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SEMI-CLASSICAL RADIATION THEORY 

AND 

HIGH ENERGY MULTIPRODUCTION 

L. Stodolslry 

Stanford Linear Accelerator Center, Stanford University, Stanford, California 

One of the pleasant tllin,L) w about the recently revitalizkd field of very 

high energy reactions is that it brings us back to some very simple ideas 

.first raised in the infancy of tl!e subject, when cosmic rays revealed the 

.existence of high multiplicity events. One such idea - perhaps the first 

to come to mind - is that there might be some connection or analogy be- 

tween high energy multiproduction by hadrons and the more familiar 

features of electrodynamic radiation processes. This is the point we will 

pursue in these lectures. First we will describe briefly how the charac- 

teristics of the secondary spectrum might be understood. Then we will 

consider an analogy between “radiative tails” or lrstragglinglj in electro- 

dynamics and leading particle behavior in hadron reactions. Along the way 

we will show how to derive in a simple way the radiative correction 

formulas for “radiative tails” and ~lstraggling’l. Our major point will be 

that these phenomena have their origin in the statistical fluctuations of the 

radiation field and thus can easily be described on that basis. These ideas 

have been taken up in recent years by Feymnan’ but they go at least as 



2 

far back as Heisenberg2, who considered treating cosmic ray multi- 

production a la Bloc h-Nords ieck3, noting that this would give a logar- -- 

ithmic multiplicity growt.h. The basic idea is that in very high energy 

processes we have something like the soft-photon infrared limit in electro- 

dynamics. One assumes that setting the incident hadron energy very high 

allows us to treat the radiated particles ill a zero mass, low energy limit 

and that this limit behaves like that in classical electrodynamics. 

Before beginning, however, it might be well to stress that we do not 

attempt to explain the two basic facts of high energy reactions: 

(1) That the transverse momentum is limited. This observation is 

so often quoted that we will not try to justify it here. A remark perhaps 

worth mak!:ng-, however, is that if there were some tendency for the trans- 

verse momentum to spread out slowly (say as in a random walk with the 

multi.plicity4) then since 5~‘s are very light, they carry off very little of 

the mo-mentum of any moving system, and the effect might be hard to see. 

But heavy particles will carry off more of the transverse momentum, so 

K’s and Firs might show any such hidden spreading more dramatically. 

The limitation on the transverse momentum simplifies kinematics consi- 

derably and is what allows us to treat things in an essentially one- 

dimensional way, with I? longitudinal z E. 

(2) That leading particles exist. Figure 1 shows the proton emerging 

in the reaction P -I- P -+ P + X (X means ~~anything’l) at 19 GeV 5 and we 

see that the proton takes away a substantial fraction of the energy almost 

always; it is l’leadinglf. Note also that this proton spectrum is rather 

flat, somet.lCng we will try to explain later. It is roughly flat in the cross 

section do/dPL, __ not in terms of the presently popular 11 inva&n# cross 
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section E(da/dPL). At the ISR there is also data on the emerging proton 

at small x (x = Feymnan scaling variable = P/Pmax) shown in Figure 2. ’ 

The BR data appears to have the same shape as the bands indicating the 

low energy data. It also appears to 11 scale”, i. e. the invariant cross 

section is the same at equivalent values of x. It is unfortunate, since we 

will be mainly interested in the leading proton, that the ISR data does not 

cover large x. At very small x we can expect, at high energy, some 
. 

f’protonization” (Fp production) so that there is no reason to expect the 

low and high energy data to agree. 

As for pion beams, we have seen data at this school for r- + I? --L n- + X 

which looks like: 

Figure 3 

. . 
2100A3 

showing again that there is some kind of leading x-, although clearly the 

t’leading” and lfproduced” x-‘s get mixed up at small x. We have, as yet, 

no leading particle data for K beams, but since multiproduction of strange- 

ness is small, it should look Eke the proton spectra. 

I. The Infrared Analogy 

The fundamental feature of infrared radiation is that the radiated 

energy is constant as a function of frequency 

(1) 



5 

The intensity dI is the energy content of the radiation field in the frequency 

interval dw . A scattered charged particle always radiates this spectrum 

at low frequencies, regardless of the details of the scattering process? Why 

is this? One way8 of explaining it is to look at the field of a charged par- 

ticle as it goes by 

210044 

Figure 4 

very fast. If the particle suddenly changes direction, the electro- 

magnetic field cannot adjust instantaneously and some of it just keeps 

going, appearing as photons. The energy in the field, the intensity, is a 

function of the G and Z? fields: I N g2 + 3f2. Since for very fast 

moving charges & and gfare delta function-like pulses in time their 

Fouri.er transforms 8(w) and ;/Z’(W) must be approximately constant, 

and so the intensity is also, hence Eq. (1). 

