
SLAC-PUB-1065 
(TH) and (EXP) 
July 1972 

SUM RULES AND BOUNDS ON SCATTERING AMPLITUDES* 

Robert Savit 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

, 

ABSTRACT 

Using sum rules obtained from crossing and analyticity, and 

unitarity bounds on scattering amplitudes, we show how new relations 

between low energy and high energy scattering can be derived. These 

relations can provide tests of a wide range of theoretical ideas. As 

examples, we discuss several inequalities obtained for T-T and r-N 

scattering. For r-n scattering, a number of relations involving the 

asymptotic behavior of total cross sections are presented, including 

bounds limiting the size of violations of the Pomeronchuk Theorem. 

Using Finite Energy Sum Rules for n-N scattering, we derive new 

types of bounds and show how they can be used to probe such things 

as the nature of the Pomeron trajectory and the assumption of s- 

channel helicity conservation. Finally, we introduce inequality con- 

straints between partial wave amplitudes of different isospin, and 

indicate how they can be used to explore the nature of exchange degen- 

eracy, absence of exotics and duality. 

(Submitted to the Physical Review. ) 
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I. INTRODUCTION 

Certain general principles, namely unitarity, crossing symmetry, and 

some form of analyticity, severely restrict the allowed behavior of scattering 

amplitudes. During the past several years, many interesting inequalities have 

been derived which follow solely from these principles, or from these principles 

combined with a few pieces of experimental information, or a few additional 

theoretically plausible assumptions. In this paper, we discuss several bounds 

at fixed energies, enforcing unitarity through the use of Lagrange inequality 

multipliers. ‘We then show two ways in which crossing and analyticity can be 

introduced into the problems by combining our results either with a Froissart- 

Gribov expression for crossed channel scattering, or with Finite Energy Sum 

Rules . Both these approaches yield relations between low and high energy scat- 

tering. In Section II, we describe the fixed energy bounds problems with which 

we shall deal, and we introduce a constraint which can be used to explore the 

nature of duality, absence of exotics, and exchange degeneracy. Using r-r scat- 

tering as an example, Section III develops the formalism for using the Froissart- 

Gibov formula with the results of Section II, to provide bounds on various quan- 

tities. In Section IV, the results of Section II are combined with Finite Energy 

Sum Rules. We illustrate, using spinless particles, the kinds of relations this 

marriage produces, and we go on to describe one further interesting problem. 

Section V develops the necessary formalism for applying the techniques of Sec- 

tion IV to the experimentally accessible case of n-N scattering. ‘We then present 

some numerical examples to indicate when FESR bounds can be more restrictive 

than bounds derived at fixed energies. In Section VI, we conclude with a brief 

summary of what we have accomplished. 
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II. FIXED ENERGY BOUNDS 

To illustrate the type of fixed energy bound we need for later applications, 

consider the expression 

A(o;z) = c (2Q + 1) 
e 

(1) 

We wish to bound this expression given the conditions 

and 

I = 1,2. 

In physical applications, these constraints correspond to imposing unitarity and 

fixing the total cross sections for different isospin values. Using the formalism 

of Lagrange multipliers generalized to include inequality constraints, 1 our aux- 

iliary function reads 

9?= *A(o; z) + L a1 x1 - 
T 

C (2Q+l)ai + C (2Q+l)hIia$l-ai) 1 
1=1,2 Q I (2) 

where the 4 sign in front depends on whether we seek an upper (+) or a lower (-) 

bound. Notice that there is no coupling between I = 1 and I=2 amplitudes. 

We need to consider four cases corresponding to C= 0,l and z>< 1. Suppose, 

first, that g= 0. If z -C 1, P,(z) is a damped oscillating function of II, and it is 

clear that if for a given value of I, x(2Q+ 1) ai converges, so will z(2Q+ 1) aiPQ(z). 

It is easy to show that in this case we can get both an upper and a lower bound on 

A. The solution for the upper bound is2 

40; z) 5 z c (2Q+l) ; z<l (3) 
1=1,2 QeB1 
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where QE B1 if PQ(z) > &, and p1 is determined by 

c’, = c (2Q+1)o 
QEBI 

For the lower bound we find 

40; z) 2 c c (2Q-+l) ; z<l 
I=1,2 QcC1 

(4) 

where QECI if P,(z) < yl, and y1 is determined by 

While the upper and lower bounds appear to be mathematically similar, their 

behavior as a function of z is much different, The upper bound falls off slowly 

away from its fixed value at z = 1, while the lower bound very rapidly becomes 

negative as z decreases from 1. Consider next z > 1. In this case, P,(z) .is a 

monotonically increasing function of Q, and convergence of c(2Q+ 1) ai does not 

guarantee that x(2Q+ 1) a: P,(z) will exist. Therefore, with the constraints at 

hand, we can get only a lower and not an upper bound. The lower bound will be 

given by expression (4) if we substitute a value of z > 1. 

