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- INTRODUCTION .- 

The basic equations of quantum electrodynamics are extraordina- 

rily elegant and simple. As far as we lcnow,a complete description of the 

motion and mutual interactions of electrons, muons, and photons is provided 

by Maxwell's equations and the Dirac theory of the leptons. In a more 

complete theory we also include their electrodynamic couplings with the 

hadrons. In fact, quantum electrodynamics is the basic microscopic theory 

of the hydrogen atom, atomic physics, chemistry, classical electrodynamics, 

etc. In all of its critical tests - both in the high energy, short distance 

domain and low energy precision measurementsr the complete Zsuccess of the 

theory makes one believe that, in fact, mathematical physics does say 

something about the physical world [I] D 

Despite the simplicity of the ~derlyingforlm~a.ae~cxlf,.~~~~twnl;elec- 

trodynamics, caicu~acions of higher order perturbation effects are suffi- 

ciently complex, that organization via computer technique is essential. 

Still, subtle, mathematical analysis is required to 

1) carry out the covariant renormalization procedure to remove the ultra- 

violet divergencies 

2) carefully handle infrared divergenciescas regulated by a photon mass 

parameter h ) which occur in individual Feynman diagram contributions 

3) handle the algebraic manipulations in ss compactafashion as possible 

to avoid incredibly large numbersof terms, and 

4) Carry out the analytic or, if necessary, numerical integration., 

These are the main questions which I wish to discuss here. In 

the next sections I will outline the basic approach to renormalization 
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theory used in several recent calculations including a discussion of the 

intermediate renormalization method which has been found useful for iso- 

lating the infrared dependence. A general systematic algebraic approach to 

the automatic reduction of multiloop Feynman diagrams to parametric form is 

then discussed. This approach is readily utilized, for example, by the al- 

gebraic simplification program REDUCE written by A.C. Hearn [21 0 Some 

brief remarks about numerical integrations are also made. Application of 

these techniques to fourth and sixth order calculations of the lepton vertex 

are described, and a brief comparison with experiment is given in Section III. 

In Section IV, some new computation techniques which are applicable to 

quantum electrodynamics are presented. 

II - ANALYSIS AND EVALUATION OF FEYIWWT DIAGRAMS 

There are three central problems in the computation of higher 

order diagrams in the perturbation theory of quantum electrodynamics 1.33 : 

(i) the application of the covariant renormalization procedure, 

(ii) the reduction of multiloop integrals to Feynman parametric form, and 

(iii) the calculation of the parametric integrals. 

In this section, I wish to review and discuss some of the techniques in 

these areas which have been found useful in various calculations of the 

lepton vertex, This includes calculations of (a) the slope F;(O) of 

the Dirac form factor of the electron - for the fourth order electrodyna- 

mic contribution to the Lamb shift L-41 , (b) the light-by-light scattering 

contribution to the anomalous moment of the electron and muon c53 , and 

(c) the vacuum polarization contribution to the anomalous moments [63 o 

The relevant diagrams are shown in figure 1 0 



A) The renormalization procedure of quantum electrodynamics as 

derived by Feynman, Schwinger, Tomonaga, and Dyson c31 leads unambiguously 

to finite radiative corrections. 

To a given order in perturbation theory, the b-are charge e. and mass m. 

parameters are chosen to guarantee that the e-e scattering amplitude 

yields the Coulomb amplitude e2/ q2 in the forward limit, and insure that 

the pole in the electron?~ propagator is located at 2 2 s=p =m , where 

e and m are $lr,e measured charge arid mass, 

Alternatively, this last condition involving m may be replaced by the 

physical requirement that the Compton amplitude must approach the Thomson 

value e*/m in the threshold (m -) 0) limit. 

