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ABSTRACT 

We show that measurements of deep inelastic bremsstrahlung 

e’ + p - e* + y + anything 

in the appropriate scaling region will provide a definitive test for fractionally 

charged constituents in the proton, provided the parton model is valid. More 

precisely, measurement of the difference between the scaling inclusive brems- 

strahlung cross sections of the positron and electron will allow the determina- 

tion of a proton structure function V(x) which, unlike the deep inelastic e-p 

structure functions, obeys an exact sum rule based on conserved quantum num- 

bers. In particular, we show that 

1 

/ 0 
dxV(x) = +Q+ ;B 

(=5/g for a proton target) in the quark model, whereas 

1 

/ dx V(x) = Q 
0 

in the case of integrally-charged constituents. Since the result is independent 

of the momentum distribution of the partons, the sum rule holds for nuclear 

targets as well. Since V(x), which involves the cube of the parton charge, is 

related to odd charge conjugation exchange in the t-channel, Pomeron and other 

C-even contributions are not present, so that V(x) should have a readily inte- 

grable quasi-elastic peak. This, combined with the fact that there exists a 

simple kinematic region in which the difference is of the same order as the inclu- 

sive bremsstrahlung cross sections themselves, and the fact that there is no 

hadronic decay background, should make this a feasible experiment on proton and 

nuclear targets. 
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INTRODUCTION 

The observation of scaling in the highly inelastic limit of electron-proton 

scattering has excited considerable interest in constituent models of hadrons. 

The existence of charged, structureless “partons” in the nucleon, together 

with an assumption limiting the partons’ momentum distribution, is sufficient 

to derive scaling. ’ It is also well known that to account for scaling it is not 

necessary to postulate the full apparatus of a parton model but instead only to 

abstract from such a theory the singular behavior of current commutators in the 

vicinity of the light cone. 2 

Since they are more specific, however, parton models make concrete pre- 

dictions which cannot be obtained from more general light-cone considerations. 

An example is the prediction of scaling in the process p+p +p’+p-f anything 3 

at high energy and large ij~+p-) invariant mass. A test of this prediction will be 

central in establishing the parton model independently of the light-cone approach. 4 

More recently the parton model has been found to provide a particularly simple 

explanation of large angle exclusive scattering. 5 Although the parton model 

may be only an abstraction of a more complete theory, it is important to obtain 

and test all of its predictions, particularly in cases where the number of new 

assumptions is minimal. 6 

If partons are taken seriously it is important to find ways of determining 

their quantum numbers . Although the electroproduction structure functions 

VW,‘(X) and vW;~(X) are sensitive to the squared charges of the partons,it is 

impossible to extract from them values of the charges without making additional, 

strong assumptions regarding the distribution of partons within the nucleon. 7 

Our object is to describe an experiment which admits a parton model description 

and which provides a definitive probe of the partons’ charges. The experiment 
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involves the process: 
f e +P-e ’ + y + anything 

in an appropriate Y1scalinglF region. More precisely, measurement of the dif- 

ference between the scaling inclusive bremsstrahlung cross sections of the 

positron and electron will allow determination of a structure function dependent 

upon the charge cubed of the various partons. 8 As we shall see, this provides 

a definitive test for fractionally charged partons; This process avoids the 

complications of Pomeron subtractions and hadronic decay backgrounds. The 

assumption of a particular longitudinal momentum distribution for the partons 

is not necessary in the derivation of sum rules. 

If the parton model is correct and scaling is observed,then the correspond- 

ing structure function depends only on the odd charge conjugation piece of the 

parton distribution functions: 

V(x) = c A; Us(X) 
a 

UIdd(x) = ; [Us(x) - uz(x)] 
where U,(x) is the probability to find a parton of type “a” with charge ha and 

fraction x of the proton’s momentum in an infinite momentum reference frame. 

Unlike VW;‘(X) , which obtains contributions from even charge conjugation 

(e. g. , Pomeron) t-channel exchange terms, the new structure function should 

show a quasi-elastic peak (vanish as x - 0) ; sum rules involving the integral of 

V(x) can be expected to converge in a finite experimentally accessible region. 

Moreover, integrals over V(x) are determined by the normalization of various 

odd charge conjugation form factors (e.g., charge, baryon number, hyper- 

charge) and thus provide a definitive test for fractional charge. We also 
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note that since the Ua Odd( ) x are related in parton models to the structure 

functions for highly inelastic neutrino scattering, V(x) should be completely 

determined by the results of neutrino experiments. 

