences and the bare quark masses. 
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1. Introduction 

In this paper we study properties of light-cone commutators involving 

current divergences in the vector-gluon model. All our considerations are 

formal; that is to say they are untrue in perturbation theory. It is frequently 

argued that the scaling observed in the &AC-MIT inelastic electron scattering 

experiments implies that formal field theory might be relevant to the real 

world. This argument is not totally compelling (especially since the data do 

not exclude log Q2 terms) but at least we are in good company in pursuing the 

formal approach. 

Despite the dubious validity of formal field theory, we find it interesting 

that relations can be obtained which probe the structure of the Hamiltonian. 

Briefly, we shall derive relations which (although hard to test experimentally) 

make it possible in principle to distinguish between vector and (pseudo) scalar 

gluon models and determine the bare quark masses in the vector gluon model. 

With the further assumption that the residues of any a! = 0 fixed poles in current 

amplitudes are polynomials in Q2, we are able to relate fixed pole residues in 

yp and 3/n scattering, the sigma terms in meson nucleon scattering, deep 

inelastic data, baryon mass differences and the bare quark masses. Existing 

data already allow us to make a preliminary numerical investigation of the bare 

quark masses 0 

Since this paper is rather discursive we have summarized our results 

explicitly in the last section, to which the reader may wish to turn first. In the 

rest of this section we shall review some previous work on this subject and 

explain the plan of our exposition. 

In one of their first papers on the subject, Brandt and Preparata’ pointed 

out that in the vector-gluon model the most singular terms in operator product 
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expansions on the light cone would be chirally symmetric. This implies that2 

Lim 
v,q2 - 03 

vw4,5 = 0 , 

x = 3 fixed 
-q2 

where v and q2 are defined in the usual way (see Section II) and W4 and W5 are 

structure functions, defined in Eq. (2.5) below3, which can (in principle) be 

measured in neutrino reactions. Subsequently, several authors 4-7 have dis- 

cussed the scaling properties of W4 and W5, which probe the nature of chiral 

symmetry breaking. 

Mandula et al. showed4 that the dimension (d) of the operator in the part of 

the Hamiltonian which breaks chiral symmetry can be bounded in terms of the 

scaling properties of W4 5. However, Ng and Vinciarelli have recently pointed 
f 

out7 that the hope that these scaling properties might therefore be used to mea- 

sure d is thwarted in the vector-gluon model in which the bound is not saturated 

(the bound is clearly not saturated in the free quark model since it allows 

V 3/2 W4 
, 
5 to scale; but free field theory cannot yield fractional powers of v in the 

scaling laws). 

Ng and Vinciarelli argue that v2W4 5 scale and derive a sum rule for the 
f 

sigma term in pion nucleon scattering (0,) in terms of the scaling functions. We 

observe that their sum rule (like the a-term sum rule in Ref. 6) diverges linearly 

if conventional Regge behavior is assumed. This led us to reexamine the deri- 

va tion. 

In Section II we present a light-cone analysis of commutators involving 

divergences which determine W4 5. We find that lim 
, 

. v2W5 = 0 (which implies 
bJ 
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that the u-term sum rules of Refs. 6 and 7 are the same). We also find (among 

other things) that lim .v2W4 and F2 (= lim 
b bJ 

. vW2) are related in the vector-gluon 

model in such a way that this a-term sum rule diverges unless 

1 

s 
F2 Wdx 

0 X2 

exists. This seems unlikely even without appeal to Regge theory. We find that 

the divergence of the sum rule vitiates the derivation. 

In Section III we turn to a momentum space calculation which takes account 

of asymptotic behavior from the start and cannot yield divergent sum rules. We 

find that cm is related to the asymptotic behavior of a subtraction constant. In 

Section IV we show that the latter quantity can be calculated if we accept the as- 

sertion that the residues of any a! = 0 fixed poles in current nucleon scattering 

amplitudes are polynomials in Q2. Our results can then be combined to relate a 

variety of diverse quantities, as stated above. 

The reader should be forewarned that the experimental measurement of W4 5 

to the accuracy required to test the results in Section II is almost impossible. 8 ’ 

However, the very existence of results such as Eq. (2.14) (which can in principle 

serve to determine the interaction) is interesting. It will be observed that W4 5 , 
have been eliminated from our results in Section IV which relate more easily 

measurable quantities. 

II. Light-Cone Calculations 

In this section we shall derive scaling laws for the structure functions W4 

and WS in the vector-gluon model and investigate the origins of the possibly di- 

vergent sum rule for o?r referred to in the introduction. We use the quark model 
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light-cone algebra developed by Fritzsch and Gell-Mann’ as extended to the vector- 

gluon model by Gross and Treiman. 10 
Identical results may be obtained by studying 

almost equal time commutators in the BJL limit. I1 

By means of formal manipulations, based on the canonical equations of 

motion, Gross and Treiman found that to leading order on the light cone, the vector 

gluon can be treated as a massless, external, C-number field. That is, to leading 

order on the light cone the equations of motion: 

(iZr -g&y) -N+(Y) = 0 

( CJ + P~)B,(Y) = g&y) Q’(Y) 
and 

(2.1) 

may be replaced by 

cia -g&Y)) G (Y) = 0 

and 

with 

q BJY) = 0 

(~-Y),(x-Y)~~~(~),B~(x)] = 0 , for (x-Y)~ = 0 . 