Suppose now that g = 1 D Since there is no coupling between I= 1 and I = 2, an 

(upper, lower) bound on A will be given by the (upper, lower) bound for the I = 1 

term, minus the (lower ,upper) bound for the I = 2 term. If z < 1, the lower bound 

for I = (1,2) behaves badly near z = 1, and consequently our (lower, upper) bound 

on A will be of little use (at least at a fixed energy). Still worse is the fact that 

if z > 1, we can get no finite upper or lower bound on A at all. To rectify this 

situation, we introduce a further constraint, We require that a: 2 ai for all Q. 
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We shall use constraints of this form in later sections and it will be clear then 

how they can be used to explore the nature of duality. 

When we include this additional constraint, the most convenient way to write 

the auxiliary function is: 

LZ’= ~tA(cr;z) + CY’ [ cl,-c (2Q+l)apl 

Q 1 [ +a2 x2T -x(2Q+1)$ Q 1 
- i 

+ >1 (Z+l) AQ(l-a:) + @Q(ai- 
Q i 

(5) 

where AQ, $Q, and 5 Q are inequality multipliers. It is clear that the values of 

Ck must satisfy Ck 2 Cc 0 If v = 0, this additional constraint does not 

change the solutions to the variational problems. However, when a = 1, the 

situation is much different. For z < 1, we have a much improved upper bound 

to A, and an improved (though still badly behaved near z = 1) lower bound. To 

illustrate how our additional constraint provides better bounds, we present in 

Figure 1 the partial wave amplitudes which maximize A. For simplicity, we 

have assumed that c’, is small enough to require contributions only from the 

first positive region of P,(z). 1 for 0 5 Q ( LI as is shown by the solid 

line, anda:= lfor L21Q ( LI, as is shown by the dashed line. All other ai 

are zero. As ct increases, L2 moves closer to zero, the point L1 being fixed 

by the size of X$0 If we had not required a: 5 a:, the ai’s would have been 

nonzero in a region centered about the minimum of P,(z) as a function of Q, and 

would have resulted in a much higher upper bound on A. 

The solutions of the other problems behave in a similar way. For z < 1 the 

lower bound to A becomes finite and well behaved, while the upper bound is still 

infinite. These results are summarized in Table I. 
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0 = 0 ,upper bound 

0 = 0, lower bound 

0 = 1, upper bound 

CJ = 1, lower bound 

- 
I 

TABLE I 

I I Z<l I z>l 

----i 

2 1 
“B 5 “Q 

No additional 2 1 
aQ 5 aQ 

No additional 
constraints constraints 

good good co 

bad bad good 

bad good ot, 

bad bad (but better) - co 

Bounds which are finite, but badly behaved near z= 1, are 

denoted as “bad. ” Bounds which are well behaved near 

z = 1 are denoted as “good. ” 

III. APPLICATIONS TO THE FROISSART-GRIBOV FORMULA 

Consider the Froissart-Gribov formula for 7r-?T scattering: 2 

1 

y+l 
( ) Y 

‘yqQ fi(l’;jI$(y,x) q @II, x(2n+l)<(x)Pn(l+v) dx, (6) 

0 n 

where x and y are the squares of the center-of-mass momentum in the t and 

the s channels, respectively, 

KQ(YTX) = -+ (+f QQ(l + y) , 
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and 

apI = Imfi(x) . 

The crossing matrix for 7r-r scattering is 

2 
5 2 10 

-3-- 

2 -5 
f+= Fj 

I I.- 
1 3 

2 -1 1 
3 3 

2 and we work in units where mn = 1. 

Taking the limit y- -0 and keeping the two leading terms on the right, we 

have : 

$% (F/f:(y) =/KQ(O,n) F aII, x(2n+l)ax(x) [pri(l+z) + 

n 

with 

KQ(O,x) = $+ 1)” . . 

