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One of the pleasant things about the recently revitalizéd field of very
high energy reactions is that it brings us back to some very simple ideas
first raised in the infancy of the subject, when cosmic rays revealed the
-existence of high multiplicity events. One such idea — perhaps the first
to come to mind — is that there might be some connection or analogy be-
tween high energy multiproduction by hadrons and the more familiar
features of electrodynamic radiation processes. This is the point we will
pursue in these lectures. First we will describe briefly how the charac-
teristics of the secondary spectrum might be understood. Then we will
consider an analogy between "radiative tails' or "straggling" in electro-
dynamics and leading particle behavior in hadron reactions. Along the way
we will show how to derive ina simple way the radiative correction
formulas for "radiative tails" and "straggling!. Our major point will be
that these phenomena have their origin in the statistical fluctuations of the
radiation field and thus can easily be described on that basis. These ideas

have been taken up in recent years by Feynmanl but they go at least as



far back as Heisenbergz, who considered treating cosmic ray multi-
production a la Bloch—Nordsieck3, noting that this would give a logar-
ithmic multiplicity growth. The basic idea is that in very high energy
processes we have something like the soft—pllloton infrared limit in electro-
dynamics. One assumes that setting the incident hadron energy very high
allows us to treat the radiated particles in a zero mass, low energy limit
and that this limit behaves like that in classical electirodynamics.

Before beginning, however, it migﬁt be well to stress that we do not
attempt to explain the two basic facts of high energy reactions:

(1) That the transverse momentum is limited. This observation is
so often quoted that we will not try to justify it here. A remark perhaps
worth making, however, is that if there were some tendency for the trans-
verse momentum to spread out slowly (say as in a random walk with the
multiplicity4) then since 7's are very light, they carry off very little of
the momentum of any moving system, and the effect might be hard to see.
But heavy particles will carry off more of the transverse momentum, so
K's and P's might show any sﬁch hidden spreading more dramatically.

The limitation on the transverse mom entum simplifies kinematics consi-
derably and is what allows us to treat things in an essentially one-
dimensional way, with Plongitu dinal™ E.

(2) That leading particles exist. Figure 1 shows the proton emerging
in the reaction P+ P — P + X (X means Yanything") at 19 GeV 5 and we
see that the proton takes away a substantial fraction of the energy almost
always; it is ;'leading". Note also that this proton spectrum is rather
flat, something we will try to explain later. It is roughly flat in the cross

section do/dP., not in terms of the presently popular " invariant" cross
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section E(d&/dPL). At the ISR there is also data on the emerging proton
at small x (x = Feynman scaling variable = P/Pmax) shown in Figure 2. 6
The ISR data appears to have the same shape as the bands indicating the
low energy vdata. It also appears to " scale", i.e. the invariant cross
section is the same at equivalent values of x.v It is unfortunate, since we
will be mainly interested in the leading proton, thét the ISR data does not
cover large x. At very small x we can egpect, at high energy, some
"protonization" (pp production) so that there is no reason to expect the
low and high energy data to agree.

As for pion beams, we have seen data at this school for 7 + P — 7 +X
which looks like:

do
“dp

1
' Lol x
1 210043

Figuré 3
showing again that there is some kind of leading 7, although clearly the
1leading” and "produced" 7 's get mixed up at small x. We have, as yet,
no leading particle data for K beams, but since multiproduction of strange-

ness is small, it should lock like the proton spectra.

I. The Infrared Analogy -

The fundamental feature of infrared radiation is that the radiated

energy is constant as a function of frequency

—
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The intensity dI is the energy content of the radiation field in the frequency
interval dw. A scattered charged particle always radiates this spectrum

at low frequencies, regardless of the details of the scattering process.7 Why
is this? One way8 of explaining it is fo look at the field of a charged par-

ticle as it goes by

210044

Figure 4
very fast. If the particle suddenly changes direction, the electro-
magnetic field cannot adjust instantaneously and some of it just keeps
going, appearing as photons. The energy in the field, the intensity, is a
function of the & and &7 fields: I~ &2+ e"/fz. Since for véry fast
moving charges & and &¢ afe delta function-like pulses in time their
Fourier transforms & (w) and &7 (w) must be approximately constant,
and so the intensity is also, hencé Eq. (1).