Consequently, the free-field results of Fritzsch and Gell-Mann are modified only 

by the inclusion of a phase in the bilocal operator which modulates the leading free- 

field, light-cone singularity. 

For our purposes it will be necessary to know the second most singular term 

in the light-cone expansion of the commutator of a current with a divergence. The 

particularly simple mechanism of chiral symmetry breaking in the vector-gluon 

model allows us to calculate this term in the same manner that Gross and Treiman 

computed the leading term. We find that the first corrections to the results of 

Gross and Treiman are given by the quark mass term in Fq. (2.1): the gluon may 
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still be regarded as amassless, external, C-number field and modifies the free- 

field results only by the phase mentioned above. 12 The effective equations of 

motions are: 

(iti - g&Y) -mM(y) = 0 
(2.2) 

with 

(x-~)~(x-y)~ [$1(x), BY (y)] = Ofor (x-Y)~ = 0 . 

The quark field anti-commutator, correct to leading and next to leadingorder on 

the light cone is therefore given by: 
X 

BP(() d,t’ 
(- d + im)D (x-y). (2.3) 

where D(x-y) = z ’ S((x -Y)~,!E (x0 -yo) and the integral is taken along a light- 

like path from y to x-. 

This result is derived as follows. Formal manipulations involving the 

equations of motion can introduce only positive integral powers of the terms 

m@(y), p2 Bv (y) and g$(y)yv G(y) into the light-cone commutator of two currents. 

If the leading light-cone singularity results in a scaling law for some structure 

function, e. g. : 

W+--- ‘, f b) x = Q2/2v 
V 

(where v and Q2 are defined below), then a term involving the quark mass can 

scale at most like g(x) while terms involving p2 can scale at most like 

P2 
V 

z++ 

n+l h(x). A similar argument may be given for$(y)yVIl,(y). A more careful 
V 
(but essentially identical) derivation of these results follows from “twist” argu- 

ments similar to those of Gross and Treiman or from power counting in the BJL 

expansion. 11 
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To proceed, we define the structure functions for neutrino or antineutrino 

scattering as follows: 

iq “d4y<p I [ Jp*(y), Jv’(o)l I P> 

s - (gpv - y) wy$?, v) 

+ --$ (Pp - -$ qp)(Pv - -$ qJ.wg/c (q2, v) 

(2.4) 

(2.5) 

_ i?fiEE pQqP wi$yq2, v) 
2M2 

+ ziis W,v’V(q2, v) + 
p qv + pvq 

M2 2M2 
p w,v’qq2, v) 

where v = P * q, q2 -= - Q2 < 0, the matrix element is understood to be averaged 

over the proton’s spin, 13 and we have assumed T-conservation and set W6 = 0. 

Throughout this section, we consider only the strangeness-conserving weak current. 

J+,(Y) E T(Y)Y$l - Y5) DENY). 

Generalization to the AS = 1 current is straightforward and the results are 

stated in Section V. 

Taking the double divergence of Eq.(2.4)and using 

aclJ*(y) = - 2 im 
P P T(Y)Y 5 A*+(Y) , 

where mp is the mass of the proton quark (assumed equal to the mass of the 

neutron quark), we find: 

m2 
=P 

7r / 
d4y eiq a Y 

(2.9 6) 

S(O)Y, P W)l I p> 0 
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In the Bjorken limit (v , Q2 5 - q2 - ~0 ; x s Q2/2v finite) only the leading 

light-cone singularity of this commutator is required: 

(2.7) = @D(Y) < P ~~~Y)Y~~*A+I(Y, O)+t 0) 

- 7 ( ) ?p+h*I(o, Y) q(Y) IP> 

+ terms less singular on the light cone 

where I(y,O) G e 
-ig;‘” BP (0 dt’* 

0 
o 

We now define#(y 0 p) to be the light-cone 

restriction of the matrix element of Eq. (2.7): 

(2.8) 

q Pp F*(Y 0 P) + Y,G*(Y 0 P) 

Combining Eqs. 2,6-2.8 and using the Fourier transform representation of 

@D(y) = -!L /d4k kp e 
w3 

-ik ’ yS(k2) E (k 0 ) we obtain. . 

- Lim 
bj 

qlqv W’/’ =m2 (F*(x) 
PV P 

- G+(-x)) 

where l?*(x) is the Fourier transform of F*(y 0 p): 

F*(y o p) = 
1 

eixY ’ p G*(x) dx. 