In practice, the charge and mass renormalization are accomplished 

by performing subtractions at q2= 0 2 2 clnd p=m in the photon and lep- 

ton propagators, respectively. For the photon, the renormalized propagator 

takes the Kallen-Lehmann form Csl 

iD gWJ 
FJV 

=-- (g 
q2+i& $V 

.2E- 
q2+k 

(q + 0) 

and for the electron, proper and improper self-energy bubbles can be summed 

into the form for the propagator 

- iSF(P) = 1 1 1 
mo-C(p)& Ljy=z jG 

with 

C(P) = m-m0 + (&m)B + (,&n)2 C,(p) D 

The Ward Identity Z,= Z2 E -& guarantees that the w-?ve function 
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renormalization contributions from B exactly cancel against vertex renor- 

malization contributions Z obtained at q 2 
1 = 0 from the on--shell 

vertex graphs ana subgraphs. 

Thus because of the Wrard Identity, the wave-function renormaliza- 

tion contributions B may be implicitly neglected if vertex subggaph con- 

tributions are explicitly subtracted on the mass-shell : 

A; = $(P2, P?, q2) - Ap2, m2, 0) 

In the ladder and corner graph contributions to the fourth order 

vertex (see figure I?), the subtraction necessary to remove the internal 

logarithmic divergence of the vertex subgraph is easily accomplished by 

subtracting (even at the stage of parametric integrals) the parallel form 

obtained with the vertex subgraph taken with its legs constrained to the 

mass-shell. The alternate, more standard procedure, which utilizes an inte- 

2 gral representation in p2, p' , md q2 for the renormalized vertex sub- 

graph is in fact much more complicated -especially for 

oriented calculations. 

algebraic computer - 

The above procedure also allows an immediate application of the 

very useful intermediate renormalization technique cl01 e In the usual 

method, as described above, the ultraviolet divergencies are cancelled at 

the expense of introducing in individual diagrams infrared logarithmic diver- 

gencies in the photon mass X D (In the case of the anomalous moment (to all 

orders ) and the slope of the Dirac form factor F;(O) (at fourth or 

higher order) the infrared divergences cancel in complete results Cl11 $. 

The vertex subgraph renormalizations, however, can be grouped as 

r$JP*2, P2, q2) - $(O,O,O)l 

+ [Ap(O, 0, 0) - Ak(m2, m2, 0)l 
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The first finite contribution in fact has no infrared divergence, 

and the second, which can be computed simply from the next lower order 

calculation, isolates the infrared dependence in a simple analytic fashion. 

,In fact, there is considerable flexibility in the choice of the subtraction 

amplitude which allows the cancellation of the ultraviolet divergence and 

is infrared-free, and a choice other than Ap,0,0) may be made for 

convenience of analytic calculation. Moreover, this extended method 163 

has been applied to the self-energy renormalizations as well, allowing 

a straightforward isolation of the infrared pieces Cl21 . 

There is also one other special case of renormalization in 

quantum electrodynamics which occurs when photon-photon subgraph contribu- 

tions need to be considered. The polarization tensor of fourth rank repre- 

senting photon-photon scattering is (using the notation of ref. 5(b)) o 

-ie 4 
17 d4p6Tr[YIIM6-me)-' Y,,(,&,-me)-' 

+ five other terms - regularization constant term. o 1 

Although individual terms of I"oou, are logarithmically divergent for 

large p6 , the sum is convergent and well-defined and gauge-invariant if 

properly renormalized. In fact by differentiating the condition of gauge- 

invariance : 
b ,- 

I 

iv n,,,.,l-p,, p2' P,; -A) = 0 

with respect to A' (regarding, e.q. as A, i,, and p3 I as the independent ! 

variables), we obtain 

n +c&-~,r ~2, pg, -A) 

=- &s- rr 
ab, --xpo y C-P.,, p2' p3, - A) 



in which the cancellation of the ultraviolet divergencies is manifestly 
, 

evident from the beginning. This form is eminently suitable for the calcu- 

lation of the photon-photon-subgraph contribution to the anomalous moment [51, 

since the required linear dependence on the external momentum is explicit 

from the start and A may be set to zero elsewhere. We note that the dif- 

ferentiation effectively adds one further electron propagator to the cal- 

culation. As we shall see, this means this is the only sixth order calcu- 

lation which ultimately involves six powers of loop momenta in the nume- 

rator structure. 