Now, for small values of y, we may write the effective range formula for the 

phase shifts as 

Q f l/2 -2 y co+ =--y- 
JY-= 3 

+M;Y, 

I where Ti is the scattering length and Ma is the effective range. With this 

(7) 
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parameterization, the left-hand side of Eq. (7) may be written for small y as 

(8) 

-We may now identify the coefficients of like powers of y in Eq. (7) and (8). 

We apply the results of Section II in the following way: Suppose gi or 6’: 

I’ is known for some value of Q and I, and that the an (x) are known for x -Z c. For 

a fixed value of x above c, we notice in Eq. (7) that both in the term proportional 

to 1 and the term proportional to y, the coefficients of a! are monotonically in- 

creasing or decreasing functions of Q’, depending on the sign of aII,. We may 

therefore solve a bounds problem for all values of x > c as in Section II (with 

z > 1) and insert the solution 

will schematically look like: 

into our expressions for 3; 

.C f 
.%3- ) dxF(x,d;(x)) 2 JdxG cx, xIT(x], 

0 C 

The result 

where 3 is gi or 8:. 

As a concrete example, we shall now discuss the bounds obtained from .?Ji. 

The problem is to minimize 

n, even 

Because o12 is negative, we need a constraint limiting the size of a: with respect 

to ai and ai+I. The additional constraints we impose are 

and 2 2n+3 1 
ans 2n+l “n+l . 

These constraints are quite reasonable. Since the I = 2 channel is exotic, and 

since we only apply these constraints at high energies, they may be taken as 
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simple extensions of exchange degeneracy and duality, backed by the observation 

that Regge contributions to total cross sections always appear to be positive. 4 

The factor w in the second inequality is included to allow 
z 

2 T to be as large 
-1 as TO L Of course, a: must also always be less than 1. One might have pre- 

ferred a relation of the form a: 2 ai _ 1 between the I = 2 and I= 1 amplitudes, but 

this condition is not sufficient to guarantee a finite bound. 

To illustrate the usefulness of this bound, let us first assume that for x > c, 

c I’ T (4 = 
x+x) 

8 ~ 

is independent of I’+ The partial wave amplitudes which minimize expression (9) 

are 

a0 2 2n+3 1 
n =,n= 2n+l an+l= 1, for n 5 N 

and zero otherwise. -N is determined by fitting c,(x). Using the approximation 

p,(l+p,-P n-l 1+ 2 N z?J 
( ) X X (10) 

valid for large x, we find: 

C 

1 1 
%-6n 

I 
dx 

(x+l)3’2 x1’2 
C alIr C Pn+Ua~ P,(1-+ (11) 

0 I’ n 

.% 
1 

“z 
I 

dx 

(x+1) 3/2 x3/2 
C 

where the leading terms on the right-hand side of the inequality have cancelled. 

Assuming a functional form for (T .(x} for x > c (for instance, Go = const., or 

UT(X) = c + - 
Ji9 

as suggested by Regge theory), we can easily evaluate the 

right-hand side of expression (ll), and get an upper bound on the total cross 

-9- 



section. As long as 
x I, 

3n 2 1 for x > c, an easily fulfilled condition, the 

right-hand side of expression (11) is positive definite. If evaluation of the left- 

hand side yields a negative number, we would have to conclude either that our 

dual constraints are not satisfied, or that the Froissart-Gribov expression for 

the P-wave scattering length does not converge. We can further test the first 

possibility by examining the expression for The derivation of a bound using 

this term of the expansion in y follows exactly the above discussion, and the 

analog of expression (11) is 

8; - & j “/” , C @II, C (Zn+l)aIn (x+I)I’~P~ (l+ 2, 
o (x+1)5 2x1 2 I, [ n X 

n 
co 

where L is the even integer determined by 

XT = (2 + I.) (L + 1) , and 

where we have again assumed that the c; ( x are independent of I’ for x > c. ) 

The Froissart-Gribov expansion for 8: is expected to converge, so if the left- 

hand side of inequality (12) is negative, we have a strong indication that our 

duality constraints are violated in nature. 

Because the expression for 6’: converges more rapidly than the expression 

a high-energy upper bound on CJ T derived from 8: will be more sensi- 

tive to the low-energy data than a bound derived from Furthermore, be- 

cause of the negative value of a12, the leading terms in the large x region of the 

integral cancel, and both these bounds are more sensitive to the low-energy data 
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than the bound derived using the D-wave I= 0 scattering length. However, the 

form of the crossing matrix for the P-wave scattering length does allow us to 

derive less convergent upper bounds than we can obtain from the I= 0 D-wave 

scattering length if we do not assume that the x$x) are all the same for x > c. 