The bilocal operator of Eq.(2.Eq is identical to that which occurs in the light- 

cone analysis of the structure function W T/V 
2 (q2, v ), specifically: 

x i*(x) ( - &‘(-x)) = F2 ‘i;/V(x) 
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v/v Expressing the double divergence in terms of W4 V/V and W5 , we obtain finally: 

F;“(x) 

(2.9) 

We shall find that v 2W5 actually vanishes in the B jorken limit so that Eq. (2.9) 

relates v2W4 to the more easily measured structure function F2(~)0 Proportion- 

ality between v2W4(q 2 , v) and -j2F2b22v v) in the Bjorken limit obtains only 

in the vector gluon model and represents, in principle, a test of the interaction. 

If proportionality is observed the constant measures the bare quark mass. 

We now turn to the single divergence of W VU. 
PV * 

qPwv/” = El? 
pv at / 

d4yeiq a ’ <PI [$(y)Y,h*i(~), T(0)Yv(l - Y5) 

x AYjq0)1 IP> (2.10) 

The leading contribution to this commutator is computed in the Appendix. The 

result is: 

<PI[~(Y)Y5hf+(Y)s Twy,(~ - Y5)~+w)1 lP> 

(2.11) 

= 
au i 

D(y)<P@(y)hrth+ I(Y,o)#(O) +F(O)A+hfI(%Y)+(Y)lP> 

+ terms less singular on the light cone. 

It is here that it was necessary to keep the term proportional to the quark mass 

in Eq. (2.3). The reason lies in the spin structure of the bilocal operator which 

multiplies the leading singularity: the term proportional to $D(y) in Eq. (2.3) 

contributes a term to Eq. (2.11) of the form 
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This twist three bilocal is normalized to some mass. The contribution of the 

mass term in Eq. (2.3) is of the form 

mDty)@l?ty) y, ~*~+UYJW(O~IP> 

Although less singular on the light cone,this term contains a twist two bilocal 

normalized to Pv, and is equally important in the Bjorken limit. In the Appendix 

the two terms are combined to yield Eq. (2.11) 0 _ 

Combining Eq. (2.10-2.11) and performing the y-integral we obtain: 

p Lim q W v/v = -“pqv 

W PV 2v (i*(x) + iiT( (2.12) 

where 

WY 0 P) = (2.13) 

h 
and H(x) is its Fourier transform. 14 That Eq, (2.12) should containno terrnpropor- 

tional to Pv may be seen by partially integrating 8 v in Eq. (2.11) back onto 
. 

elq ’ y. Since 

92qvw4 (WV + q2Pv) 
M2 + 2M2 w5 

and since Eq. (2.12) would contain any term of order Pv/v were it present, we 

conclude that 

Lim v2wvv (4 2 9 bj 5 v) =o 

2 
Lim “-;i-W4 v/v 2 (qrvFF4 F/V 6) 32 1 = 

bj M M2 4x (H*(x) + H’(-x)) , 

while Eq. (2.9) reduces to 

(2.13a) 

(2.13b) 

(2,14) 
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The import of this result was already noted above following Eq. (2.9) (the l/x3 

factor is to be expected if both F4 and F2 are Regge behaved) 0 

At this point it is useful to compare our results with those of Ref. 4 and 7. 

According to Mandula et al., v 3/2 W4 and v3’2 W5 may scale in the Bjorken limit 

in the gluon model. This result is based on the assumption that the bilocal 

operator which occurs in the expansion of the current-divergence commutator 

will in general contain a piece with twist as low as is allowed by the observed 

scaling of W2, i.e., twist 2. In the vector gluon model such a piece is absent: 

the bilocal operator T(y)$(O) has twist 3 from which NIg and Vinciarelli’s result 

that v2W4 scales follows . The further result that v2W5 -, 9 rests on the careful 

calculation of seemingly lower order terms in the light-cone expansion (cf. the 

Appendix) D 

Returning to Eq’s. (2.13) and (2.14) we find the relation: 

G*(x) = mp F* (X)/X 

If the Fourier transform of F*(x)/x exists, we obtain 

1 

<Pl~(y))hAh I(y, 0)$(O) lP> = 
s 

&e*YoP 
m F*(x) 

X 
-1 

(2.15) 

oraty*p=O: 

4M2 
1 

<PI~(O)A*A+~(O)IP> = - 
J 

V/V 

mp 0 
x&F4 W 

1 
= 

mP x2 s 
dx F;‘“(x) 

(2.16) 

(2.17a) 

(2.17b) 

0 
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EqO (2.17a) leads immediately to the a-term sum rule derived by Lee and 

Mandula’ and Ng and Vinciare11i7 (with v 2W5 - 0 in the case of Ref. 7). 