We now assume that something of the same sort takes place in the
high energy scattering of hadrons, and that in particular Eqg. (1) still holds.
I is now the radiated energy in the hadron field. So far we have used no
Quantum Mechanics. Now introducing a minimal amount via Planck's

relation; namely, dI = wdn, (h =1) gives us the particle spectrum
W-=—=c . | @)

This, when coupled with the limited PT distribution, gives a one-

dimensional uniform distribution in rapidity Y, or what has been called the

" Feynman gas'', because w (C]l% = 'd%}c—u = %% . It is currently popular to



talk about the invariant cross section w-—%q— , or after integrating out the
d P ! .

transverse variables, wa%z . At high energy, though with w = P, this is
2

the same as in Eg. (2). The statement that the invariant cross section is
a constant can then be physically interpreted to mean that the energy
radiated per unit momentum interval is a constant, c.

-

We can use Eg. (2) to get the multiplicity by integrating:
m w
- dn _ m
n = f 9o = e . @)

The lower limit, @gs presumably stays fixed around the meson mass. The
upper limit, on the other hand, must increase as the energy increases and
it is reasonable to assume, as in bremsstrahlung, that the "infrared"
behavior holds up to some value controlled by the maximum energy avail-

able — the "x-ray endpoint". This situation is displayed in Figure 5.
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Thus we take w "~ E, giving

n = (const) +cin E 4)

This is the reasoning used by Heisenberg in 1942 to obtain a logarithmic
multiplicity growth. We see that the coefficient ¢ has the significance of
" the classical dI/dw. Both the logarithmic grown of n and the spectrum

6, 11
Eq. (2) appear to have been observed experimentally.



Relativistic Transformation Properties

Thus far we have not specified in what frame we work and so to what
the energy in Eq. (4) refers. Presumably if we are to treat all the par-
ticles as effectively massless we should be in a frame where all the
particles are relativistic, such as the center-of-mass. Neither have we
takén into account the other incident particle in the reaction; the multi-
plicity referred to so far comes from only one of the incident particles.
In the center-of-mass, for example, Eq (4) refers to the multiplicity and
energy appropriate to one of the incident particles. Thus for the total
multiplicity n;tn, =c n E1 +c fn E2 =cin E1E2' But at high energy
E1E2 = s/4, giving for the total n = cfns (+ const). Remark now if we
consider another Lorentz frame similar to the cellter;of-mass but where
El and Ez are different we will still get the same answer, since ElEZ is
invariant, although the total multiplicity will be divided up between ny and
n, in a different way. This elegant feature is a reflection of the uniform
distribution in rapidity for n given byi Eq. (2). This uniform distribution
means that if we shift Lorentz framés, giving a translation in the rapidity
Y, the distribution looks the same in the new frame but with respect fo a
shifted zero in Y. Some particles that had positive Y in the center-of-mass
move to negative Y, and so look like they come from the other incident
particle, but the total remains unchanged. Note that these shifts come
about as a result of the shifts in the endpoint energy associated with the

incident particles — the constant c itself is an invariant.



II. Radiative Tails and the Leading Particle

Fluctuations

The classical radiation spectrum sketched in Figure 5 is of course an
average, summed over many events, and the n in Eq. (4) is the average
total multiplicity. Now we must add another quantum mechanical element
in considering flucturations. If we look at one particular event there will

‘of course be deviations from the average, as in Figure 6

dl |
dw
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Figure 6
We will assume,. as in the case of bremsstrahlung, that these fluctuations
are Poisson, that is that the probability of finding n particles in one of the

"bins' indicated in Figure 6 is, where n is the average number in the bin

P) = "S- e . (5)

This assumption is equivalent to an assumption of statistical izidependence
in the emission process. That is, the probability of emitting a particle of
a given energy and type is always the same, regardless of what else has
happened. Obviously, this camot be exactly true since the probability of
emifting anything must go to zero as the energy is used up, and with
charged particles we cannot go on emitting so many particles of the same
kind that we eventually violate charge conservation. Nevertheless at high
energy with many emissions taking piace it seems plausible that these con-

straints are only weakly felt in the bulk of the emissions and that



statistical independence is a reasonable first working hypothesis. 9

Radiative Tails

These flucturations show up in electrodynamics as the well-known
phenomenon (or for experimentalists, the notorious problem) of "radiative
tails". The scattering of a charged particle is always accompanied by
Some electromagnetic radiation. In fact in the real limit of zero mass
photons there are always an infinite number of photons emittedg, due to
the w = 0 singularity of dn/dw in Eq. (2). Although the energy thus carried
off remains finite, it will fluctuate from event to evént. Therefore a
particle, like an electron, that radiates easily will have, as in Figure 7, a
"tail" extending down from the energy, EO’ it would have for the given

process and kinematics if no photons existed.

do | : . II.
de /
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/
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Figure 7

The energy loss, as measured from the nominal endpoint EO’ we call €.