B) Several very elegant techniques have been developed for redu- 

cing multiloop integrations of Feynman graphs to parametric form : 

R 
I = s,s, d4A 

F(P~~oQP,) 1 n 
j- .l-i dzj s(l - & zlc) N(z) = r 

jI,(P;- m5' 
o J=l D(z) 

there we have considered a graph with R loops and n propagators ; the 

'j 
of course satisfy four momentum conservation at each vertex and the 

external mass-shell conditions. Among these methods are the graphical 

techniques of Chisholm [I31 , Nakanishi iI41 and Kinoshita cl51 , and 

the more standard algebraic techniques of Landau outlined in Bjorken and 

Drell's book [71 a 

The latter method is very straightforward and is quite easy to 

implement on REDUCE, Hearn's LISP-based automatic computation program [21 , 

although in all the applications discussed here we have used both techniques 

to provide an independent check, 

We first note that in any order the contributions to the Fl(q2) 

and F2(q2) form factors of the lepton may be automatically computed from 
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the vertex matrix element (JP= y' gives the Born normalization) 

Mu = --ie .i;;(p+q/p) J' I&-q/2) 

Fj(q2) = ; Txf(,$+d2 + m) J'(+-~/2 + d $ (j)] 

where *(I) 
w 

=(3m$ - 
1-1 P2 YJ / 4 P4 

h(2) = c n12p2Yw - 
P 

m(m2+ 2 q2) ‘p,1/Cq2(P2)21 

2 12 with p=m2-zq , p0q = 0 * 

Thus, for example, in the sixth order calcAations of the ano- 

malous moment a = F2(0) , L171 , we are required to evaluate a scalar 

expression 

F(P,~~OP& 
I = s d4&,d4k2d4& 

3 

where for a given loop momenta labeling we may write 

3 
Pj = kj+ aj = kj + c i-i. 6 

r=l Jr r 

where n. 
Jr 

is the projection ( *l,O) of pj along 4, o The kj can be .' 

any choice of fixed momenta (independent of &) such that four momentum 

is conserved at all the vertices, We may then combine denominators 

d4&,,d4J2d4A3 F(p) 
I = 7!jdz,e.edzg 6(1- a$ 3 8 

2 [.C z.(p -m 
J=l J j j 

If we now choose the k. such that 
J 

8 
j&zj kj njr = 0 , r = 1,2,3 
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Then the denominator in (5.3) has no k,& cross terms : 

8 3 
.X zj(pi - rn:) = -D + C U 

j=l rr'=? rr' &r*&r, 

where 

8 
D= .C z.(m2-ki) 

J=l J j 

8 
U rr c ' = j=l 'j njr njrl 

It is easy to see that the k. 
J 

are completely and uniquely determined in 

terms of the external momenta 

K; = & [Aj(z) p' + Bj(z) q' 1 

by 5 conditions of J-momentum conservation and the three conditions for 

diagonalizatiqn. Here the (cubic) polynomial u(z) = det(Urr') plays 

a fundamental role in the evaluation of the diagram. [As a convenient check 

the denominator term D (positive definite for q2 < 0) can also be written 

in the form 

D = & r.: 2U J=l ‘j “j 
+W m2- 

P wq q21 

where W 
P 

and W 
P 

are simple forms L131, cl51 which can be read simply 

from the graph structure]. At this point odd powers of loop momenta may 

be dropped in the numerator, [181 and the integrand F(pl"*p8) becomes 

a2 even polynomial in 4 0 r 

We are now ready to integrate over the loop momenta, The basic 

integration over loop momenta is 

7! 
Jd4$Jd4&2Jd4&3 

L-D+ C Urr,ar-&r,18 = 

.3,6 1 

' u2 D2 
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2 Note that integrands containing Cm extra denominator factor pk- rnt 