Unless F2(x) -LX 
l-t- E as x--c 0, Eq’s. (2.17) diverge and the inversion of 

the Fourier transform leading from Eq. (2.15) to Eq. (2.16) is not allowed. 

Since we expect F2(x) - const as x - 0 if Regge behavior obtains, it is likely 

that Eqs. (2.17) are incorrect. It is nevertheless possible to extract a meaning- 

ful result from Eq. (2.15): xH*(x) is the Fourier transform of & R*(YoP) 

so that Eq. (2,15) may be inverted to yield 

1 - 
d 

GOP 
<PIV(y)A*h+ I&,0) Q(o) IP>y2,0=i 

I -!! 
dxeixYoP IS*(x) (20 18) 

-1 

In contrast to Eq. (2.16)) the integral in the above equation does converge when 

F2(x) and F4(x) have Regge behavior. We cannot integrate this relation with 

respect to yap and interchange the yap and x integrals because the result, Eq. 

(2.16), is divergent. 

There is another, particularly simple, way to derive Eq. (2.18). Consider 

the definition of F*(y*p), from Eq. (2.8): 

F*(YQP) = 
yP<PI~(Y)yph*h+ I(Y,ON(O)IP> 

YOP y2=o 

Using the equation of motion for e(y) (cf. Eq. 2.2): 

together with the identity ypyh = gph - io”A and the translational invariance of 
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the matrix element we find 

$<PlscY)?pA*A’ I(Y,O)zcI(O)lP> 

Y*P y2=o 

(2.19) 
1 d =- P 

im p dYOP < PIT(y)A*h+ I(y,O)T(O) lP> I y2=o 

from which Eq. (2.18) follows directly. 

In conclusion, we have found that the consistency of the single and double 

F/V divergence calculations of F4 (x) leads us to the identity Eq. (2.19) between the 

matrix elements of bilocal operators, Formal integration of Eq. (2,19) yields: 

1 

<P@(y)A*A+ I(y,o)zcI(o)lP> = 
/ 

dxeixy’P FYv(x) + c (2 20) 

-1 x2 l 

In the absence of all Regge contributions to F2(x) with c1! > 0, C = 0 and the sum 

rules of Eq. (2.17) are obtained. When Q! > 0 terms are present C cannot be 

zero (it is in fact infinite), and vitiates any attempt to derive a sum rule for 

<P IT(O) A*A+$(O) I P> in this approach. In order to proceed we turn to the 

BJL expansion where subtraction constants such as C may be handled in a more 

transparent manner. 

III. Momentum Space Calculation 

In the previous section we found that, unless F2(x) has quite unexpected be- 

havior as x + 0, we could not derive an expression for oT using coordinate space 

methods. We now turn to a momentum space calculation which employs the 

Bjorken-Johnson-Low (BJL) limit, in which prejudices about asymptotic behavior 

are incorporated from the start and divergent expressions are therefore never 

encountered. 
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We define: 

T = i 
IJV 

<Pl[J;l(x), J;(O)] IP> 

(301) 

+ seagulls, 

where the “seagulls” are polynomials in q which may possibly be present. T 
PV 

can be expanded in terms of structure functions Ti in analogy with Eq. (2.5). 

The Ti satisfy: 

ImTi=2nWi (3-V 

Assuming conventional Regge behavior, W4- v and W5- const. as v -) 00 

with q2 fixed, we can therefore write the following dispersion relations: co 
T4(q2,v ) = T4(q2, 0) + 2v J W-4 (42, v ’ )dv’ J 

Co 
+ 2v 2 W;(q2,v ’ )dv’ 

g2- v2 2 v’(v’ -v2) 
0 0 03 co 

T5(q2, v ) = 2v J W;(q2,v’)dv’ 

/? v2 
+2 

/ 

v’ W; (q2, v ’ )dv’ 

v’2- v2 
(3.3) 

0 0 

where : 
i 

w4,5 
v 

= Wv4,5 f w4,5’ 

We consider 

q2Pv + vqv 
2M2 T5 

= - 
s 

d4x eiqa x 0 (x0) < P I 

+ seagulls 

1 lP> (3.4) 
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(where the “equal time” contribution from ac16 (x0) has been absorbed in the 

seagulls) 0 We now let q, -L ic= in Eq. (3.4) and identify the coefficient of l/q0 

in the retarded commutator with the equal time commutator, according to the 

BJL theorem. 15 Taking the time component and using Eq. (3.3) and the scaling 

laws derived above we obtain: 

lim 
q4 F4ts2, 0 1 

q2- -03 M2 

s2s$,( q2, 0) = lim 
M2 

- q. x (3.5) 

90 
- ia 

-s 

-iY$ y 
= -1 d;e <PI[@J--(jg 0), J;(o)] lP> o 

The right hand side of this equation is proportional to the g term. Explicitly: 

fJ 11 is defined by: 