We now assume that something of the same sort takes place in the 

high energy scattering of hadrons, and that in particular Eq. (1) still holds. 

I is now the radiated energy in the hadron field. So far we have used no 

Quantum Mechanics. Now introducing a minimal amount via Planck’s 

relation; namely, dI = wdn, (li =l) gives us the particle spectrum 

dn cd-&= c . 4) 

This, when coupled with the limited PT distribution, gives a one- 

dimensio;lal uniform distribution in rapidity Y, or what has been called the 
dn dn I1 Feynmnn gas” , because ~r3. - = dw G 

r CL 
dY ’ It is currently popular to 
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. 

da- 
talk about the invariant cross section w- 

d3P ,’ 
or after integrating out the 

da 
transverse variables, wq . At high energy, though with w M p, this is 

the same as in Eq. (2). The statement that the invariant cross section is 

a constant can then be physically interpreted to mean that the energy 

radiated per unit momentum interval is a constant, c. 

We can use Eq. (2) to get the multiplicity by integrating: . 

id 
m dn w m n = J dw = cQn- . 

OO w. 
(3) 

The lower limit, uo, presumably stays fixed around the meson mass. The 

upper limit, on the other hand, must increase as the energy increases and 

it is reasonable to assume, as in bremsstrahlung, that the “infrared” 

behavior holds up to some value controlled by the maximum energy avail- 

able - the “x-ray endpoint”. This situation is displayed in Figure 5. 

dI1 

Figure 5 
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Thus we take wm - E, giving 

n = (const) + c On E (4) 

This is the reasoning used by I-lcisenberg in 1942 to obtain a logaritlmlic 

multiplicity growth. We see that the coefficient c has the si@Eicance of 

the classical dI/dw. Both the logarithmic grown of n and the spectrum 

Eq. (2) appear to have been observed experimentally. 
6, 11 
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Relativistic Transformation Properties 

Thus far we have not specified in what frame we work and so to what 

the energy in Eq. (4) refers. Presumably if we are to treat all the par- 

ticles as effectively massless we should be ii1 a frame where all the 

par titles are relativistic, such as the center-of-mass. Neither have we 

taken into account the other incident particle in the reaction; the multi- 

plicity referred to so far comes from only one of the incident particles. 

In the center-of-mass, for example, Eq. (4) refers to the multiplicity and 

energy appropriate to one of the incident particles. Thus for the ‘total 

multiplicity nl + n2 = c In E1 + c In E2 = cBn E1E2. But at high energy 

E1E2 = s/4, giving for the total n = cQns (+ collst). Remar! now if we 

consider another Lorentz fra.me similar to the center-of-mass but where 

E1 and E2 are different we will still get the same answer, since E1E2 is 

invariant, although the total multiplicity will be divided up between n1 and 

n2 in a di.fEcrent way. Th.is elegant feature is a reflection of the uniform 

distribution jn rapidity for il given by Eq. (2). This uniform distribution 

means that if we shift Lorentz frames, giving a translation in the rapidity 

Y, the distribution looks the same in the new frame but with respect to a 

shifted zero in Y. Some particles that had positive Y in the center-of-mass 

move to negative Y, and so look like they come from the other incident 

particle , but the total remains unchanged. Note that these shifts come 

about as a result of t.he shifts in the endpoint energy associated with the 

incident particles - the constant c itself is an invariant. 
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II. Radiative Tails and the Leading Particle 

Flux tua Cons 

The classical radiation spectrum sketched in Figure 5 is of course an 

average, summed over many events, and the n in Eq. (4) is the average 

total multiplicity. Now we must add another quantum mechanical element 

in considering flucturations. If we look at one particular event there will 

-of course be deviations from the average, a.3 in Figure 6 
. 