A formula can be derived for this '"tail' by the methods of quantum electro-

dynamics7. If o is the cross section that would exist without considering

these soft photon effects, « the fine structure constant, and A various

numerical factors it is

6)
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The 1/¢ factor in this formula is easy to understand, it just reflects
the dw/w spectrum of the radiated photons; the low w "bins" in Figure 6
tend to dominate because of their much higher average number. The
(e/ E)aA factor, which make the €¢ =0 singula'rity integrable, arises from
more subfle multiple photon effects.

We will presently see how this formulg. has its origin in the energy

fluctuations of the radiation field.

Straggling
The spreading of the spectrum in Figure 7 can become quite extensive
when an electron beé.m passes through a macroscopic thickness of material.

As a result of the successive bremsstrahlung emissions, electrons ori-

ginally of energy EO may become spread out in energy:

dan | , 4
de thicker ,//
mrge'r\/// /
— /
_-7 /
- thin /
torget\y/
/
- electron energy
Eo ' 2100A8
Figure 8

This is called ”straggling"'. In particular we are talking about "brems-
strahlung straggling', to distinguish it from other kinds, such as
"Landau straggling', which is the fluctuations connected with energy loss
due to ionization, not radiation.

There is something puzzling about Figure 8 for the following reason:
when some process, such as an energy-loss mechanism is made up of

many random contributions we expect the resultant distribution to have some
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| average value and then some dispersion, i.e. fluctuations around the

- average, as in Figaure 9.

dn |
de
. I [ = electron energy
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Figure 9

Mathematically, this expectation is enshrined in the ' Central Limit
Theorem". But Figures 7 and 8 don't look at all like this, although the
spectra do result from many photon emissions. On the other hand, the
spectrum resulting from "Landau straggling" does resemble Figure 9.

The explanatioﬁ for the difference in the two cases is interesting
because it has some parallel with the high energy problem. In the case of
encrgy loss by lonization, the particle loses a fixed absolute amount of
energy in each collision, which comes out to, say, a few MeV per gram.

The total energy loss for an energetic particle is then indeed made up
of many small random loses. On the other hand, in the case of brems-~
strahlung (for a relativistic electron) the energy loss in a collision is
always a fixed fractional or relative amount of the incident electron energy.
This can be seen, for example, in the structure of Eq. (6) and has its
origin in the fact that when the electron mass plays no role we only have
variables like (¢/E) at our disposal. This situation (called "Approxi~
mation A" in the terminology of Rossilo) is analogous to ''scaling" in
high energy reactions. It means that although we may have many inde-
pendent emissions, one photon may take off a substantial fraction of the

energy — something which essentially cannot happen in the other case and
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which leads to non-normal behavior. A high energy analogy to the Landau
straggling case would be a total soft pionization model in which all the
produced particles, say in the center-of-mass, each had a finite energy,
perhaps alv;rays less than a few hundred MeV. (This model does not seem
to be seriously entertained by any school at i}resent. )

- The formula giving the energy loss distribution of the straggling

" electrons is, for small thicknesses of the target, just like Eq. 6).

[«

n _ T -1+ T
- == (E/EO) , RUE

|

Qul

The dimensionless parameter. T méasﬁres the thickness of the tgrget and
is called the "radiation 1en§th". ‘ 'Its significance (for thin targets) is that
it is equal to the average fractiohal energy loss. If T =1/6, sayA,‘ then

the average enérgy loss 'E/EO as may be calculated from Eq. (7), is also

1/6. ¥or thick targets the situation is more compliicated (see the appendix).

