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ABSTRACT 

We assume that the Pomeron can couple directly to the f”- 

meson through a t-dependent coupling. We take as given the fact 

that the triple-Pomeron coupling vanishes at zero Pomeron 

masses. Our major result is that any diagram that has a 

Pomeron connected to it vanishes when the mass of the Pomeron 

is zero. 
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I. INTRODUC TION 

The problem of the self-consistency of a factorizable Pomeron trajectory 

near J=l was first studied by Finkelstein and Kajantie. 1 They found that 

unlimited exchange of the Pomeron trajectory lead to the conclusion that 

“p( ) 
0 < 1 if Pomeron couplings are non-zero at t=O. This result was also 

obtained by Chew and his collaborators, within the framework of multiperipheral 

models, 2 where if %(O) = 1, the Pomeron decotiples from all other particles 

and trajectories at t=O. Recently, there has been considerable interest in the 

triple-Pomeron vertex gP(t). It is believed that if the Pomeron is a Regge pole 

with cup = 1, then gp(O) = 0. This result has been obtained from unitarity, 3 

in dual resonance models, 4 from sum rules expressing conservation of energy 

and momentum in terms of inclusive cross sections, 5 the Gribov Reggeon 

calculus, 6 and multi-peripheral models. 2 There is also considerable experi- 

mental evidence that suggest the triple-Pomeron vertex either vanishes identi- 

tally or is very small. 7 

In this paper we construct a model of Pomeron couplings. The basis of our 

model is the assumption that the Pomeron can couple directly to the f”-meson 

(2+, 1250) through a t-dependent coupling dI(t). We take as given the vanishing 

of the triple-Pomeron vertex at t=O, i.e., gp(0) = 0. Our major result is that 

any diagram that has a Pomeron connected to it vanishes when the mass of 

the Pomeron is zero. In Section II we give the details of the model and some 

of the consequences which follow. Section III is devoted to a discussion of some 

related matters. 
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II. THE MODEL 

The model is defined by the following two assumptions: (a) The Pomeron 

can couple directly to the f”-meson (2+, 1250) by means of a t-dependent cou- 

pling dI(t); (b) the triple-Pomeron coupling vanishes for zero Pomeron masses. 

The assumption (a) is strongly suggested by duality sum rules, 8 while as stated 

in the Introduction (b) seems to be a general consequence of unitarity once we 

assume the Pomeron is a Regge pole at o+(O) = 1. 

The general triple-, double-, and single-Pomeron vertices are given in 

Fig. 1 . We require g,(t,, t2, U) and g,(t,, t2, t3) to-be completely symmetric 

in the Pomeron masses, i.e., 

g,(t,, $4 = g,(t,, ty w) 3 (1) 

g,tt,, ty k&j = g,(t2, t1, t3) = g,(t,, t2’tl) 

= qt,, tp t2) = g&s ty 3) 

= I&Jt,, k$ tl) 0 (2) 

In our model, the vertices for the various Pomeron couplings are defined by the 

diagrams in Fig. 2. In this “pole-approximation, ‘1 the following results are 

obtained, 

g,(t) = g,w 9 (3) 

2g2(ty t2) = g,(t,) W2) + g&J d(tl) 2 (4) 

3g3(tl, t2, t3) = g,(t,, t3) d(t2) + g,(t,, t2) d(t3) + g,(t,, t3) Wl) - (5) 

Here, gf is the triple-f’ coupling, d(t) is 

d(t) = 
dl(t) 

7r(m,2 - t) ’ 
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and the w dependence in g2 has been suppressed. Using the fact that g3(0, 0, O)=O, 

we obtain from Eqs. (3) - (5)) 

g2P, 0) = 0 , t w 

g1tO) = 0 , tw 

d(0) = 0 0 W) 

The result, d(O)=O, means that any diagram that has a Pomeron joined to it 

vanishes when the mass of the Pomeron is zero. We now give, in more detail, 

some consequences of this result: 

(1) The triple-Pomeron vertex, g,(t) = I’,,,(t, t, 0), is identically zero. 

However, the general triple-Pomeron vertex, F,,,(tI, t2,t3), where none of 

the legs is at zero mass, is not expected to vanish. If any of the legs is at zero 

mass the vertex vanishes. 

