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ABSTRACT 

Motivated by work of Jaynes and co-workers, the very old 

problem of atomic level shifts and level widths has begun to be 

re-examined recently. We have re-considered the question of 

level shifts and widths in spontaneous emission by a single two- 

level atom. 

Our approach is not the customary one, although it is fully 

quantum electrodynamic. We show that if one follows the Jaynes- 

Crisp-Stroud line of argument and approximations, but integrates 

the relevant quantum electrodynamic equations instead of their 

semiclassical equations, one finds the following results: (1) Our 

predicted level width agrees with the semiclassical level width in 

the way that Jaynes has emphasized. (2) The level shift calculated 

by Jaynes and Crisp (called a Lamb shift by them) is reproduced 

exactly, when their same approximations are made. (3) Th ere is, 

however, no frequency modulation of the emitted light. That is, 

the level shift is static, not a dynamic function of time. 

It is interesting that the approach to semiclassical atomic 

radiation theory so long advocated by Jaynes, the direct self- 

consistent integration of dynamical equations over long times as 

opposed to perturbation analysis, is relatively easily taken over 

to quantum electrodynamics in this simple problem. We will comment 

on the results described above and contrast them with the results of 

a more careful quantum electrodynamic analysis. 
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(1) Introduction --- 

Motivated by the work of Jaynes and co-workers, (1) the old problem 

of atomic level shifts and widths has recently begun to be re-examined. 

,_. While QED is a highly successful theory (indeed the only workable field 

theory we have), it is still beset with self-energy infinities ultimately 

associated with the point-like nature of the electron. These are removed 

from the public view by the process of renormalization, in the hope that 

eventually some high frequency cut-off will be found to make the renor- 

malization constants finite: such modifications proposed usually imply 

a radius to the electron. In the usual approach to !X?X?D, perturbation 

theory is used. Jaynes, prompted by the great progress made in theory 

and experiments on atoms interacting with electromagnetic fields, has 

re-investigated the problem of spontaneous emission by solving the relevant 

semiclassical equations of motion for the interacting field-atom system 

directly. An interesting product of such an approach (other than the 

novel time-dependence) is the non-appearance of divergences: the finite 

size of the atomic charge distribution removes the point-like singularitjr 

when retardation is taken into account. 

We have adopted the approach advocated by Jaynes, but have applied 

it to the integration of the relevant quantum electrodynamic equations of 

motion instead of the Jaynes-Crisp-Stroud semiclassical equations. The 

field operators are then derived in terms of the source operators. We 

find the following results of this analysis: (1) our predicted level width 

agrees with the semiclassical width in the way Jaynes has emphasized; 

(2) the level shift calculated by Crisp and Jaynes (and called a Lamb 

shift by Stroud and Jaynes) is reproduced exactly when their same approx- 

imations are used; (3) the time evolution of the system agrees with the 

more usual methods of QED. In particular, there is no frequency chirping 



-4- 

of the emitted light, and the level shift is a static, not a dynamic function 

of time. Finally, the time evolution characteristics of semiclassical 

theory are obtained from the QED theory by decorrelating consistently the 

atom from the field operators when taking expectation values. It is in- 

teresting that the approach to semiclassical radiation theory, so long 

advocated by Jaynes, the direct integration of the equations of motion 

over long times, is relatively easily taken over to QED. 

(2) The Equations of Motion 

We take the Hamiltonian for a single bound two-level 'atom' interacting 

with a radiation field in pseudospin notation as 

3-u wo" H=+s3--5 c 2 g(r)Az(r,t)d3r + 3 (1) 

where g(r) represents the retardation effect (2) over the atomic charge dis- 

tribution. In particular, for a hydrogenic atom transition from the 2Pz 

to the 1S state (which represents the two levels, say; of our atom), g(r) is 

g(r) = 1 d% eiz*'g(k) = e 
-3r/2a 

&al3 8d2a/313 
and g(k) = (1 4 22-2 +gka) . 

The Heisenberg equations of motion for the atomic operators are 

63 = alA 

(2) 

(3) 

(4) 

(5) 

G2 = wo”l 

. 
cYl = -“oa2 - 03A(t ) 

‘\ 



where we have defined A(t) = (2yw0/%c) g(r)Az(r,t)d3r for convenience. 

Defining the positive and negative frequency operators by 

5 1 E cI+ + 5- a2.gy- - o+) (6) . ._.. .- - 

A'(r,t) - 1 V% 2 d3k 'kx akX 
T(t)e+i;)k*S 

x %A 
0) 

(where [aWkh(t), aik,h+(t)] = s3(k-kt)ahh+ , etc.), then (3) to (5) be- 

come, in the RWA (rotating wayYre approximation): 
- 

83 
= c? A+ + A-O- (8) 

.+ 5 = iwoo 
+ 

- %A-(t)a3 

.- 
5 = -iwoa- - kA+(t)a 

3 

(9) 

(I-0) 

We derive the field, as do Jaynes and Crisp, from Maxwell's wa.ve equation 

+JL' 

where the transverse current is defined by 

+ -t 
i g(k)eik*'d3k 

(11) 

(12) 

The formal soluticn 

AZ'(r,t) = + 
i 47rcpWo t 

m3 
dt+aT(t+) 1 

iifk*'($h*2)2i(k)sinU(t-t+) 
(13) 

x w 
0 
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gives for the integral. we need in the equations of motion the approximate 

result(3) 

- As'(t) (14) 

where ._ I 

A - 4w 3p2/~c3 
5w021J2 

0 
and Ac z 

16'E.ac2 

where A0 stand for the free-field homogeneous solutions. 