THE BREMSSTRAHLUNG CROSS SECTION 

The diagrams relevant to the inclusive bremsstrahlung process 
f e +P-e rt + y + anything are shown in Fig. 1. In general there are contri- 

butions from both the standard Bethe-Heitler bremsstrahlung amplitude and 

the virtual inelastic Compton amplitude. The difference of the inclusive cross 

sections: 

do (e+ + P + e’ +y+X) -do(e-+P+e-+y+X) 

is due, in order a! 3, to the interference of these two amplitudes (see Fig. 2), 

which is a particular discontinuity of the 3-photon JJdoubleJ1 Compton amplitude’: 

V 
47r2Ep 

,LLlA= - M J 
4 4 dxdye iq. y+ik.x <PI JI, (y) T*(Sh(O)J&x)) IP> (1) 

We shall work in the Bjorken kinematic region 10 : 

2P.q = 2P&k) >> M2 

Q2 =-q2 = e&Q2 >> M2 

with x E Q2/2P.q fixed. In addition we require that 

-2 Q E -T2 >> M2 

2P*c>> M2 

Q2-ij2 = 2k. q >> M2 . 

PI 

In the parton model the leading contribution to V 
WA 

in this kinematic region 

arises when all three photons scatter on an individual parton (see Fig. 3) and 

is given by kinematical factors multiplying the scale invariant function V(x). 
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This result is derived from the following considerations: 

(a) As long as both space like photons, q and G, are massive (i.e., have large 

transverse momenta in an infinite momentum frame) and are such that 

Q2-Q2 = 2k. q >> M2 (which constrains k also to have large transverse momentum 

in an infinite momentum frame), then all diagrams in which photons interact with 

more than one parton line are strongly suppressed. [This assumption is, in 

general, not satisfied for inelastic Compton processes. In the case of small 

transverse momentum transfer, PC z g , where 

t z (:-k)2, s f (P+32, ur (-P-kj2 

multiple parton processes can be important even in the scaling region. 11 This 

has been shown explicitly for the case of 12 

y+P- “y’* (Q2) + anything Q2>> M2 

On the other hand, for large P$ the elementary parton process calculated by 

B jorken and Paschos7 can be shown to dominate. 13 ] 

Since the interference contribution requires that both the Bethe-Heitler 

and Compton amplitudes have the same final state, we see that our kinematic 

restriction requires large transverse momentum in the hadronic wavefunction 

unless q, k and G all interact with the same parton, as in Fig. 3. 14 Of course, 

if the photon were taken to be in the soft, infrared region (k* P << M2) then it 

can bremsstrahlung off of any of the constituent partons. This generates the 

usual target bremsstrahlung term in the soft photon radiative correction 

formulae . 

(b) As in the usual application of the parton model, the requirements of large 

q2, .G2> P. q and P. c are assumed to justify the neglect of interparton inter- 

actions during the time period of the photon processes (the impulse approxi- 

mation) and final state interactions (incoherence approximation). 
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Thus the standard assumptions of parton models imply that the difference 

of positron and electron inclusive bremsstrahlung cross sections scales and 

is weighted by the cube of the partons’ charges. Denoting, as usual, the 

fraction of the proton’s momentum in an infinite momentum frame carried by 

parton i as vi we find that I P> = cndn : 

V 1 1 =-- 
WA c 2P.q x ni Idni2 cnl6 (qi-x)h.fln> Mivx 

, 

with 

Mi 
PVh = + Tr 4Yv tii+ 4 [Yp,(pli+ d+K)-l yh + yh(jji -it)-l yc1] 

(3) 

(4) 

where x = Q2/2P.q. We have written M1 
I.tVh 

for the case of spin l/2 partons; 

the spin zero case is analogous. From V 
PJh 

we may extract the structure 

function V(x): 

V(x) = C ldn12 <nl6 (qi-x) AfIn> 
n, i 

(5) 

the sum being over parton and anti-parton of different types, a. 

The cross section is a function of six independent variables 

Q2 P.krMko=-Z-y 

Q2 p*k= Z/3 

p’.k I & 2”8’ 

Q2 ~(p’-p-k)~ . 

(6) 

and 
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The difference of cross sections may be written as 

with 

and 

d%+ d% 
= 

& d3k d3p’ d3k 2 c r2sQ a 
I Ti”ntl’ Us(x) h; 

Pb k. Pb k. 

lTii,$‘= 
-Mavh LPv A 

s2G2 

(7) 

(8) 

(9) 

The expression for Ma 
ClVh 

changes depending on whether partons of type a have 

spin 0 or l/2. The product Ma 
PVh 

LPVh was computed using A. C. Hearn’s 

program REDUC E. 15 The complete expressions are given in the Appendix for 

both spin 0 and spin l/2 partons. 