(e-g* ) from the 3/3A v differentiation in the light-by-light scattering 

calculation), may be obtained by parametric differentiation with respect 

to m2 4" 
Similarly, integrands containing numerator factors of Jj-kk can . 

be integrated using succesive parametric differentiation with respect to 

the Urr, o Note that forms like "-,.P 'es"P , with explicit dependence on 

the direction of the external four-vectors can always be removed using 

tensor methods. The anomalous moment is associated with 'a linear depen- 

dence on q2 in the numerator trace reduction. 

The replacements for numerator polynomials aje,Lk can be put 

into a very simple form using the following technique 141 ; the form kjOtk 

can be written as a linear combination 

s,sp 
'js 'ksP 's"~sS 

= 1 
where s = 1,2,3 are the indices of the three independent loop momenta. 

QQ is equivalent to 

where to avoid double counting for s # sp ( 

u ss' = Uss' for s=s' 

= 2 usss for s # sp e 

I\Tote that 

U is symmetric) we define 

B 3u 
ss' 

=- 
aa 

is the signed cofactor of Uss, in U O Conse- 

quently Bss,/U is"' the inverse of the matrix Uss, O The polynomials 

B sso ' A/+ and U determine the complete parameeric structure of 

the graph. 
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In addition to quadratic terms, numerators with up to six powers 

of loop momenta dr appear in the computation of the photon-photon-scatter- 

ing anomalous moment contribution. An important identity for reducing the 

required higher order derivatives is 

Bed - 4 Bat Bbd - 5 Bad Bbc 

which holds for symmetric matrices U rr' = uror 0 

TO prove this it is simplest to consider the more general case where the 

elements of Urr, are independent, and show for n x n square matrices 

(nk2) 

3% 
'&Jab bUcd = BabBcd - 'adBbc 

B z au 
ab 3U ab 

We start from the statement that Bss,/U is the inverse 

3 
C Uij B . = bit U 

j=l cJ 

Differentiating v*r.t, U ab gives 

6 Bcb+CU.. 3% 
ai 

j 
1J &JtidUcj = 'iC Bab 

Multiplication by Bid and summation over i then gives 

3% 
BadRcb' ' 3Uab &Jc, = 'cd 'ab 
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as required. The prove for the sTymm.etric case is the same except 

As a constiquence of this identity we carry out successive differentiations 

of U in a uniform rnmler in ternsof B ab * Thus a numerator term linear or 

is replaced in the integrend according to c41 

+B B ad 3c + BacBbd' - 

La.4bb.Gc’~dd’Le’Lf -) ' [8 SabacdEef + 2 BabBcfBed+"'"+ 5 BaeBbcBdfl 
IJ3 

(15 distinct terms) 

aside from a simple numeratorfactor which depends on the number of denomina- 

tors. 

Thus, in this manner, all Feynman graphs are reduced systematically 

to parametric integrals, The renormalized photon and lepton propagator insertions 
of Qreducible graphs, 

'i-- are no more comzated since they can be written as a spectral sum of free 

propagators. Alternately, subtraction counter terms can be constructed in 

parallel and subtracted in momentum or parametric space [51,[61 o 

In the vertex calculations discussed here [4],[61 , all of the 

above substitutions and traces could be accomplished automatically by straight- 

forward REDUCE [21 substitutions. The programs (1) project the desired form 

factor sji a trace calculation , (2) replace the internal 4-vectors 
'j 

in 

terms of the expansion : 

Let PI = AIxP+BIxQ+LIxS; enforcing the mass shell condition and 

retaining only even powers in the scale variable -s e (3) Angular averaging 

is introduced to eliminate explicit dependence on the directions of P and 
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Q ; e,g, : 

iUTCH s *+2 * P,X * Q.Y = 0 

(X and Y are free variables) 