It is of particular interest to derive bounds on Aa, = gT(x+7r-) - n,(~‘,‘), 

which should approach zero as x- ~0, by the Pomeronchuk theorem. For com- 

parison, we list below the results of two problems. Equation (13) gives an upper 

bound for AC,(X) = g,(lr+r-) - u,(K’T’) in terms of the D-wave I=0 scattering 

length. Expression (14) gives an upper bound for Ag,-(x) in terms of the P-wave 

scattering length. 

As before, we have used the duality constraints in the derivation of the P- 

wave bound. We have not used approximation (10) in either expression. We 

have for the D-wave:2 

@i -p K2(0,x) x o!oI, C (2n+l)aI,l Pn (I+:) >, 
0 I’ n 

2 ~K2W+‘;2+l (I+ 3 + 2 pilfZ (l+ 4)] 

C 

where 

A CT = g AcJ,=;(LI+~)(L~+~) + i(Lz+l)(L2+2) 

and the even integers L1 and L2 must satisfy 

(13) 

2PLq1 (l+ $)= PL2 (l+ E) . 
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For the P-wave scattering length, we find: 

C 

-1 
3 - 

1 
I 
0 

KI(O,x) c alI, c (2n+l) alnPn (I+;) 1 

I’ n 

where the even integer, L, is determined by 

AZ T =&(L + 2)(5L + 11). _ 

Since the right-hand side is much less convergent in expression (14) than in 

expression (13)) the bound derived on AC T (x) from (14) will be much less sensi- 

tive to the low energy data than the bond derived from (13) 0 

In general, if we-assume a form for Aa,( the integrals can be done using 

the techniques OutlinedinReference 3, and these bounds will limit the parameters 

used to describe AC,(X). Parameterizations of recent Serpukov data5 on 

g,tn-P) - flT(7r+p) indicate that bounds relating this quantity to the n-N charge 

exchange cross sections may be violated at high energies. The Pomeronchuk 

theorem bounds presented above can be applied to the case of n-N scattering, and 

will provide independent restrictions on o,(n-p) - cT(r+p), which do not depend 

on the high energy charge exchange cross section. Since the upper bound on the 

n-n cross section derived in Reference 3 was relatively small, we expect that 

bounds on An,(x) for 71-r or n-N scattering derived by the above technique will 

also be quite restrictive. However, if we assume that the Pomeronchuk theorem 

is violated, and AU,(X) & 0 as x - 03, we can use expression (13) but not (14) to 

derive a bound, since in this case, the Froissart-Gribov expression for the 
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P-wave scattering length does not converge. To use P-wave information, we 
16 would need to use the Froissart-Gribov expression for El. 

In the above discussion, we have concentrated on bounds for the total cross 

sections, without including any other experimental constraints, One popular 

variation of this problem is to include the elastic cross section as a constraint 

in the original bounds problems. With realistic ratios of uel/flT (say, 

ceP’gT 5 l/2), the upper bounds on c T are generally decreased by a factor of 

about l/2. This is because with the inclusion of the elastic cross section, the 

variational problem is no longer a strictly linear one, and a substantial number 

of the partial wave amplitudes are forced to lie in the interior of the unitarity 

circle. The discussions of these problems proceed in a manner analogous to the 

ones above. 

IV. APPLICATIONS TO FINITE ENERGY SUM RULES-SPINLESS CASE 

We now turn our attention to ways in which the information contained in Finite 

Energy Sum Rules can be used to derive new bounds on scattering amplitudes. We 

shall first illustrate the method by discussing some problems using spinless par- 

ticles. Neglecting isospin, the Finite Energy Sum Rule for the scattering of spin- 

less particles may be written 

V 
0 N cwi(t)+n+l 

I 
vnImF(v,t)dv + 

I 
vnImFdv = 

c 

Pi (t)N 

i 
(oli+n+l) ’ 

0 V 
0 

where vnIm F(v, t) is antisyrnmetric in v = y , the mass of the external par- 

ticles is 1, and v. is the threshold value of v in the s-channel. For v > v 
0’ we 

(15) 

may write ImF(v,t) = c(Z+l)al(v)P1 l+ 2v4t4 t . 
-) 