Here we will concentrate on a particularly simple region, namely: 

- >> cl!, o!‘, y, p, p’ >> 1 
P--s 

with a-cr’-yz; 

of order 1, in which the formulae of the Appendix simplify considerably, To 

preserve the condition Q2 - Q2 = Q2(p - p’) >> M2, we are required to take Q2 

quite large. We choose this region for illustrative purposes only - in general 

Q2 need not be larger than the onset of scaling in inelastic electroproduction 

(e.g., 1 GeV2), and the full formulae of the Appendix must be used. In this 
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region we find: 

d%+ 

& d3k 

Pb ko 

d% 

3 3= dp’dk r2c@y xQ6 

Pb ko 
r ia2x2-apx-o!x+~2-po!~x+x20!‘2+xa!~+11 

c A; v,(x) 
spin 2 

+ [ ~px-20!cr~x2-crx+a!‘px+o!~x+1-x2Y21 

go 1 
+,@J - 

(10) 

Clearly the different dependences of spin 0 and spin-l/2 terms on the invariants 

allows one in principle to distinguish the parton’s spin. 

Besides simplifying our formulae this kinematic region satisfies the im- 

portant experimental requirement that the interference be a substantial fraction 

of the signal. To estimate the individual electron and positron cross section 

we have calculated the squared amplitudes for the Bethe-Heitler and inelastic 

Compton processes off of a single parton. We find (e.g., for spin l/2 partons) 

for the squared Compton amplitude: 

ITC12” 8 
x2y2Q2 ( 

a2x2-o!px-a!x+p2-o!‘px+Q!‘2x2+(Y~x+ 1) 

and for the squared Bethe-Heitler amplitude: 

2 8 lTBHl = 
P2Q2 

(o!2x2-a!px-cYx+p2-c@x+o!‘2x2+~‘x+ 1) 

From these we can construct the interference to signal ratio: 

d”+ - C%J 
do;+& = -2 

XY 
c pa 

(11) 

(12) 

(13) 
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which is clearly of order unity. The choice of ,kkP’ yields this result because 

with that restriction the denominators which enter the inelastic Compton as 

well as the Bethe-Heitler amplitudes are approximately equal. It is therefore 

experimentally quite feasible to measure the quantity c Ua(x)lz from the 
a 

e+-e- cross section difference. 

SUM RULES 

To realize the particular utility of the interference measurement, one 

must recall that the usual sum rules for sums over the squares of the parton’s 

charges involving F2(x) = VW,(X) depend on a variety of questionable assumptions. 
7 

Rigorous sum rules must derive from quantum number conservation. Specifically 

we have 

Q =f ck c haua(x) 
0 a 

J 1 
Y= 

0 

J 1 
B= 

0 

dx 

dx 

c Y, U,(x) 
a 

c ba uaw 
a 

(14) 

where Q, Y, and B (ha, y,, and ba) are the charge, hypercharge, and baryon 

numbers of the target hadron (parton) of interest. All of these sum rules 

odd 1 depend only on the odd charge conjugation part of Us(x): Ua (x)~~(U~(x)-Us(x)). 

In general it is possible to reduce A: (which is odd under charge conjugation) 

to a linear combination of Aa, y,, and ba so that the integral 

fV(x) dx = J1 dx c hpJa(X) 
0 0 a 

(15) 

is determined by quantum number conservation. 
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This is in striking contrast to the sum rules involving the electroproduction 

structure functions VW;‘(X) and VW?(X), defined by: 

vw;p(x) = x c hi Us(X) 
a 

(16) 

vWe,“(x) = xc AZ Us 
a 

where a is the isospin reflection of the parton a. VW i” and vW~ depend only 

on the combination U rn= l/2 (Ua(x)+U,(x)) and are therefore unrelated to the 

conserved quantum numbers. The following sum rules are easily constructed: 

s 
%x x VW,(X) = c hf Na (174 

0 a 

,,’ dx VW,(X) = r Ai zaNa (1%) 
a 

where Na z s o1 dx U,(x) is the mean multiplicity for a parton of type a, and 

XaNa E I 
1 

xdxUa(x) is the momentum fraction for partons of type a. The 
0 

right-hand side of (17a) is completely unknown without strong assumptions. If it 

is possible to define a distribution function for the momenta of partons in each 

constituent state 1x1~ (I P> I c ,A$ In >), and, if one assumes the distribution 

function to be symmetric in al: its variables, then the right-hand side of (17b) 

reduces to the mean square charge of the partons. 16 The usefulness of (17b) is 

further diminished in the presence of neutral gluons for which case the mean 

square charge defined by the sum rule will be anomalously low. Similar 

remarks apply to sum rules for VW;’ - vWy: They are valid only with specific 

assumptions about the distribution of partons in the nucleons. 
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Sum rules for V(x) E C kzUa(x) suffer from none of these difficulties: 
a 