(4) the substitutions for powers of loop momenta are then made ; e,g, 

NATCH S ** 4 * X.-r' * U,V=c*(4*X.Y $5 U.V + X.U*YbV -I- X,V * YJJ) ; 

(5) and finally the replacements for the pairs X-Y are made (e.q. &1.L2'B,2),0 

Additionally, the integrands may be simplified even further by Kirchoff laws ; 

(see App.A, ref.i51 o 

After the final stages of algebraic simplification REDUCE produces 

the integrand in FORTRAN form suitable for numerical integration. Although, 

we did not do this, the program could have also been used to automatically 

generate the function form of A.(z), Bj(z) , Bjlc(z) and U from the 3x3 

inhomogeneous system derived from the diagonalization conditions. 

C) The integrals over the Feynman parameters (up to 5 dimensions for 

the slope of the fourth order vertex and 7 for the anomalous moment in sixth 

order) have been performed numerical1 y using the multi-dimensional FORTRAN 
-I 

program originally developed by G. Sheppey iI91 and modified by A.Dufner [51. -~ 

In this method one calculates the usual Riemann sum, talking the central value 

of the integrand from an average of two random points within each hypercube. 

The difference of the function values is used to compute a variance and error 

for the integration, on successive iterations the computer readjusts the grid 

to minimize the variance. 

Although the Sheppey program is well-suited to the integrals involved 

in this calculation, it is still very advantageous to cut down the number I 
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integration variables by mapping onto appropriate variables according to 

the structure of D and U , or in the case of log mP2/me2 or log X2 

(or then residua 7 ternls) make appropriate chs.rges of variables to eliminate 

or restrictthe near singular behaviour to as few variables as possible. 

Dramatic charges of variables also allow obvious checks on the convergence 

and validity of the integrations. 

III - BRIEF DISCUSSION OF RESULTS 

Recent reviews of the precisiontests of quantum electrodynamics 

have been presented by Drell and myself [II and de Rafael, Lautrup, and 

Peterman [II , and I will only briefly discuss tests of the higher order 

corrections to the lepton vertex relevant to this talk. 

The fundamentaland historic test ofelectrodynamics is the Lamb 

Shift, the 2s 
l/2 - 2p1/2 

separation in hydrogen and hydrogen-like atoms. 

v The bulk of the Lamb Shift is computed from the order self-energy of the 

electron as modified to all orders by the Coulomb field of the proton[203,C211. ' 

In fourth order, (i.e, : 2 photon corrections to the lepton line) it is 

sufficient [221 to consider only first order effects in the Coulomb field ; 

and thus knowledge of the electron vertex form factors in fourth order is 

sufficient to determine the short-distance modifications of the electron- 

proton interaction. Since the effect of the electron anomalous moment is 

well-known, the important question is the value for c41 

aF I 
AEn(n,j,L) = 6m w m2 -$ lq2* 

n 

due to the order a2 effective rm S radius of the Dirac form factor : 

3F 
<r2> = 6 2 

aq* q2= 0 
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Higher order terms in q2 produce corrections of order n :Zo! smaller. 

In 1970, AppelquiQ and I f41 reported a calculation of the, 

9% 0 slope of the Dirac form factor in fourth order and found the result 

2 5 
(4) j 

m - I = ro.48 4 0.071 $ 
dq2 12 'q =0 

using the analytic and numerical techniques discussed in Section II , 

Our result differed from the previous analytic calculation c231 due to 

~1 overall sign discrepancy and individual differences in the non-infrared 

remainder of the cross and corner graphs. More recently there have been 

additional numerical and analytic calculations which have confirmed, graph 

by graph, the new results and removed the numerical integration uncertainty. 