(2) The Pomeron-Pomeron-Reggeon vertex, FppR(t,, t2, t3), vanishes if 

either or both Pomerons is at zero mass, i.e., 

rppR(“, t2’ t3) = rppR(tl’ OS t3) = rppR(os ‘, $) = ’ l (7) 

(3) The Reggeon-Reggeon-Pomeron vertex, FRRP(tl, t2, t3), vanishes at 

zero mass of the Pomeron leg and arbitrary masses for the Reggeon legs. 

(4) The Pomeron-Pomeron-particle, Fppd(tl, t2, w), and the Pomeron- 

Reggeon-particle, I’ pRd(tl, t2, w), vertices vanish if a Pomeron leg is at zero 

mass. 

(5) The Pomeron decouples from all total cross sections, i. e., the 

Pomeron-particle-particle vertex, Fpdd(t), vanishes for t=O. 

(6) The Mueller vertices, Fig. 3, vanish when any Pomeron leg is at 

zero mass. 
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III. DISC USSIO N 

It is interesting to note, that many of the results obtained in this paper, 

using a specific model, have been obtained by Jones et al., 9 in an essentially -- 

model independent manner. They assume the validity of asymptotic Regge pole 

expansions, unitarily and exact sum rules to reach conclusions concerning the 

couplings of the Pomeron. They, as we do in this paper, assume the Pomeron 

is a Regge pole and do not consider possible Regge cuts in the neighborhood of 

J=l. If Regge cuts are present, then the strong results obtained in Section II 

would not necessarily hold. In fact, it has been suggested that (i) the Pomeron 

is different from other Regge poles in that it may not be considered separately 

from its cuts; I0 (ii) the Pomeron may not be a Regge pole, but a cut. I.1 

Some information on the nature of the Pomeron singularity may be obtained 

by testing the factorizability of the diffraction dissociation amplitude. If the 

Pomeron is a Regge pole the residue should factor and thus different processes 

should be related to each other. The factorization has been checked in both 

two-body 12 and many-body 13 final states. The data is in reasonable agreement 

with factorization of the Pomeron residue; however cuts are not excluded. One 

may also check for long-range correlations in diffractive processes. Using 

Mueller’s Regge analysis of inclusive processes, 14 one can show that long- 

range correlations correspond to failure of the Pomeron singularity to factorize. 15 

It can be shown that the N-particle inclusive cross sections and the two- 

body elastic cross sections can not both be dominated by the exchange of an 

isolated, factorizable Pomeron. 16 Also, within the context of the S-channel 

unitarity constraint of multiperipheral bootstrap models, 17 one obtains the 

result that we can have either a leading Regge pole with ap(0) < 1, or a cut with 

branch point at a,(O) = 1. 
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A reaction where the triple-Pomeron vertex might be easily measured is 

the inclusive reaction y+ A - cp + X. Near the boundary of phase-space, l8 we 
rl 

expect triple-Regge behavior. ‘ Using the vector-meson dominance model, 

we may replace the photon by a phi-meson. In terms of Regge exchange, the 

phi-meson vertex couples only the Pomeron; 19 thus, we obtain, 

y(O)-1 

+ C E iPi (M”) 1 a (8) 
i 

Here, ger is the direct phi-photon coupling; g,(t) is the triple-Pomeron coupling; 

gi(t) is the Pomeron-Pomeron-Reggeon vertex; o!i(0) is the t=O intercept of the 

lower lying Regge trajectories; and, E i is the ratio of Regge couplings, at t=O, 

between particle A and Regge trajectories crp(0) and ai( i.e., 

rfip (0) 
E. = 

r- (0) 
1 rAm(o) + rupto) ' 

Using Eq. (8), the triple-Pomeron vertex may be evaluated directly from experi- 

ment. 

Finally, we note that Eqs. (3) - (5) may be written, 

g,(t) = gp 9 (9) 

g,tt,, t21 = gf Wl) dG2) 3 (10) 

g,(t,, t2, t3) = gf Wl) W2) W3) - (11) 

The following results are easily obtained, 

aNp,to, t) 

atN 
=o , (12) 
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I 

and 

Equation (13) is a generalization of results obtained by Muzinich, Paige, 

Trueman and Wang, 20 who show that the Gribov-Midgal lower bound on the 

magnitude of the two-Pomeron cut is not valid unless both the triple-Pomeron 

coupling and its derivative vanish at zero Pomeron masses. 21 
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FIGURE CAPTIONS 

1. The general single-, double-, and triple-Pomeron vertices; w is a Toller- 

like angle. 

2. Definition of Pomeron vertices in an f” pole-dominated model. 

3. Mueller vertices. 
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