If we know 
Q 
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C,(v) = c (2J+l)a&v) for v> vo, we may derive bounds on Im F( v , t) as we 

did in Section II when we considered z < 1. For example, deriving an upper bound 

onImF, fixing c T , and unitarity, and using Eq. (15) above, we have 

a!(t)+n+l N 

c 

Pi(t)N “ ’ 
(O!i+n+ 1) - Wo) < ( vn ~W-+l)PQ(l+ 2v :\mt) dv, (16) 

i V 
0 

!2eB 
V 

I 

0 

where I(vo) = vnIm F dv and B is the set of integers such that Pn 
( 
l+ 2vtt4 t -) > CY , 

0 

01 being determined by the condition that gB(2e+1)rCT. Wecanuseex- 

pression (16) in a number of ways. Knowing I(vo) and the Regge parameteriza- 

tion of F, we have a lower bound on a certain average over the total cross sec- 

tion. Knowing both the total cross sections as a function of v and the high energy 

behavior of F, we have a bound on I (vo). This application may be useful in cases 

such as baryon-antibaryon scattering, where many intermediate states are acces- 

sible below threshold. One of the most useful ways of reading the inequality, how- 

ever, is as an upper bound on Regge behavior given I( vo) and the total cross sec- 

tion as a function of v . Notice, in particular, that this approach circumvents 

one of the most troublesome problems in the use of FESR’s: We require no de- 

tailed information about low- and intermediate-energy partial-wave amplitudes 

in order to limit the behavior of the Regge parameterization at non-zero values 

of t. Of course, whatever additional detailed information we provide (such as 

partial-wave amplitudes in some low-energy region) will improve the result, 

but this input is not necessary to get usable, interesting information.’ 
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In realistic cases, such as n-N scattering, the amplitudes to be used in the 

FESR’s are linear combinations of s-channel isospin amplitudes. It will there- 

fore be of interest to examine the nature of the FESR bounds derived for the 

linear combinations discussed in Section II with z < 1. This we shall do in 

Section V. Since we can also derive bounds on the Regge parameters at a fixed, 

high value of v, we may ask when use of the FESR can be expected to yield a 

better result than the bound derived at a fixed energy. In general, that question 

cannot be definitely answered without specifically carrying out the calculations. 

However, the following observations are useful: 

(1) The FESR’s are written as integrals over v with t fixed, so smaller values 

of v correspond to large values of 8, the center-of-mass scattering angle. In 

the case of the bounds derived fixing only c T (and perhaps imposing the additional 

constraints between partial wave amplitudes of different isospin), the bound does 

not fall fast enough *as 8 gets large to. remain very restrictive. On the other hand, 

if oT(x) does not vary rapidly with energy c Ttx) -x, and gets smaller at lower 

energies, improving the FESR bound. The detailed interplay between these two 

effects will determine the size of the FESR bound. (2) The FESR gives us a bound 

on a certain combination of Regge parameters which is not the same as the Regge 

expression for the imaginary part of the amplitude. Therefore, when dealing with 

a single FESR bound, we can derive different bounds on the high-energy amplitude 

depending on, say, what we choose for o i(t). This is a degree of freedom we do 

not have when deriving a fixed energy bound. We shall see an example in Section V 

of how these bounds can vary from the fixed energy result. 
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After the observations of the preceding paragraph, we would like to discuss 

a type of problem which is likely to yield quite good high-energy bounds, and 

which will almost certainly benefit from the application of FESR’s. Neglecting 

isospin, we consider the problem of maximizing 

F = x(3 + 1) aQPQ(z) , z cl 

Fixing 

(& F),_1 = ~(Ze+l)~ aQ = F’ 

and using unitarity , 

The solution is easily found using standard techniques, and we have: 

c (2Q+l)aQ P,(z) S c (2-Q + lPQ(Z) Q Q EB 

where 

I EB if P,(z) >01 + pQ(Q+l) , 

and CY and /3 are determined by requiring 

c, = c (2Q+l) 
QeB 

and 

F’ = c (2e + 1) w. 
QeB 
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I 

Inserting this into the FESR gives an expression identical to (16), only now the 

definition of B is different. 

One reason for the limited usefulness of FESR’s inregard to the bounds problems 

of Section II is that many total cross sections increase at lower energies, and 

this further decreases the effectiveness of the low-energy region of the Sum Rule 

in providing a good bound. In the present problem, however, an increase in 

CT 
decreases the upper bound on F as long as F’ does not increase too much. 

A common experimental situation is that total cross sections increase and slopes 

of the diffractive peak, defined as F’/CT decrease as the energy decreases. 