The final result is [see figure (7)l 

m2F;(0) = ( E )2[- $$ - z ~(2) + 3 log 2 * ~(2) - 1 g(3)] 

= ( z )2 co*4701 

as obtained analytically by R. Barbieri, J. Mignaco and E. Remiddi [241 

C graphs (4 - Cell and A. Peterman i251 [graph (a)3 i Graphs (b) and (d) 

were also calculated and checked numerically by de Rafael, Lautrup and 

Peterman (261 e This result leads to anincreastbee Table 11 of 

0.34 NE& Z4(2/n)3 "Q 

from the previous compilations of the Lamb Shift given by Erickson and Yen- 

nie 1201 , and is in fact in good agreement with resent experimental results. 

Table II is the result of a recent summary of the Lamb Shift given I 

by Erickson L211 . It also includes an improved tstimate of the higher order 

binding corrections to the second 'order self-energy, and an improved value 

for the deuteron charge radius for the deuteron time structure. Experimental 

references are given in ref. C41 e 
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Table I D Revised tabulation of the theoretical contributions to the Lamb 

interval k = A E(2S1 - 2P1) in H , References to the various entries may be 
2 2 

found in Erickson and Yennie (Ref. c201) and Taylor et alil, (Ref. 1291) o The 

major revision from the compilation of Ref. [201 is the new result for the 

order cr2(Zo!)4m cantribution to the energy shift from the slope of the Dirac 

form factor in fourth order as given in refs, c4, 24, 25, 261 o The result of 

Ref. [231 is 0.102 MHz a Note that fourth-order contributions also arise from 

the anomalous magnetic moment and vacuum polarization corrections. An improved 

estimate of errors will be given in ref, [lb] o 

DESCRIPTION ORDER KAGNITUDE @Hz) 

2nd Order-Self-Energy 

2nd Order - Vac.Pol. 

2nd Order - Remainder 

4th Order -- Self-Energy 

4th Order - Vac.Pol. 

Reduced Mass Corrections 

Recoil 

Proton Size 

cr(ZcY)4mClog Zcu,ll 

QyzGJ) 4m 

o!(zQ!) 5m 

cY(ZcY)6mElog2Zo,log Zo!,ll 

a2(Z~)4m 

&'=137,03608(26 

8, = AE(2sg 2P.Q = 

1079.32 * 0.02 

-- 27.13 

7.14 
- 0.38 

oe44 

- 0.10 

f 0.02 

- 0.24 

- 1.64 

0.36 f 0.01 

0.13 

1 m25- 29 = 9911.13 * 0.11 (L-Ed 

‘= 2 

AE(2P $- 2q = 10969.03 k 0004 (LA 
2 

2 
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Table II o Precision tests of Lamb Shift calculations" 

j Interval 

I 
I 
/ H 2S,- 2P, 
I 2 2 
/ 

1 D 2S,- 2P, 
3 H 

I 
! , 
I He' 2S,-2P, 
4 f 3 -2 
, 

3s,-3P 
I 2 3 

3p3/2-3s$ 

J 

Theory (*IO) 

1057.899 3~ 0.017 

9911.136 + 0.033 

1059.259 f 0.028 

14,044.56 f 0.64 

4184.36 f 0.19 

47,843.46 * 0.24. 

experiment (, ,G) 

1057.90 4 0.06 
1057.77 f 0006 

9911J7 f 0.04 
9911.25 f 0.06 
9911.38 f 0.03 

1059.28 f 0,06 
lo59.00 f 0.06 

14,045.4 f lo2 
14,040.2 f 1e8 

4183.17 f 0054 

47,844.05 * 0.48 

theory - exp 
0 

- 0.0 
+ 2.1 

- 0.7 
- 1.7 
+ 5.5 

- 0.3 
+ 3.9 

- 0.6 
+ 2.3 

+ 2,l 

-- 1.1 

Values are in NFlHz o Experiments are listed in Ref. [4] * 

* 
Compiled by G.W. Erickson (to be published). 
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An even more sexice test of quantum ele atrodynamics is provided by 