Derivation of the Radiative Tail or Straggling Formulas

It is both amusing in its ~ow11 right and useful for our generalization to
the leading hadron problem that Egs. (6) and (7) can be derived simply
from the information already given about the behavior of the radiation field.

Knowing the behavior of the radiation field is equivalent to knowing the
behavior of an outgoing electron or leading particle because the energy
appearing in radiation must be the energy lost by the electron or incoming
hadron. Therefore the spectrum of the total energy in the radiation is the
energy loss spectrum we wish to derive. On the other hand we know, in
principle, everything necessary to find the energy in the radiation field.

The number of particles in the ficld has been taken to follow a Poisson

distribution which is only characterized by one parameter, the
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average number; but we are also given the average number by Eq. (2).
Looking at Eq. (6) we can say that we know the average number in each
11hin® and how the number in the bin fluctuates; we then want to know how
the energy in the whole ensemble of bins fluctuates.

This can be calculated as follows: lable all the bins in Eq. (6)
1,2,3,...j...n. The probability of a given configuration with n, inbin 1,
n, m bin 2... is Pl(nl) B, (ny) Po(ng) ... where P(n) is given by Eq. (5)
with the n appropriate to each bin. We are interested in knowing the .

probability, P(€), of those configurations which have a total energy ¢,

where the energy in the bins is n,w, +nywy +.... Therefore

Pe) « Z é(e—nlwl ~NyWg. . )Pl(nl)Pz(nz). .o Pj(nj)]?j +1(O) cen Pm(O)
all n's ,
(8)
The bin j is the one where a single meson has energy of €, i.e. wj =£;
all bins at higher freguencies must confain no particles. Introducing the

Fourier representation of the & function and Eq. (5) for the P(n) gives

. n .
> [t W SR
all n's -0 1’ g-
)
(__ —1w3t)nj _ _ _ _
n.e -n, -n, -n, -n
——J—;f-,-——-—e]e J+1e ]+2...e m
i
Doing the sum on n, Ny.-. gives
1+ oo -iw_ t -—iwzt ~-iw.t

. e -1 -1\ c J_1\w%
P(e) & / dtelEte( )Anl ege )—112. N e(e l)nj N

—

. nj+1—nj FERERE . ‘(10)
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Now if we imagine the bins being very small and numerous the sums in the

exponents become integrals so that

5 iwt dn Emd_ﬂ
+ 00 - ~{'(e -1) g dw 3o do (11)
P(e) « fdtec e e¢
- OO

So far we have assumed nothing except the Poisson — statistically inde-

pendent — character of the various emissions, and in general Eq. (11) is

a complicated expression. It simplifies remarkably, however, if dn

dw
is given by the infrared formula Eq. (2) (taken all the way to w = 0). For

then we have by using variables w/e and et

€
4 00 c (e_wt—- 1) %—d F
dtel€t ¢ 0 = = (12)
- OO
where F is an ¢ independent factor so that
-cInE_ /e
P(e) « —i e m
(13)
1

P(e) = ¢ (¢/E)°

The maximum energy Em has been set to the incident energy E, since it
only serves as a scale factor in Eq. (13).

Iq. (12) is our basic result. It follows from two assumptions:
(1) the Poisson character of the emissions, and (2) the "classical? value
for n, given by di/dw = c/w. If we wish to ahandon assumption (2) we
can always revert to Eq. (11).

With Eq. (13) we have cssentially derived the thin target straggling
formula Eq. (7) and the radiative tail formula Eq. (6). Given the form of
Eg. (13) which states that dN/de « (e/ E)c—1 the normalization of the

straggling formula results from the reguirement that the number of
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particles in fhe beam be unchaﬁged, so that ‘{E %—? de = 1, while the
association ¢ = T follows from the definition of T as the average'fractional
energy loss. (T in turn can be calculated from the properties of the
materiallo.') We f:hus arrive at Eq. (7). Furthermore comparison with

Eg. (2) says that the photon spectrum per electron from the target is

.
-

dn
o - T/w - (14)

As for the radiative tail in electron scattering, we see that the factor
eA in Eq. () is given by ¢ or oA = dI/dw, the classical differential
intensity for the process in question. Eg. (6) should, in effect, be read
as

do 1
'E (E/B

& )(dI/dw) (15)

This agrees with the treatment according to quantum electrodynamics (as
may be verified by comparing the formula for oA on page 230-of reference
7 with the classical radiation formula on page 223.) Note that our treat-
ment avoids any problem of infrared singularities since we have always
dealt with the energy fluctuations difectly. These are always finite even
though the number of photons involved goes to infinity.