1 o- IT = 4iM -J- 
<PI[a’*J;(y, 0), J;(o)] lP> dz. (3.6) 

This is the conventional a-term (” 10 - 100 Mev ?); the factor (2 M )-I occurs 

because our states are normalized covariantly. In the vector-gluon model: 

o- 7r 
= 2 <P IT(O) llo q(O) lP> 

( > 
(307) 

Since the seagull is a polynomial in q EqO (3.5) relates (TV to the piece of 

the subtraction constant T4(q2, 0 ) which behaves as l/q4 as q2 --, -03 which 

appears theoretically (and experimentally) intractable. However, we shall see 

in the next section that (given an additional assumption) it can be calculated. 
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We note that using the BJL limit to all orders (as in Ref. 11) we can 

rederive all the results of Section II. l6 (We have checked this explicitly.) 

IV, Fixed Pole Residues, the a-Term and Baryon Mass Differences 

Several authors have argued 17,18 that the residues of any fixed poles with 

01 = 0 in kinematic singularity free current-nucleon scattering amplitudes are 

polynomials in q2; the arguments advanced are most compelling in the context of 

field theories 18 (constituent models) such as those considered here (we adopt the 

language of the Regge model although our specific assumption and results may be 

valid more generally). In this section, we shall pursue the consequences of as- 

suming polynomial residues. We note that this assumption can be tested since 

it leads to the Cornwall Corrigan Norton, Rajaraman Rajesakaran 19 sum rule: 

where : 

CL 1+ 1 
27r2cJ! 

j ; ,,W dv 
0 

03 

CL - 1 
2X2@ $ $$4 dv 

0 

g2(x) = F2(x) - F;(x) 

(4.2) 

G(v) = u(v) - aR(v) 
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and F;(x) (~~04) are Regge fits to the small x (large v) behavior of F2(x) (CT(V)) in- 

eluding all contributions (cuts and poles) with a! > 0. 20 

Phenomenological analyses 21,22 suggest that C p FZ 1. The sum rule of Eq. (4.1) 

therefore predicts behavior of the type illustrated inFig. 1. This striking behavior 

is not ruled out by existing data. If it fails, the ensuing considerations are invalid. 

We consider a function e (q”, v) which fits the asymptotic behavior of W4(q2, v) 

R 2 and includes all Regge contributions with o! > 0. An analytic function T4 q , v whose ( ) 

discontinuity equals 27r 4f can be constructed from a dispersion relation. Then the 

residue of any 01= 0 fixed pole in T4 is defined as follows: 

C4(q2) = Lim v ---)03 

However, the assumption that the a! = 0 fixed poles in the kinematic singularity free 

amplitudes, qi (defined in Eq. (2.5) of Ref. 8), are polynomials, together with the 

V2 fact that - M4 T4 (q2, v ) scales and v 2 T,(q2, v ) vanishes in the Bjorken limit, are 

sufficient to prove C4(q2) = 0. 23 Combining the dispersion relations for T4 (Eq. 

(3.3)) and Tz (and noting that with a Regge expansion in v a! subtraction terms at 

v = 0 in Tt vanish) and using Eq. (4.3)) we obtain: 

C4(q2) = T4 (q2, 0) - 2 I 
%;(q2,v1)dv1 

vI =o 
when 

w+ 
W4 = wi-wi” . 

Comparing Eqs. (4.4) and (3.5), we find the (T term sum rule: 

where E4 is defined in the same way as F2 (Eq. (4.2)). 

(4-J) 
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It is satisfying to observe that if F4 is well enough behaved so that F4= s4, 

Eq. (4.4) becomes the v term sum rule of Refs. 6 and 7 (cf. Eqs.(2,17)and(3.7)). - 

If this is not the case, we see that the assumption of a polynomial residue has 

provided us with a prescription for calculating the infinite constant in Eq. (2.20). 

(The probably divergent result of Eq. (2.17b) can be derived immediately in the 

24 parton model ; the subtracted form of this equation is probably implicit in the 

parton calculations of Brodsky, Close and Gunion ” 18) - 

Combining Eqs. (2.14), (3.6), (3.7) and (4.4) and generalizing to all SU(3) 

currents we obtain the following equations for the three independent scalar 

densities: 

<P@(O) 1 
i i 

lo q(O)lP> = m -vp+vn dx 
P f F2 2 

<PIT(O) 1 \ -loI +(O)lP> = 6mp FlpBen dx 
;;” 

(4.5) 

<P@(O) 
( 1 
001 $(O)lP> = mA 

f( 
g%ep+en -5 

2 
2 F2VP+Vn dx D 

) X2 

These equations are exact in this model. 