the anomalous magnetic moments of the electron and mAon.There are basically 

three separate components to the sixth order calculation of the electron 

(1) The insertion of second md fourth order vacuum polarization loops into 

the second and fourth order vertex, Pcurth order vXuum polarization gives 

[27,61 cd)554 + 1 z2lc.l - _ ,' ,? -- s~cci2~ c cer vacu-dm polarization c6, 281 

c .I 54 f D ooYy?i7 
l-r3 

(2) The light-by-light scattering contribution : i51 

obtained via the analysis and 74imensional numerical integration, discussed 

in Section II, and 

(3) The non-loop contributions from 23 distinct graphs recently computed by 

H. Levine and J.-Wright [I21 : 1.2 f .2 -$ 6 

The theoretical result through order a3 ( using the Schwinger and Peterman -. 

Sommerfield result 111 is 

which can he compared with the very precise Wesley-Rich 1391 measurement 

(using 129 1 c: - 1 = 137.03698 (26) ) 

ew a, = .0011596577 (35) 

that is, agreemat in the seventh siglificat figxre. In a sense, we cm say 

that the QED predicticn for the CJyTOE”.Z~il~tiC ratio g = 2(1 -I- a) is con- 

firmed in the tenth significcxt figure, c,onside-ing the fact that there is no 
Iunperturbed, 

general reason why the mry should have the Dirac form begkning 

with g = 2 . 
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The largest sixth order contribution to the difference of electron 

and anomalous moments comes from the electron--loop photon-photon scattering 

contribution C;I 

cY3 A a&photon-photon) = (18.4 * 1.1) - 
T-r3 

l-1 
which is very large due to a logarithmic dependence 

.: 

[(6.4-r- O.l)log f 

+ constl E 
e 

in the electron mass m e for rni/iz 77 1 D The coefficient 

6.4 was obtained by doing two integrations analytically and the remaining 

5 dimensional integral to high accuracy numerically. The contributions of 

second and fourth order electron loops in the muon vertex has recently 

been completed independently by Lautrup, de Rafael, and Peterman [313 , and 

Kinoshita and myself Ccl e 

The total theory result is cl,61 

theory 
a theory 

‘4 
-a e = t&j6 (I) +..&& (5)1 x lo-’ 

QED hadronic v.p, 

The experimental c371 result iS 

exp cxp ~8 
“p -ae = 652 (32) x 10 

Although there is good agreement, improved numerical accuracy for the expe- 

rimental muon anomalous moment is clearly needed. 

71/P.385 



I 

- 19) 

IV - Computational Techniques in High Energy Physics. 

Another area of qu.antum electrodynamics which can greatly benefit 

from systematic algebraic computer techniques is the area of higher order high 

energy processes such as trident ?nd multi-pair production calculations, the 

now important colliding bean processes of the type ee -) eeX via 2y anni- 

hilation E331 , and hard photon radiatise corrections, There is one general 

comment which is applicable here - one should not start by computing the 
'hzy 

traces ! The following are examples wh>standard approach is awkward and 

usually impractical : 

(I) For the trident process 

+ 
e+p -e+p+e fe- 

there are 8 Bethe-Heitlermatrix elements in fourth order, including the ex- 

change diagrams. The individual amplitudes are of course gauge-dependent, and 

in fact suffer severe cancellations at usual laboratory conditiorsin the total 

result, The trace c<an involve a string of 12 Y-matrices ; moreover the sum of the 

horrendous results for the traces then involves numerical cancellations often 

not practical in a Fortr,m calculation even in double Precision because Of 

round-off accuracy. The simplest approach, utilized by Ting and myself 'L341 , 

Bjorken and Chen c351 , and Henry and Ehn [361 is to directly evaluate each 
1. 

matrix element for each helicity possibility, sum the 8 amplitudes, square 

and sumwer spins 0 This c&z be done in a compact,convenient numerical form. 