I I I I I I I ‘W 
wO E 2100A6 

Figure 6 

We will assume, as in the case of bremsstrahlung, that t,hese fluctuations 

are Poisson, that is that the probability of finding n particles in one of the 

It bins” indicated in Figure 6 is, where n is the average number in the bin 

P(n) = $$- e . -ii 
. (5) 

This assumption is equivalent to an assumption of statistical independence 

in the emission process. That is, the probability of emitting a particle of 

a given energy and type is always the same, regardless of what else has 

happened. Obviousl.y, this cannot be exactly true since the probability of 

emitting anything must go to zero as the energy is used up, and with 

charged particles we cannot go on emitting so many particles of the same 

kind that we eventually violate charge conservation. Nevertheless at high 

energy with many emissions taking place it seems pIa.usible that these con- 

straints are on1.y weakly felt in the bulk of the emissions and that 
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statistical independence is a reasonable first working hypothesis. 9 

Radiative Tails 

These flucturations show up in electrodynamics as the well-known 

phenomenon (or for experimental.ists, the notorious problem) of “radiative 

. 

tails”. The scattering of a charged particle is always accompanied by 

home electromagnetic radiation. In fact in tie real limit of zero mass 

photons there are always an infinite number of photons emitted3, due to 

the w = 0 singularity of dn/dw in Eq. (Z).. Although the energy thus carried 

off remains finite, it will fluctuate from event to event. Therefore a 

particle, like an electron, th.at radiates easily will have, as in Figure 7, a 

‘1 tail” extending down from the energy, Eo, it would have for the given 

process and kinematics if no photons existed. 
da 
z- 

L electron energy 

Figure 7 
EO 2100A7 

The energjr loss, as mcasurcd from t.he nominal endpoint Eo, we call E. 

A formula can be derived for this I* tail” by the methods of quantum electro- 

dynamic s7. If a0 is the cross section that would exist without considering 

these soft photon effects, Q! the fine structure constant, and A various 

numerical factors it is 

do CVA CYA 
a7 = E aO(c/E) . (6) 
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The l/c factor in this formula is easy to understand, it just reflects 

the dw/w spectrum of the radiated photons; the low w “bins” in Figure 6 

tend to dominate because of their much higher average number. The 

(dQaA factor, which make the E = 0 singularity integrable, arises from 

more subtle multiple photon effects. 
I We will presently see how this formula has its origin in the energy 

. ’ 
fluctuations of the radiation field. 

Straggling 

The spreading of the spectrum in Figure 7 can become quite extensive 

when an electron bea.m passe s through a macroscopic thickness of material. 

As a result of the successive bremsstrahlung emissions, electrons ori- 

ginally of energy E. may become spread out in energy: 

dn ,, 
z- thicker 

twetA ,,A / 
>’ 0 / 

.’ 
+4in /I 
,,I 

to lrget -4 
/ 

I 
- electron energy 
0 2100AB 

‘Figure 8 

This is called I’s traggling”. In particular we are talking about “brems- 

s trahlung straggling 9 9 , to distinguish it from other kinds, such as 

l1 Landau straggling I9 , which is the fluctuations connected with energy loss 

due to ionization, not radiation. 

There is something puzzling about Figure 8 for the following reason: 

when some process, such as an energy-loss mechanism is made up of 

many random contributions we expect the resultant distribution to have some 
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-.. 
[ average value and then some dispersi.on, i. e. fluctuations around the 

average, as in Figure 9. 

2 
I 
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r electron energy 
2lOOA9 

Figure 9 

Mathematically, this expectation is enshrined in the “Central Limit 

Theorem”. But Figures 7 and 8 don’t look at all like this, although the 

spectra do result from many photon emissions. On the other hand, the 

spectrum resulting from If Landau straggling9f does resemble Figure 9. 

The explanation for the difference in the two cases is interesting 

because it has some parallel with the high energy problem. In the case of 

energy loss by ioniza.tion, the particle loses a fixed absolute amount of 

energy in each collision, which comes out to, say, a few MeV per gram. 

The total energy loss for an energetic particle is then indeed made up 

of many small random loses. On the other hand, in the case of brems- 

strahlung (for a relativistic electron) the energy loss in a collision is 

always a fked fractional or relative amount of t.he incident electron energy. 