(3) Solutions 

We may now use (14) to write the atomic equations in terms of source 

operators entirely, except for the necessity of keeping the homogeneous 

solutions. The d equation becomes: 

.- 
u = -iWoO- - a3 2 [AZ + (2iAc - A)o-1, 

using o 
3 o- = -o-, valid for equal time operators, we obtain 

u l - = [-i(w, - AC) - $10~ - 2 Ai . 

We take vacuum expectation values to eliminate the free fields, and get 

<;-> vac = {-i(wo - AC) - fj 1 <a-> 
vat (15) 

where the significance of both the Einstein A coefficient and the Crisp- 

Jaynes frequency shift is obvious. The solution of (15) is trivial: 

Qs-(t)'vac = 
-i(w 

<u.-(o)> .-At/2 e o - AJt 
vat , 

and shows that AC apparently plays the role of a transition frequency 

(16) 

shift in QED as well as in the neoclassical theory. It is, however, not 

.time-dependent in Q,ED. The solution for <U3(t)> follows in the same way: 
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<03(t)>vac = ia 3 CO~>~,~ + lFAt - 1 (17) 

showing the typical QED exponential decay of upper state occupation. 

In semiclassical theory, on the other hand, the operator expectation 

values are used throq?hout and atom-field correlations are neglected: one 

takes 

and the equations of motion become, in the absence of external fields, 

<;-> =-iwo<o-> - (iA - 
c! 

<;r 
3 
> = -2A<o+><cr-> 

(18) 

(19) 

It is immediately obvious that the coefficients A and AC are the same in 

b_oth treatments. The semiclassical solutions (1) for <03> and <CT-> are 

<03(t )‘> = -tanh $(t-to) 

<u-(t)> = $ sech $t-to >e 
-i(w,t+e(t)) 

where e(t) represents the effects of a time-dependent frequency shift 

&A(t) = g = -AC tanh $(t-to) 

(20) 

(21) 

(22) 

Thus QED and semiclassical theory agree that the level width is A/2; 

and furthermore QED reproduces the Jaynes-Crisp shift AC by making their 

same assumptions(RWA, etc.). Because of the correlated dynamics in Q,ED there 

is no frequency chirping of the emitted light. The level shift is a static, 

not a dynamic function of time. -- At long times, of course, when the effects 
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of the atom-field correlations are no longer important, the theories agree 

in their time-evolution. However, these correlations play the role at 

short times of removing the aletastable singular point of the semiclassical 

system. It is interesting that the shift A 
C’ 

common to both theories, 

does not agree with the usual Bethe formula, and more strikingly does not 

need renormalization or cut-offs. To see why this should be so, we analyze 

the relationship between A 
C 

and the result of a more conventional &ED cal- 

culation of level shifts. 

(4) QED Frequency Shifts via Perturbation Theo= 

The usual QED treatment of level shifts uses the G*l interaction in 

second order perturbation theory and omits the A2 terms as shifting all 

levels equally. (4) - For our two-level atom, the QED shift of the upper (C) 

and lower (-) states would be 

<OkXS &y I e If*~lF;~X><lkh;r]~~'Ali;Okh> 

(E+ - ET - hck) 
(23) 

In the RWA A-= 0; and A+ may be evaluated easily using a plane wave ex- 

pansion of the field: 

%A + 
<+lG*Ekx e 

.+ -f 
lkar I-><- Ic*Zkx e -iz*: 

+> 

?icko --lick (2’4 

where Bck = E, - E . 
0 

In the conventional approach, the dipole approximation is used. Then 

(24) may be written (after doing the polarization sum and the angular in- 

tegral) 

%A+ z-5 -& I<-lPlf>12 1 (1 - 1 _ ;,* )ac ak 
LO 
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where we have followed common notation conventions. These terms are di- 

vergent: the linearly divergent 6m term represents that part of the shift 

independent of binding and will be present for a free electron; it is 

concealed by renormalization of the electron's mass, The binding-dependent 

logarithmically divergent integral A,., is the Bethe part of the Lamb shift; 

it is usually cut-off on physical grounds (5) at me/h. 