It also should be noted that the corresponding differential cross- 
,same 

section for spin 0 leptons is much more easier to compute, but has thssic 

magnitude, structure and car&lations as the spin 3 case. 

We have found it extremely useful to have both calculations for 

comparison. The spin 0 result which is more compact can, moreover,be used to 

setup an initial optimum grid for a first stage numerical integration. 
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In other higher order calculations, the work of Cheng and Wu 1381 , 
,a-momen..., 

and others, and more recently, the :' frame calculations of Bjorken, 

Soper, and Kogut k$l h as made it clecar that the high energy behaviour of 

the Feyniian amplitude obeys a simple eikonal form ; e.g. for e-e scattering 

in ladder and crossed ladder approximation 

T --) J'd2b [e ix(b) - 11 

where x is the phase obtained by integrating an effective potential from 

the one photon exchange. Further, Brezin, Itzikson, and Zinn-Justin [IO] 

have shown that the longest range Coulomb part of the ly exchange potential 

can be obtained from an eikonal answer at all energies, (and thus in fact 

provides a useful starting point for the positronium spectrum). These Cal- I. 

culations further emphasize the importance of adding sets of amplitudes 

before computing cross-sections. Further, the eikonal results demonstrate 

the importance Of including all orders of particle emission and exchmge 

in the scattering amplitude in contrast to "ladder" approximation which 

usually has mi9eading analytic behavior. It now seems very desirable to 

develop a perturbation theory which starts with the eikonal answer, cmd 

incorporates shorter range interactions in a perturbative form. Possible 

applications include the positronium spectrum, and approximations to the 

Coulomb--Dirac propagator for the Lamb Shift calculations. 

Another very exciting area for the study of perturbation theory 

results is the 'cQ-momentum frame" technique. In this method one returns to ~ 

"old-fashioned" time-ordered perturbation theory, choosing, however, a refer- ~ 

ence frame in which particle energies ,md longitudinal momenta become large. 

Thus in the analysis of forward virtual Corpton scattering or the elastic 

form factor, one takes,the target 4-momenta as I 

2 

pi-L 
= (Ep,;,P) -) (P + g , 0, P) 
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and the photon momentum <as 

q.P -) m 

q2 = - ;;2 
- 

where we choose the parameter P such that P2 >> N2 , TTPJ 0 

As P becomes large, the time-ordered diagram with particl_es moving with 
3 i!?ll 

longitudinal momentum XP , X < 0 (opposite to p) vanish in order ‘1;" P -2 

or have a simple limiting (seagull-like) form (the latter case occurs in 

fermion theories) [421 0 Unlike ordinary time-ordered theory, each surviving 

diagram is only a function of cov?ariant qu,antities. Unlike dispersion theory 

the intermediate phase space is trivial with no square roots. In this manner 

one obt;lins Feynman-like results but with loop integrations only involving 

3 integrations, [Thus, in the sixth order electron moment there are 9 inte- 

grations, of which at least two are simple] o 

The calculation of the anomalous moment in second order is extre- 

mely simple in this framework., In higher orders, various subtleties invol- 

ving renormalization and the P -) W limit need to be handled carefully. We 

also mention here that the distribution functions in the fractional longi- 
4 

tudind momentum X , =and transverse momenta k are of great physical uti- 

lity in the discussion of the impulse approximation in field theory. 

For ex,ample, the high energy limit of forward Compton scattering in QED 

contains a constant term of the form e431 

lim T.,(V,O') = T(%o) ic l 
v-50 0 x 

where f(x) is the probability of measuring v&a the charge operator, 

an intermediate charged particle with fractional longitudinal momentum X 

as viewed from the infinite momentum frame, The function xf(x) is also 
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.; ‘,? 2 2 ) 

connected with the large q2 , v limit of the inelastic form factors of 

the target electron 1421 O Hopefully, the a-momentum frame and eikonal 

techniques will lead not only to efficient calculation, but also will 

finally lead to interpretative insight into our calculations. 
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