(a) In all models with partons of charge 0 or -11 (e.g., Drell, Levy, Yan; 

Han, Nambu; u-model; em “), hz G ha so that 

1 
s 

1 for protons 
dx V(x) =Q= 

0 0 for neutrons 

(b) In the standard quark parton model: hz = i Aa + $- ba so that 

(18) 

1 

J dx V(X) = ~Q+;B = 
5/9 for protons 

1 - 
(19) 

0 2/9 for neutrons 

The sum rule provides a striking test for fractionally charged partons. Since 

the sum rule is independent of the parton distribution, similar results hold for 

nuclear targets as well: 

1 

s dx V(x) = 3zg+2A (Quark model) 
0 

For nuclei A=2Z, the quark model sum rule gives 7/9 of the corre- 

sponding result for integrally-charged constituents. Thus tests of the sum 

rule and the parton model can be performed on nuclear targets with the 

additional benefit of large cross sections. 

Lastly, in various models it is possible to extract most of the functions 

Us(x) from deep inelastic neutrino, and electron scattering off of protons and 

neutrons, 17 and thereby relate V(x) back to these processes. In the quark 

model, for example, one obtains 

- 7 (F?(X)+ Fip(~)) - & (u,(x) - ux(x)> o 
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If one assumes U,(x) = &(x) in nonstrange baryons the last term drops out; 

if not it may be expressed in terms of AS=1 deep inelastic neutrino scattering. 17 
1 

Of course the integral Jb dx (U,(x) -Vi;(x)) E S vanishes for nonstrange baryons. 

Similar analyses may be performed in other models. 

CONCLUSION 

In conclusion, we have shown that the parton model predicts a very specific 

scaling form for deep inelastic bremsstrahlung. The prediction that the right- 

hand side of Eq. (A7) depends in the scaling region only on the variable x 

and not on any of the four other dimensionless ratios of invariants provides a 

strong test of the validity of the parton model. Second, since the structure 

function V(x) depends on the cube of the parton charge, it is possible to obtain 

exact sum rules, Eqs. (18) and (19), which provide a definitive test of whether 

the constituents of the proton have fractional versus integral charge. 

Since V(x) does not receive contributions from diffractive, Pomeron, or 

other C-even exchange components, it should have a readily-integrable quasi- 

elastic peak. This, combined with the fact that there exists a simple kine- 

matic region in which the Bethe-Heitler/Compton interference signal is 

maximal, and with the absence of a hadronic decay background, should make 

deep inelastic bremsstrahlung a feasible experiment for proton and nuclear 

targets. 
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APPENDIX 

In this appendix we give the complete parton model prediction for deep 

inelastic bremsstrahlung in the scaling region. The inclusive cross section 

assuming spin l/2 partons is (e2/4n= a! = l/137.036, Q2=-q2, Mv =P*q) 

do- e*p -+ e*yX S dg 
d3p’ d3k =zixiG d3k 
I-- 
PO kO 

dQ2dv - 
kO 

+ c A; U,(x) I TCl 2 
a 3 

(Al) 

where 

+L1L2(P2-2PPr-3~+P’2+3P’+2) - L; p(p-l)] tw 
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-2x2 D1D2((r2P-(r2+~~~r-~~‘p’-~r2~1-~’2) 

-x2 D~(o12~‘+cupol’-olcu’~‘-pcr’2) 

-x D;(c~p/3’-a/3’~ -a~‘+p2a’-pa’/3’-pa’) 

+DlD2(/32-2/3~‘-3~+~12+3~‘+2) - D;{p2-P+/3’2+p’) 1 tw 
lTint12 = s 

Q [I 
4x3P22a2a’+4x3P21”2~‘+4x3P120!~‘2+4x3Pllcm!’2 

-x2 P22(“2p+2a2p’ -(Y2+(Yp~‘+3~(Y’p’+4~(Y’+~‘2P’+~’2) 

-x2 P21(3a2fi-2a2p’ -3a2-a~~‘+5aa’~‘+4~~1-~‘2~‘-a’2) 

2 -x ~~~(~~~-cu~+3~p01~+cycu’~‘-4~a’+2~~’~+~’~~’+cw’~) 

+x2 P11(a2~-a2-5a~~‘+aa1~‘+4cw’+2~a’2-3~’2p,-3a!12) 