We can now make further progress by noting that q(0)hi$(O) is in the same 

octet as the operator @ (0) A8 q(O) which is responsible for baryon mass differences 

in this model. Hence we can give an approximate expression for <P IT (0) hi $(O) I P> 

(as a ratio of baryon mass differences to quark mass differences) which would 

become exact in the SU(3) symmetry limit,, To next order, the error in using 

this expression is the same as the error in neglecting second order corrections 

to the Gell-Mann Okubo mass formula-i. e. , empirically it is expected to be 

7 10%. It would seem at first sight that in order to be strictly mathematically 

consistent, we should also assume exact SU(3) symmetry on the right-hand side 

of Eq. (4.5) and set m = mh. 
P 

However, we shall see that if we persist with 
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mp # mh, existing data suggest 
mh-m 

’ 
mP 

- 1, which indicates that the breaking 

of SU(3) x SU(3) and of SU(3) are comparable. Furthermore, our results suggest 

that SU(3) x SU(3) is spontaneously broken in which case the error in our approxi- 

mation for < P IT (0)A i$ (0) I P > is of order mA - “p and is not to be compared 

with mA-mp p”Ip 
. 

“P 
Therefore we proceed with mA # mp and note that if (as we as- 

sume) the matrix elements <P[p( 0) A$( O)IP> are approximately SU( 3) symmetric, 

then the fixed pole residues-F2 integrals-are not (according to the results of 

phenomenological analysis of existing data). 

Expressing the left-hand sides of Eq. (4.5) in terms of baryon masses (Mi) 

and quark masses (mi), we obtain 

“N m + %k”,z -%I + 3(MA - Mz)] 
“A P 12Bm 

P 

m2 
u =+ / 

vp+vn dx 
7r P F2 x2 

(4.6a) 

(4.6b) 

18m2 
“NA 

2% ( “p + 5mA) 

-%) -(M* -“2, 1 
Z(K. -Mp) +“t”A -McI I (4.6~) 

” 

where 

B= 
J 

Fep-en dx 
2 

X2 

D= 
/ 

-ep+en dx 
F2 2’ 

If all the fixed pole residues were known experimentally, it would be possible 

to solve Eq. (4.6) for m p’ mA’ and 0.. From these results, we could obtain 

other quantities (such as k! which are of interest for low-energy theorems. 

These quantities can all be expressed in terms of the fundamental parameters 
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C (= - 42 in the SU( 2) x SU( 2) limit) and p. which, we recall, are given by 

-d(mA-m ) 
c= mh+ 2m 

P 
(4.7) 

C”i 
PO = 24x3 <p I$ (0) (qti P)IP> 

( p 2m +“h) <’ 1 11;(“)A8@(o)lP) 

1 
i 
2M--+ML, -2Mp -a) 

4t/zc = 

in this model. (Note that these expressions for p. are not specific to our model 

but are true in any model in which the part of H strong which breaks SU(3) x SU(3) 

belongs to the (3,3*) _ 9 (3*, 3) representation and in which there is no nonelectro- 

magnetic breaking of isospin symmetry. ) 

At present, estimates of the a-term and fixed pole residues (from yp and yd 

data using Eq. (4. 2))22 range as follows: 

10 MeV y oT 7 100 MeV, 

0.72 2 
/ 

p &. 
X2 

z 1.3 , 

-0.3 ? 
/ 

p dx 7 0 5 
2x2 *- 

In Figs. 2-4, we have plotted (TV and mh against mp for values of the fixed pole 

residues and cT within these ranges. In Fig. 5, we have plotted the parameter C 

(Eq. (4.7)) against (TV for the “best11 values of the fixed pole residues: Cp = 1.0 

and Cn = 0.1. Note the expected behavior (which is of course built into our 
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equation) c - - Jz , (TV + 0 as m --) 0 (SU( 2) x SU( 2) limit). 
P 

In all cases we find that the fixed pole in neutrino production (cf. Eq. (4.6b)) - 

has a substantial residue. Typically (e. g. , Cp = 1.0, Cn = 0.1, (TV = 40 MeV) 

J Fvp+vn dx 
2 

- z-5, 
X2 

which has the striking consequence that FiP+V n should. have an exaggerated form 

of the behavior illustrated in Fig. 1 for Fip- with(Area A -Area B)- 5 in this case. 

The results in Figs. 2-4 seem reasonable. In addition to determining the 

parameters of the model in terms of data on Cp , Cn, and (TV as they become avail- 

able, they may be used as a theoretical laboratory for studying various properties 

of chiral symmetry breaking. Of course, for the latter purpose it must be re- 

membered that Cp , C” and the baryon masses are implicit functions of mp and mh. 