If constant total cross sections and slopes of forward peaks result in roughly 

equivalent fixed energy bounds on F(x, t) at different energies, then any increase 

in g,(x) and decrease in F’(x) at small values of x will improve the value of the 

FESR bound. 

V. n-N SCATTERING 

The approach of the previous section will be most useful when it is applied 

to experimentally accessible reactions. As an example, we develop in this sec- 

tion the formalism necessary to deal with n-N scattering, and discuss some of 

the interesting problems that can be pursued. We then present numerical ex- 

amples of some FESR bounds and compare them with both fixed-energy bounds 

and with values for the amplitudes which they bound. 

It is convenient to define s-channel partial-wave amplitudes of definite parity 

as the generalized coordinates of the variational problem, 

I fQ* = e 
iSi, 

sin6pI * 

where I = f or g is the s-channel isospin. Unitarity may be written in terms 
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of these amplitudes as 

It is convenient to write the invariant amplitudes, A’ and B, as 

A” = (Y+ F: + 01 F1 - - 

B1= P+F; + /3 F1 - - 

where 

and 

F: = xtQ+ 1) (~++f;Q+l~~)pQ’~++lpQ 

Q 

4n m(E- &)+ vE O!+=- 
k3 [ 2(1- t,/4m2) 1 

mv 01 2 (1 - t/4m2) 3 

47rE 
P+= - 

k3 

P- = 
-47rm 

k3 ’ 

The square of the momentum in the center-of-mass is k2. The nucleon 

mass is m, and E is the center-of-mass nucleon energy. The s-channel helicity 

non-flip and flip amplitudes are 
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I 

FL=F’ -- 

and 

F:- = -FL+ = Ft sin(i) 

with 8 the center-of-mass scattering angle. 

The amplitudes with definite symmetry properties under v - -v are ampli- 

tudes with definite t-channel isospin. They are given by 

AT112 + A’3/2 ; 1 t = 0 

and 

Aft-) = 5 Ad2 _ ; AA’2 ; 

with similar relations for the B amplitudes. ,++) and Al(-) are antisymmetric 

underv--v, whileB t-J and Art+) are symmetric. We can, therefore, use 

even moment sum rules for B (+) and A1(-) and odd moment sum rules for B t-1 

and Al(+). Total cross sections will be used as constraints in the variational 

problems. They are given by 

c I =-= 
T 

‘:.,, c(Q f l)(aj++ atQ+l)-) - 
Q 

Suppose we now do the variational problems in wh ich we fix the I = i and 

I = i total cross sections at some energy, impose unitarity, and seek upper 

bounds on the imaginary parts of the four amplitudes A’ (*) and B(*‘. The AI(-) 

and B’*) bounds are badly behaved near 0 = 0 in the sense of Section II, while 

the A’(‘) bound is well behaved. There are two reasons for the bad behavior 

of three of the bounds, both of which can be understood on the basis of the dis- 

cussion in Section II. The A’(-) and B(-) bounds are badly behaved because of 
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the minus sign in the 
( 
It= 1, Is= E crossing matrix element. The B(*) bounds 

are badly behaved near 0 =0 because the coefficient 0 -’ which connects the B 

amplitudes to the s-channel helicity-flip amplitude, does not go to zero as 8 -0. 

This means that the coefficients of fQ+ in the B amplitudes near 8 = 0 have the 

type of behavior, as a function of Q, which results in a bad bound. This problem 

does not arise in the A’ amplitudes because (Y- goes to zero sufficiently rapidly 

as e-o. 

One can surmount each of these problems and in doing so, can provide in- 

triguing tests of various ideas. The problem of the minus sign in the crossing 

matrix can be handled by noticing that r-p total cross sections are larger than 

+ r p total cross sections. 

Sections II and III, we can 

Making the same sort of assumptions as we made in 

require 

for allQ at large energies. While this constraint seems reasonable in light of 

the behavior of total cross sections, it has nothing directly to do with exchange 

degeneracy in the context of duality. It would, therefore, be quite interesting 

to test these kinds of assumptions in both the present problem and in the cases 

such as 7~ scattering (see Section III), where the concepts of duality and absence 

of exotics is more directly involved, and see if they are violated in either case. 