+x P22(~p2-~~2cup’2+3crpl+Pa’P’+2pol’) 

-P22(p 2 -&?-2p+2p 2 +3p’+l) - P21(pp’+p-P’ 2 
-2P’-1) 

+P12(2~2-&Y-3/3+/3’2+2p’+l) - p11(P2-PP’-2pcP’+1)] (A4) 
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For the case of spin 0 partons 

IT.&’ = -+ [ 8x3P22cr2~‘+8x3P21~2czf+8x3P12~(u’2+8x3Pllaa?2 
Q 

-4x2P22 cY(czp-a+3a’~‘+3a’) - 4x2P21 CY(CYp-(Y+cX’p’+cv’) 

_4X2P12 (Y’(3C@-3Q+Q’P’+(Y’) - 4x2PllCz’(Q!p-Q!+Q!‘~‘+c?3 

+4x Ll(crp-cr-2pa!‘+a!‘p’+or’) - 4x L,(~p-zcup’-a+a,‘p’+cr’) 

+xP22(5a~~‘+8a~-91YP’-8~+5~‘P’2+9c+’+4Q!’) 

+xP21(a~~‘+4a/3-5c4!p’-4a+cr’P’2+ol’P’) 

+xp12(5a~2-9a~+4t+5~d~‘+9/W-8ar’p’-8d) 

+XPll(crp2-crpfp~‘p’~5~~‘-4a’P’-4a’) 

+4 Ll(p2-pp’-2p+p’+l) + 4 L2(pp’+p-p’2-2P’-1) 

-P22(2pp’2+5pp’+4p-5p’2-9p’-4) - P21 /3’(P--p-q 

-P12(2p2p’+5p2-5pp’-9/3+4p’+4) - Pll P(P-@‘-l)] (A3 

The quantities CI, p, Q’, p’ and kinematics are defined in Eq. (6). 

gators are (mass terms are neglected) 

The propa- 

-I- tP -kiz- _ p 
L1 

Q2 

-1 _ @‘+ kj2- 
L2 

Q2 
P’ 

-1 = 
2 

D1 
(xP = x(Q!-a’) - 1 + p-p 

Q2 

-1 _ (xP - k)2 
D2 

Q2 
= -xy 646) 

and Pi j = Li * Dj, i, j=l, 2. Also note the relation x= (c~-a!~-y) -1 . 

- 16 - 



The odd conjugation structure 

from experiment by the relation 

function V(x) = c 1: Us(x) is thus obtained 
a 

cafe p- e.yX) do(ep - e-yX) 

V(x) = 
d3p’/p, d3k/k, d3p’/po d%k, 

(e2/4r)3 I Tint I 2/(sQ2.ri3 
W’) 

A severe test of the parton model is obtained from the requirement that the 

right-hand side of (A7) is in fact a function of x alone. Note that hadronic decay 

processes, e.g., ep -t er”X + eyyX contributes to the sum but not to the 

difference of e* cross sections. The nominal order of the total scaling inelastic 

bremsstrahlung e-p cross section is [a/~] times the total scaling inelastic 

e-p cross section. 
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J 
1 

0 
VW2 w dX= c 

n ‘n c 
i 

A2 i / dxl.. .dxN XiP(Xl.. .XN ) 
n n 

where(%)nis the average momentum of particle i in the state In> . Sine e 
N 

for any values of xl. . .xN momentum conservation requires Xi=: xi = 1 

we find x>l(zi)n= 1. If fgl.. .xN ) ’ 1s symmetric under interchange of 
n 

any indices i and j, (%.&is independent of i. 
1 

This implies(x.&=(~)n= l/N, 

which proves the contention that so vW2(x)dx is the mean square charge. 

17. C. H. Llewellyn Smith, Ref. 6. 
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LIST OF FIGURES 

1. Diagrams which contribute to inclusive bremsstrahlung, e*p -+ e*yX. The 

Bethe-Heitler amplitude also receives a contribution from the amplitude 

in which the photon is emitted from the incident lepton. The Compton 

amplitude changes sign with the lepton charge. 

2. The absorptive amplitude contributing to the e*p -+ e*yX cross section 

difference, from the interference of the diagrams of Fig. 1. 

3. The surviving single parton contribution to the interference amplitude 

in the Bjorken scaling limit. The kinematical restrictions require that 

all three photons interact with the same parton. The result is propor- 

tional to the charge cubed of the parton. 
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Fig. 2 



I . 

r 
. I _-- 

- -1 . _ ._ -. _ .I^ . _., - - _ - - . . 
k 

c 

i ‘21 llA3 

Fig. 3 