This can be seen, for example, in the structure of Eq. (6) and has its 

origin in the fact that when the electron mass plays no role we only have 

variables like (E/E) at our dfsposal. This situation (called 91Approxi- 

mation A99 in the terminology of Rossi 10 ) is analogous to If scalingff in 

high energy reactions. It means that although we may have many inde- 

pendent emissions, one photon may t&e off a substa.ntial fraclion of the 

energy - somelhing which essentially cannot happen in the other case and 
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which leads to non-normal behavior. A high energy analogy to the Landau 

straggling case would be a total soft pionization model in which all the 

produced par titles, say in the center-of-mass, each had a finite energy, 

perhaps always less than a few hundred MeV. (This model does not seem 

to be seriously entertained by any school at present. ) 

The formula giving the energy loss distribution of the straggling 

electrons is, for small thicknesses of the target, just like Eq. (6). 
. 

dn 
-a?- 

= 2 (E/E,)-‘~ + T (7) 

The dimensionless parameter T measures the thickness of the target and 

is called the 11 radiation length’?. Its significance (for thin targets) is that 

it is equal to the average fractional energy loss. If T = l/6, say, then 

the average energy loss T/E6 as may be calculated from Eq. (7), is also 

l/6. For thick targets the situation is more complicated (see the appendix). 

Derivation of the Radiati.ve Tail or Straggling Formulas 

It is both amusing in its own right and useful for our generalization to 

the leading hadron problem that F.,qs. (6) and (7) can be derived simply 

from the information already given about the behavior of the radiation field. 

Knowing the behavior of the radiation field is equivalent to knowing the 

behavior of an outgoing electron or leading particle because the energy 

appearing in radiation must be the energy lost by the electkon or incoming 

hadron. Therefore the spectrum of the total energy in the radiation is the 

energy loss spectrum we wish to derive. On the other hand we know, in 

principle, everything necessary to find the energy in the radiation field. 

The number of particles in the field has been taken to follow a Poisson 

distribution which is only characterized by one parameter, the 
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average number; but we are also given the average number by Eq. (2). 

Looking at Eq. (6) we can say that we know the average number in each 

“binl’ and how the number in the bin flucluates; we then want to know how 

the energy in the whole ensemble of bins fluctuates. 

This can be calculated as follows: lable ‘all the bins in EQ. (6) 

$2,3 ,... j...n. The probabiiity of a given configuration with nl in bin 1 , 

3 inbin2... is PIP1) P2 tn2) P3tn3) . . . where ‘P(n) is given by Eq. (5) 

with the 1 appropriate to each bin. We are interested in knowing the 

probability, P(E), of those configurations which have a total energy E, 

where the energy in the bins is 14~~ + n2w2 -k . . . . Therefore 

P(E) a c 6(E-nlWl-n2W2.. l )Pl tn1)P2 tn2b l m P (11 )P 
all n’s 

j j j+lw . ..p.to) 

The bin j is the one where a single meson has energy of E , i. e. oj = E ; -- 

all bins at higher frequencies must contain no particles. Introducing We 

Fourier representation of the 6 function and Eq. (5) for the P(n) gives 

P(E) a 
c Tdtei., (;;,,iwltj)l (G2LioZti”2 .-“” 

. . . 
all n’s -a n! 1 nz! 

-ii. -iY. -ii 
e J e J+‘e j’2.,.e 

-ii 
m. ..a nj! 

Doing the sum on nl, n2 . . . gives 

4-a 

s 
dteict ete 

-icolt 
- 1)h (e 

-iw2t -iw.t 

P(E) a ’ e _ 
- l)T$ 

. . . e(e 
J - 1)ii. 

J . . , 
-co 

(9) 

- it. -ii. -ii e Jfl J”1”’ m . . . . 
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Now if we imagine the bins being very small and numerous the sums in the 

exponents become integrals so that 

E 
-iwt-l) i?.&w 

E 

f te 
f 

m dn 

s 

dLJ dw (11) 
P(E) cs dtei’ t e 0 E e 

-03 

So far we have assumed nothing except the Poisson - statistically inde- 

pendent - character of the various emissjons, and in general 6s. (11) is 

a complicated expressiofl. It simplifies remarkably, however, if 2 

is given by the infrared formula Eq. (2) (taken a.11 the way to w = 0). For 

then we have by using variables O/E and et 
E 

4-m 

s 

C 
f t e 

dteiEt e ’ 
= F 

F- 
.-co 

(12) 

where F is an E independent factor so that 

P(C) m i e 
-c Bn Em/e 

P(E) a $ (E/E)’ 

(13) 

The maximum energy Em has been set to the incident energy E, since it 

only serves as a scale factor in Eq. (13). 

Eq. (12) is our basic result. It follows from two assumptions: 

(1) the Poisson character of the emissions, and (2) the “classically value 

for G, given by dF/dw = c/w. If we wish l;o abandon assumption (2) we 

can always revert to Eq. (11). 