It is not immediately obvious how these divergent usual results relate 

to the finite shift AC. Let us follow the Jaynes-Crisp prescription and 

include retardation, then write A+ in our previous notation as x 

-fiA + 
+ $ $$)-4du 

extra factor + G 
9 

u2a2 -- 

C2 
F4 comes from the inclusion of retardation 

in the matrix elements, and we have converted matrix elements of; to those 

of the dipole moment G E e:). So 

where x = 2awo/3c. Using the fact that x0 - 10 
0 

-3 << 1, we find 

p-&Lx 

m a 
32 12 0 

0 

(27) 

(28) 

(6) Thus, due to the strong convergence supplied by retardation, A' is now 

finite. 

At this point two comments are required: (1) We know that the RWA has 

eliminated from consideration any integrals like (26), but with anti- 

-1 .resonant denominators (w + wo) . We have seen that the resonant integrals 
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have been cut off by retardation at o? V c/a w 103, 0' Clearly if frequencies 

a thousand times greater than w 
0 

are important, we can't continue to ignore 

2wo contributions. 'The RWA is without justification in a level shift cal- 

culation and must be removed. We will do so promptly. (2) Note that the 

.dominant term in the convergent A+, the analog of 6m in (25), is just 

A+=> _ 
5w021J2 

32ac sh= 
- &, (29) 

exactly half the Jaynes-Crisp shift. In other words AC seems to be most 

closely related to the part of the perturbative level shift which does not -- 

conventionally show up in the physical end result,due to renormalization. 

That this is so in our case too is easily verified by abandoning the RWA, 

calculating A’, and finally taking the difference Af - A-. The AC parts 

cancel, and we are left with: 

Gwpert 
. = A+ - A- = - 3 [fin -&- - 

2aUo $$I + o(xo2) . (30) 

The failure of our integration of the Heisenberg equations in Sec. (3) 

to give a frequency slhift in agreement with (30) is interesting to consider. 

It is not due to a basic flaw in the method, but to our adoption of a con- 

ventional and superficial and incorrect identification of the positive and 

negative frequency parts of the field. The equation (14) should be re- 

placed by 

A" z At + 2iAcd(t) - A5'(t)?i{Ac + 6wpert }o, (31) . 
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where retardation haz? been retained, the R&I abandoned, and terms up to 

0(x 
0 

") kept in the evaluation of integrals. This expression, which one 

may obtain directly from the HamiltonTan given in (I) by use of the canonical 

commutation relations for the electromagnetic field, then leads to a solution 

like that in (16)) b,~& with AC replaced by 6w pert' Both our approach, and 

the usual perturbati,we analysis, give the same quantum electrodynamic fre- 

quency shift. (7) 

(5) Discussion and Conclusions 

We have shown t&at Jaynes'program to obtain atomic level shifts and 

widths by integrating directly the semiclassical equations of motion, %rithout 

resorting to perturbation theory, may be taken over to quantum electro- 

dynamics fairly simply. A casual ana1ysi.s of those QZD equations (based 

on common assumptions, including the RWA) which correspond to the Jaynes- 

Crisp-Stroud equations , gives a frequency shift for the two-level transi- 

tion identically equal to the Jaynes-Crisp shift. The shift is not time 

dependent, however. 

A comparison with the usual perturbative QED result for the level 

shifts (whose difference is the frequency shift in question) then is seen 

to pose a number of questions. First of all, the perturbative shift is 

not equal to the Jay-nes-Crisp shift. Second, one sees clearly that the 

effective cut-off provided by retardation is so high as to invalidate the 

RWA. Third, the closest correspondence to the Jaynes-Crisp shift formula 

is provided by the mass renormalization term in WD, just that term usually 

considered to have nothing to do with the transition frequency shift. 

The conflict between the perturbative and non-perturbative QED results 

is resolved by giving up the Jaynes-Cris? approximations (RWA, etc.). A 
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correct identification of positive and negative frequency parts of the field 

operators shows that the shift obtained from the Q,ED equation-of-motion 

approach agrees with the perturbative approach, and is essentially Bethe's 

result, albeit in the context of a fictitious two-level atom. 

After all this is said, however, it must be recognized that Jaynes and 

co-workers are consciously constructing a new theory, not merely trying to 

do quantum electrodynamics differently. Thus the-usual calculational pro- 

cedures, and the usual interpretation of the various terms calculated, 

need have no relevance for them. Apart from comparison with experiment, 

the question of internal consistency of the theory becomes the only criterion 

for judgement. It seems to us that the use of the RWA is an important in- 

consistency. Apart from that objection, renormalization appears to raise 

the most urgent unanswered questions bearing on both the internal con- 

sistency of neoclassical theory, and on the magnitude of calculated level 

shifts. 

It will be essential in any full appraisal of neoclassical theory to 

know at least whether neoclassical theory subscribes to Kramers' dictum 

that all theories are subject to renormalizatbon of their "bare" component 

parts. It is well to keep in mind that the force of this dictum is independent 

of whether the "bare" quantities are finite or infinite. To be specific, 

for example, does the finite neoclassical level shift still contain a 

neoclassical free-electron part, presumably different from the 6m part of 

(25), to be subtracted out in future refinements of the calculation? 

Perhaps it is still too early to expect detailed answers to questions of 

this kind. 
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