With this additional constraint, we can get good bounds on A ,t-) in addition 

to A,(+), but we are still faced with the bad behavior of the B (9 bounds. We can 

alleviate this situation by limiting the size of the s-channel helicity-flip ampli- 

tudes, which are proportional to F1 . In particular, we can improve the bounds 

on all our amplitudes, and change the B (4 bounds from bad to good (assuming 

3/2 l/2 we also require aQ* 5 aQ* for B(-)) by constraining appropriate combinations 
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of s-channel helicity-flip partial wave amplitudes to be zero. This constraint 

will be particularly interesting in case of the It = 0 amplitudes, since at high 

energies these amplitudes should be Pomeron-dominated, and there is some 

feeling that the Pomeron conserves s-channel helicity.8 The remarks of the 

last two paragraphs are summarized in Table II, where we show the character 

of the upper bounds obtained under various assumptions. 

TABLE II 

No add it ional 
assumptions 

3/2 l/2 SCHC and 
4* 5 ‘Q& SCHC 3/2 

aQ* 
l/2 

5 “QA 

h A,(+) good good god good 

,A,(-) bad good bad good 

Illl B(+) -bad bad good good 

ImB(-) bad bad’ bad good 

Character of fixed energy upper bounds on various 
3/2 

amplitudes. In all cases, c 
l/2 
T and c T are 

given and unitarity is imposed. 

To illustrate the utility of our technique, we present in Fig. 2 and 3 the re- 

sults of some upper bounds on Im A ,(+) derived under various assumptions. In 

Fig. 2, we have plotted upper bounds on A ‘(+) at s = 30 GeV2 as a function of t. 

(‘) I 
Curve B is the fixed-energy upper bound on ImA’ derived assuming c at 

T 
s=30 (I= i and g), and unitarity. Curves A and C are bounds derived from 

FESR’s, assuming c 
I 
T at all energies above threshold to s = 30, and unitarity.’ 

Since the upper limit in the FESR integral is so large, the contributions from 

the integral below threshold are negligibly small. To extract a bound on A’(‘) 

- 21 - 



from the FESR result, we have assumed a 2-pole (P and P’) high-energy param- 

eterization for A’ (‘I. A is the FESR upper bound assuming ap(t) = 1 and 

a,,(t) = i+ t, and C is the FESR upper bound assuming crp = 1 + $ t and 

@-Pf = i+ t. In addition, both A and C assume values for the ratio of the P and 

P’ residues gleaned from Ref. 10. For comparison, we have also plotted in curves 

D and E the predictions for the A’ (+) amplitude at s = 30 GeV2, using the residue 

functions derived by Harari and Zarmi 10 with the two choices of cyp(t) described 

above. We can now clearly see the kinds of circumstances under which FESR 

bounds can give better results than fixed-energy bounds: Curve C falls below 

curve B and is therefore more restrictive. 

In Fig. 3, we have presented the results of similar calculations, only now 

we have imposed the additional constraint of s-channel helicity conservation. 

Curves D and E are identical to curves D and E of Fig. 2, while the bounds rep- 

resented by curves A, B, and C are the same as those of Fig. 2, with the addition 

of the SCHC constraint. 
11 While the general trend of these bounds is the same as 

those of Fig. 1, they are all 15 - 20% lower at t= -1.0 GeV2 than the correspond- 

ing bounds of Fig. 1. This is especially interesting, since t= -1.0 at s = 30 still 

represents a quite small scattering angle, and one might have thought that SCHC 

would not be a severe constraint so close to the forward direction. 

Of course, since fixing total cross sections only fixes the scale of hadronic 

reactions, the particular bounds we have discussed so far do not follow the data 

very closely. However, adding only one more constraint can give bounds that fall 

quite rapidly with t. To illustrate this, we have plotted in Fig. 3 (curve F) an estimate 

of the fixed-energy upper bound to ImA 1(+) assuming, in addition to c 
I T, unitarity, 

and SCHC values for the elastic n*p cross sections and the charge exchange cross 

section x p - Ton.’ We see that this bound falls much more rapidly than curve B, 

and is quite close to curves D and E. (It may, in fact, fall below curve D.) 
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If we include these additional constraints in the calculation of FESR bounds, they 

will follow the trend of curve F, and will closely restrict the allowed behavior 

of Im A’(+), limiting the acceptable parameterizations of this amplitude, and 

providing severe tests of a number of theoretical ideas. 