(They would presumably be insensitive functions in models in which SU(3) x SU(3) 

is spontaneously broken and the quark masses may be treated as perturbations. ) 

Let us, for example, impose as a boundary condition the value c z - 1.25, 

derived by Gell-Mann, Oakes and Renner 25 from the observed pseudoscalar meson 

masses in the framework of approximate SU(3) x SU(3) symmetry. Unfortunately, 

the results are extremely sensitive to the exact values of c and of the fixed pole 

residues. Taking the “best” values Cp = 1.0 and Cn = 0.1 with c = -1.25 gives 

mP 
N, 45 MeV 

mh z 1,100 MeV 

CT 7-r z 4 MeV 

while with c = -1.0 we find 

“P 
NN 80 MeV 

“A z 640 MeV 

u 7r w 15 MeV . 
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In any case, as can be seen from Fig. 5, if c is at all close to - 42 , then (TV 

must be very small. (Thus we see explicitly that, at least in our model, the 

results of Cheng and Dashen 
26 and of Gell-Mann, Oakes and Renner are incompatible. ) 

Turning to an evaluation of po, we find that it is negative in the cases of interest 

ttmic@ P o - - 100 MeV). There is no fundamental problem here since the matrix 

elements which define p. (Eq. (4.7)) are understood to be connected (i.e., when we 

write <P(XIP> we understand <PIXIP> - <O\.XlO> <PIP> ), so p. is not apos- 

itive definite quantity. This result means that when the quark masses are “switched 

on” the baryon masses decrease slightly; we know of-no reason why this rather 

bizarre situation should not obtain. 

Its origin is manifest in Eq. (4.7); although the quantity (2MZ+ ME-2Mp-MA) 

in the last line is an approximation, presumably the fact that it is positive and of 

order 800 MeV is true of the exact expression which it replaces. Hence 

2.12$ 
IJo = (a +c) + 145rV (4.8) 

To see that this is, in fact, negative, consider first the SU(2) x SU(2) limit. In 

this limit p. is, in general, rather sensitive to the manner in which C --+ - 4 and 

u7r -, 0. (For example, taking C = -1.25 and (TV = 10 MeV, 1-1 o = +13 MeV, while 

for C = - 1.25 and g’fl. = 4 MeV, ho = - 66 MeV. ) However, Eqs. (4.6b) and (4.7) 

provide us with an analytic relation between u71. and C + fi , which gives near 

“P = 
0: C+ &!-mpand~n~m2 p. (Note that although the neutrino fixed pole 

residue in Eq. (4.6b) must be regarded as an implicit function of m 
P’ 

nevertheless 

it cannot become singular as m 
P 

- 0 and therefore Us vanishes at least as fast as rni. ) 

Hence the second term in (4.8) dominates and p. mP 
-0 

-- - 100 MeV. As m 
P 

increases, this dominance continues and p. remains negative. 
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V. Conclusions and Analysis 

In order for our analysis of current divergences in the gluon model to be 

valid, it is necessary (a) that the real world is described by (results abstracted 

from) “formal” field theory, (b) that the relevant field theory is the quark model. 

Therefore, our results will be irrelevant unless the well-known quark model 

sum rules derived previously (which are much more easily tested) prove to be 

correct. However, if prerequisite (a) holds but (b) fails, similar results can 

doubtless be obtained in other models. 

Our main results are: 

1. In the vector-gluon model 

V2 w4 
limbj M4 = F4W , 

a result previously sbtained by Ng and Vinciarelli, 7 and 

lim v2W =0 bj 5 ’ 

2. The following sum rule for the (r term can be obtained 697 

u T ‘2% 
/ 

F; +‘(x)xdx. 

However, it diverges linearly if Regge behavior is assumed. If it diverges, the 

derivation is invalid and we find instead 

cl4 T4 (q2, 0) 
CT = lim 7T q2*m 44 

(T4(q2, 0) is equal to T4(q2, 0) with pieces which fall less rapidly than l/q4 

subtracted. ) 

3. If 
x3 F4 (x) 

F,(x) 
= const. (independent of x), this would imply that the interaction 
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between the quarks is vector in nature. In this case 

4 x3 F4 (x) 

F2 W 
AS=0 

4x3 F4 (x) 

F2 (x) 
AS=1 

so that it is possible (in principle) to measure the bare quark masses in the 

vector-gluon model. 

4. If the residue of any fixed a! = 0 Regge pole is a polynomial in q2: 

q4 T, (s2, 0) 
u = lim 7r 

q2 -+--co 4M; 

= 2Mp 
J 

F4(x)xdx 
0 

R whereFi=F. -Fi and F R 
1 i is a Regge fit to the small x behavior of Fi including 

all contributions (poles or cuts) v@h CY > 0. (This result is also true in models 

with a scalar or pseudoscalar interaction. ) As discussed in Section IV, the 

assumption of polynomial residues can be tested experimentally. 