With Eq. (13) we have essentially derived the lhin target straggling 

formula Eq. (7) and the radiative tail forintila Eq. (6). Given the form of 

Eq. (13) which states that dN/d~ 0~ (E/E) c-l the normalization of the 

straggling formula results from the requirement that the number of 
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"dN particles in the beam be unchanged, so that 4~ dE = 1, while the 

association c = T follows from the definition of T as the average fractional 

energy loss. (T in turn can be calculated from the properties of the 

materiallO. ) U7e thus arrive at F.,q. (7). Furthermore comparison with 

Eq. (2) says that the photon spectrum per electron from the target is 

. 
dn 
do = T/w 

As for the radiative tail in electron scattering, we see that the factor 

oA in Eq. (6) i.s given by c or oh = dI/dw, the classical differential 

intensity for the process in question. Eq. (6) should, in effect, be read 

as 

da 1 (g/E) fdlidw) 
-df - E (15) 

This agrees with the treatment according to quantum electrodynamics (as 

may be verified by cornpar& 0’ the formula for aA on page 236 of reference 

7 with the classical radiation formula on page 223.) Note that our treat- 

ment avoids any problem of infrared singularities since we have always 

dealt with the energy fluctuations directly. These are always finite even 

though the number of photons involved goes to infinity. 

The normalization of EQ. (6) may be inferred, as in the straggling 

case, from the requirement (which we have not derived here) that the 

cross section, when integrated over the energy loss, must be the non- 

radiative cross section (TO. 
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The Leading Badron Spectrum 12 

If the secondaries produced in high energy collisions are a kind of 

l’bremsstrahlungl’ then the leading particle can be thought of as being the 

11 electron*’ . That is, the energy it has lost appears in the radiated par- 

ticles. Thus its energy loss fluctuates and its spectrum is also given by 

Eq. (13): 
. 

da,daa 
dPL dc ; (e/E)’ . (15) 

But here we can find c from the experimental multiplicity growth according 

to Eq. (4), so that this is a relation between the multiplicity growth and the 

leading particle spectrum. 11 

This experimental value of c appears to be in the range 1 - 2, or 

perhaps somewhat larger. If we were to take c M 1 we see that Eq. (15) 

gives us the flat proton spectrum in dc/dPL noted in Figure 1 and 2. 

At this point an ambiguity appears, however. In contrast to the real 

radiation problem where we know that the fundamental statistically inde- 

pendent processes are simply single photon emissions, the hadron problem 

is not so simple. The effective Poisson emitted objects may be some kind 

of mixture of n’s, p’s, w’s . . . ) correlated x pairs and the like. But 

while the c in Eq. (5) refers to the Poisson emitted objects the experi- 

mental c in Eq. (4) refers to the actual (mainly pion) multiplicity. Thus 

the experimental c of Eq. (4) may have to be reduced before being used in 

Eq. (l.5) to predict the leading particle behavior. In the future, detailed 

examination of the correlations present in multiproduction may tell us 

exactly what is Poisson emitted and by how much c is t.o be decreased. 

For the present we can only say that it seems, reasonable to reduce c by 
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a factor which is *‘not too big”. We stress, however, that it does not work 

the other way; should the experimental c from Eq. (4) turn out to be too 

small to fit via Eq. (15) in some process, then our explanation is simply 

vitiated - we certainly cannot claim to emit that one pion at a time. 

Should our interpretation be borne out, however, we have a simple 

and amusing interpretation of high energy reactions. When one, hadron hits 

another it is like an electron going through an absorber, and the coefficient 

c (perhaps adjusted as discussed above) of the multiplicity law tells us 

how 7’ thickn that absorber is. The flatness of the experimental proton 

spectrum then means that it sees the other proton as one radiation length 12 , 

or in terms of Eq. (6): hadrons have lrcP N 1 ! 

Appendix 

I1 Thick Target Bremss trahlung~~ 

(The meth.od described here was developed in collaboration with R. Roskies. ) 

The bremsstrahlung straggling problem has a long and sometimes 

messy history. The problem has been attacked by the method of the dif- 

fusion equ.a tion 10 or by Heitler’s trick of distorting the photon spectrum 

to get a tractable approximation. 14 Here we would like. to show how to 

arrive at an exact answer by iterating our simple answer and solving the 

associated transport problem. Once we go beyond the simple treatment 

described above, problems arise for two reasons. One has to do with the 

fact that deviations from the infrared limiting form dw/cd for the phoion 

spectrum occur for photons that have some fraction of the indicent energy. 