VI. CONCLUSION 

We have shown in this paper ways in which unitarity bounds can be incorpor- 

ated into sum rules obtained from analyticity and crossing to yield relations be- 

tween low and high energy scattering. Not only may these relations be used to test 

the general principles of unitarity, crossing symmetry, and analyticity, but with the 

inclusion of further constraints, less highly cherished theoretical ideas and pro- 

cedures of phenomonological analysis may be explored. As examples, we have 

shown ways in which the Froissart-Gribov expressions can be used to limit viola- 

tions of the Pomeronchuk theorem and also give us insight into the nature of 

duality and absence of exotic resonances. Using Finite Energy Sum Rules, we 

have illustrated how we can learn still more about semi-local duality, and we 

have furthermore shownhow FESR bounds can be used to test such things as 

SCHC and the nature of the Pomeron trajectory. 

We have considered these problems to indicate how sum rules may be used 

to derive improved bounds and test interesting physical ideas. Use of these 

techniques can lead to many powerful results that will severely limit the allowed 

behavior of scattering amplitudes. 
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FOOTNOTES 

1. M. B. Einhorn and R. Blankenbecler, Ann. Phys. 67, 480 (1971). 

2. Most of the problems considered in this and in the following sections 

involve only linear constraints 0 In these problems, there are only one or 

two nonzero partial wave amplitudes which lie in the interior of the unitarity 

circle. (This is not always true of linear problems, but it is true of the 

ones discussed here.) We have neglected these partial wave amplitudes 

in presenting our solutions. In general, this is justified because of the 

large number of partial wave amplitudes contributing to the solution. 

However, if the value of a constraint used in the problem gets very small, 

this procedure may not be allowable. This situation can be handled in a 

straightforward way, and is most likely to occur in the problems leading 

to expressions (13) and (14). Even here, however, if the predictions of 
.- 

duality and Regge theory are reliable, A T - 6, and neglecting the 

partial wave amplitudes which do not saturate unitarity will be justified. 

3. 

4. 

Some of the techniques used in this section were first discussed by 

R. Blankenbecler and R. Savit, Phys. Rev. D, to be published in June. 

In Section V we shall discuss mathematically similar constraints in 

connection with n-N scattering. The physical motivation in that case, 

however, does not directly involve duality, and comparisons of the two 

types of problems may be useful for understanding the nature of duality 

(see Section V for further discussion). 

5. S. P. Denisov et al., Phys. Letters E, 415 (1971); S. P. Denisov 

et al., Phys. Letters 36B, 528 (1971); S. M. Roy, Saclay Preprint 

D. Ph-T/72.20 (March 1972). 
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6. 

7. 

a. 

9. 

10. 

11. 

In general bounds similar to the ones discussed above can be derived for 

other linear combinations of isospin cross sections, and should substan- 

tially improve previous results. For a general discussion of these results, 

see the fine review article by S. M. Roy, ibid. 

From a phenomonological point of view, such a bound may be especially 

useful in cases such as Compton scattering off nucleons, where total cross 

sections are fairly well known, but a reliable detailed partial wave analysis 

does not exist. (I thank Y. Avni for this comment.) 

See for example, F. J. Gilman, J. Pumplin, A, Schwimmer and L, 

Stodolsky, Phys, Letters, 31B, 387 (1970), and H. Harari and Y. Zarmi, 

Phys. Letters, 32B, 291 (1970). It has also been proposed that the 

Pomeron conserves s-channel spin. Some insight into the correct option 

(if either is correct) can be gained by replacing the SCHC constraint with 

the s-channel spin conservation constraint, and comparing the bounds. 

E. Flaminico, et al., CERN/HERA 70-5 and CERN/HERA 70-7 (1970). 

H. Harari and Y. Zarmi, Phys. Rev. 187, 2230 (1969). The curves D and 

E in Figures 1 and 2 represent their results after a resealing of about 15%, 

so that their amplitudes at t= 0 correspond to the correct values of asp 

total cross sections D 

In the derivation of bounds A and C, we have for simplicity assumed SCHC 

even at low energies. However, since N is so large, and since we have used 

v ImAf(i) as the integrand of the FESR, this does not significantly affect 

our result. 
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FIGURE CAPTIONS 

1. Partial wave amplitude which maximize A(l, z) with z < 1 and a:( ai. 

(See discussion of Eq. (5) for full explanation. ) 

2. Fixed energy and FESR upper bounds on Im A1 w at s = 30 GeV2 without 

assumption of SCHC. (See Section V for full explanation.) 

3. Fixed energy and FESR upper bounds on Im A’ (t) at s = 30 GeV2 assuming 

SCHC. (See Section V for full explanation. ) 
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