5. If the interaction is vector in nature and fixed poles have polynomial residues, 

results 3 and 4 can be combined to yield the exact expressions for the scalar bi- 

locals in Eq. (4.5); in addition, 

6. The octet scalar bilocals can be expressed approximately in terms of baryon 

mass differences and m - m 
A P’ 

Hence we obtain a relation between fixed pole 

residues in yp, yn, and vp+vn scattering (which can be expressed in terms of 
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deep inelastic [F2] data), baryon mass differences, (T 7r and bare quark masses 

(cf. Eq. 4.6). - The results of a preliminary analysis of these relations were dis- 

cussed in Section IV (see also Figs. 2 -5). Two important results are that 

I-LO - -100 MeV (a negative value of pug, while somewhat bizarre, is not impossible), 

and 

/ 

pvp+vn 
2 

& - 5 

X2 

which would have the rather striking implications discussed in Section IV. In ad- 

dition, we find that if c is near the SU(2) X SU(2) limit (- ~~ ) , ar must be extremely 

small (see Fig. 5). 

Independent of the particular model considered, and despite the dubious nature 

of the formal manipulations in which we have freely indulged, we think it an inter- 

esting point of principle that relations which probe the structure of the Hamiltonian 

can be devised without solving the field theory. It is very hard to measure ‘W4 5, 
> 

so results l-4 are difficult to test. However, these results illustrate the fact 

that these structure functions may contain a wealth of information; it will be worth 

trying to measure them in future generations of experiments. Once accurate meas- 

urements of 

I -,ep, en, vp+v n dx 
2 

X2 

are available, our results make it possible to calculate (TV , m 
P’ and mh (as 

noted above, it will be a nontrivial result if this yields the right order of magni- 

tude for G-~ since this seems to require a large FLp +’ n integral). 
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Appendix 

Here we calculate the leading light-cone contribution to the commutator 

of Eq. (2.9). Following the techniques of Fritzsch and Gell-Mann, but keeping 

both the leading and next to leading contributions to {e(y), v(z) 1 we obtain: 

-& <PI[3pJp+(y), J;(z)]] P> 

= - 3 2n <P 1 T(Y) y5 I(Y, z) t- 3 + imp) D(Y - z) 7,~~ A*h+dW 

- IG(zh,r,k~ + im,)D(z-Y)I(z, Y)T5A 
3* 

X +tY)lP> (Al) 

where the derivative is with respect to y and I(y, z) is defined as after Eq., (2.7). 

Naively the $ term would seem to dominate the term proportional to the quark 

mass; but as discussed in Section II this is not the case. 

Separating the contribution of the two terms we find: 

2 <PI[&$y), J+(z)] IP> = 
m aPD(y-z) 

2n <WY)I(Y, zhyvhfhT~tz)+ 

+ p (z) I@, Y) YvYp~+h*~tY) 1 p ’ 

im2 D(y - z) 
+ 2n <P IT(Y) y, I(y, z) kh+ e(z) 

- nq) I@, Y) h+A*etY) IP> w4 

yp TV contains a g and a (r 
PV PV 

piece. Using the crossing properties of the 

currents, i. e. , 

/ 
eiqo ’ <Pl[a’Jf(y), J;(O)] IP> = /eiqo YcPl[8pJ:(o), J:(y)] IP> 
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the o 
PV 

term may be shown to vanish. The first term in Eq. A2 reduces to 

m avDty-z) 
2?r <PIT(y) I(y, z) A*&(z) + 7(z) I(z, Y) h 7h 

h e(Y) 1 p > 643) 

This matrix element is normalized to some mass, M. 

The vector bilocal in the term explicitly proportional to the quark mass 

may be reduced to a derivative of the scalar bilocal using the equation of motion: 

-3 I?(y) y, I(Y, 4 e(z) 1 P’ 

= ; <P IT(y) 
(- Gfy;r W ) - 

Y, I(Y, z) w II?’ 

+ f <W(Y)Y,I(Y, z) 
(c$ -!q”) 

e(z) IP> 

After some algebra, using especially the translational invariance of forward 

matrix elements, we obtain 

-ia 
<Plli,(Y)Yv qy, z)+(z)lP> = -l 

“P 
<PI?(Y)I(Y, z) Hz) IP> b44) 

where the derivative is with respect to y. Combining Eqs. A2-A4 we obtain the 

result: 

& <Pl[#J;(y), J;(z)] /P> = v 
i 

WY-Z) <P@(Y) ~(y, z)h*h+- II, (z) + 

+?(z)I(z, y)AfA*$(y)IP> 

quoted in Eq. (2. 11). 
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1. 

Figure Captions 

Illustration of the behavior of F;” implied by the assumption that fixed 

pole residues are polynomials in Q2 (w = l/x). As discussed in the text 

(cf. Eq. (4.1), this assumption yields: Area A - Area B = 1. 

2. UT and mh as functions of mp with (cf. Eq. 4.1) Cp = 0.8 and different 

values of Cn, as marked on the corresponding curves. 

3. As for Fig,, 2 except Cp = 1.0 here. 

4. As for Fig. 2 except Cp = 1.2 here. 

5. c (defined in Eq. 4.7) as a function of u n assuming C P=l.Oand 

cn = 0.1. 
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