These deviations will thenbe reflected in the electron’s energyloss, particu- 

larly when it. is large, since it is the 1’ harder” photons that are principally 
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affected. These effects, while they can be important in practice, may be 

incorporated in the general method (at least as long as we are in f’Approxi- 

mation AII1’ where the deviations have a llscalingll form as (w/E)) and do 

not offer any problems in principle. 15 We will thus not consider this 

problem any further and will always assume .that the radiation from a 

single interaction is given by Eq. (4). More interesting and perhaps with 

some relevance to the high energy problem is the second question, con- 

net ted with ‘1 thick targets 11. 

When the target is thick the electrons slow down sufficiently that an 

initially monoenergetic beam becomes substantially degraded and spread out 

in energy. In this case we can no longer maintain our basic assumption 

(1) (following Eq. (13)) concerning the statistical independence of the 

emissions. This is because our neglect of the energy conservation con- 

straint, which was all right when the beam was not very spread out, has 

now become serious. An electron which has lost a lot of energy cannot 

&nit a photon near the maximum energy: energy conservation obviously 

means that t.he emission of, say, two high energy photons cannot be 

statistically independent. This is clearly an essential complication and it 

is interesting to see how we can treat it in a practical case. 

Part of the answer we know already, without any further calculation: 

those electrons which have lost only a small amount of energy stal do 

have a Poisson emission spectrum. Therefore we know that even for a 

thick target the low energy loss electrons must distribute themselves 

according to the previous results 

dNo9 
de ‘F (dEf , (16) 
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although now we can n.o longer make a simple identification of the constants. 

Since we do know the exact result for a very thi.n target, however, we 

can imagine doing the thick target problem by dividing the thick target up 

into a series of thin slices and iterating the spectrum entering each slice 

according to the thin target formula. 

Let the electron distribution we wish to find be the dn/dE resulting 

from a monoenergetic (6function) beam entering the target. We call this 

function G . It depends on E. and the thickness T as well as E. Thus for 

an arbitrary beam dn 0 incident on the target what comes out is 

dno dE G (E, EO,T) dug o . (17) 

Using what we know from Eq. (7) for the G on a thin target, we imagine 

n the number of slices large so. that T/n f t is small so that 

-l+ t 
G (E,Eo,t) = $- 

0 

We introduce the scaled variable x = E/EO, and similarly in each slice 

there will be an integration 

while x represents the’ final 

G (E, Eo, nt)Eo = 
1 

variable Ei which we scale to xi = Ei/Eo, 

energy. Then iteration of Eq. (17) gives 

(18) 

(1% 
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We have an iteration with a ratio kernel, reflecting the ~~scalingrl character 

of the problem. It can be brought to a more familiar form involving a dif- 

ference kernel by using yi = -fnx, 

- l+ t 
G(E, Eo, nt)Eo = G(y, nt) E. = tn 1. -e . . . 

Y3 I . . . s ( 0 

dY2 lme-tY&)-1+ ~dyl(tw;(yfy~j-l+ t(l&-y+-l+t 

Now we have something precisely in the form suitable for the application of 
I 

the Laplace transform 16 , whose l1 Faltung theorem” is precisely in the 

form needed in Eq. (20). Using 2 as the symbol for the transform then 

G(y, nt) E. = (tB(s, t))n (21) 

where s is the transform variable and B is the usual Beta function 17 which 

.arises because it is the Laplace transform of the kernel. Now letting 

n - fg, keeping nt = T fixed gives 

(tB(s, t))n - e-(7 +‘(s))T, (22) 

where17 $ is the logarithmic derivative of the l? function and Y the Euler 

constant y = 0.57 . . . . Inverting Eq. (21) gives us the final answer 

.-YT 
G(Y, T) = --- 

EO 
(23) 

with y = In EO/E. 

If we express 9-l * m terms of the usual contour integral, then this 

agrees with an answer that can be arrived at by the diffusion equation 18 
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a+i* 
dN 1 -yT 
==Ege s 

eSY,-q tsJT ds 
a-im 

(24) 

It may be verified by direct integration that Eq. (24) satisfies the normali- 

zation property 

G(E, EOT)dE = 1 

and the necessary 11 group’! property 

EO 
WE, Eo, T) = J dE’G(E, E’, T-t)G(E’, Eo, t) . 

0 

. (25) 
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