The normalization of Eq. (6) may be inferred, as in the straggling
case, from the requirement (which we have not derived here) that the
cross section, when integrated over the energy loss, must be the non-

radiative cross secfion o,



16

The Leading Hadron Spectrum 12

If the secondaries produced in high enérgy collisioné are a kind of
"bremsstrahlung! then the leading particle can be thought of as being the
"electron'. That is, the energy it has lost appears in the radiated par-
ticles. Thus its energy loss fluctuates and its spectrum is also given by
Eq. (13):

do _ do 1 '
=g S e /D’ (15)

14

But here we can find ¢ from the experimental multiplicity growth according
to Eq. (4), so that this is a relation between the multiplicity growth and the
leading particle spectrum. 1

This experimental value of ¢ appears to be in the range 1~2, or
perhaps somewhat larger. I we were to take ¢ ® 1 we see that Eq. (15)
gives us the flat proton spectrum in dcr/dPL noted in Figure 1 and 2.

At this point an ambiguity appears, however. In contrast to the real
radiation problem where we know that the fundamental statistically inde-
pendent processes are simply single photon emissions, the hadron problem
is not so simple. The effective Poisson emitfted objects may be some kind
of mixture of 7's, p's, w's ..., correlated = pairs and the like. But
while the ¢ in Eq. (5) refers to the Poisson emitted objects the experi-
mental ¢ in Eq. (4) refers to the actual (mainly pion) multiplicity. Thus
the experimental ¢ of Eq. (4) may have to be reduced before being used in
Eq. (15) to predict the leading particle behavior. In the future, detailed
examination of the correlations present in multiproduction may tell us
exactly what is Poisson emitted and by how much c is to be decreased.

For the present we can only say that it seems reasonable to reduce ¢ by
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a factor which is "not too big”. We stress, however, that it does not work
the other way; should the experimental ¢ from Eg. (4) turn out to be too
small to fit via Eq. (15) in some process, then our explanation is simply
vitiated — we certainly cannot claim to emit less that one pion at a time.

Should our interpretation be borne out, however, we have a simple
and amusing interprefation of high energy reactions. When one hadron hits
another it is like an electron going through an absorber, and the coefficient
¢ (perhaps adjusted as discussed above) of the multiplicity law tells us
how *'thick” that absorber is. The flatness of the experimental proton
spectrum then means that it sees the other proton as one radiation lengthl?
or in terms of Eq. (6): hadrons have "' ~ 1}

Appendix
"Thick Target Bremsstrablung"

(The method described here was developed in collaboration with R. Roskies. )

The bremsstrahlung straggling problem has a long and sometimes
messy history. The problem has been attacked by the method of the dif-
fusion equ.ationlo or by Heitler's trick of distorting the photon spectrum
to get a tractable approximation. 14 Here we would like to show how fo
arrive at an exact answer by iterating our simple answer and solving the
associated transport problem. Once we go beyond the simple treatment
described above, problems arise for two reasons. One has to do with the
fact that deviations from the infrared limiting form dw/w for the photon
spectrum occur for photons thathave some fraction of the indicent energy.
These deviations will thenbe reflected in the electron's energyloss, particu-

larly when it is large, since it is the "harder" photons that are principally
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affec ted; These effects, while they can be important in practice, may be
incorporated in the general method (at least as long as we are in " Approxi-
mation A"10 where the deviations have a "scaling" form as (w/E)) and do
not offer any problems in principle. 15 We will thus not consider this
problem any further and will always assume.that the radiation from a
single interaction is given by Eq. (4). More interesting and perhaps with
some relevance to the high energy problem is the second question, con-
nected with ! thick targets'.

When the target is thick the electrons slow down sufficiently that an
initially monoenergetié beam becomes substantially degraded and spread out
in energy. In ‘this case we can no longer maintain our basic assumption
(1) (following Eq. (13)) concerning the statistical independence of the
emissions. Tl.lis is because our neglect of the energy conservation con-
straint, which was all right when the beam was not very spread out, has
now become serious. An electron which has lost a lot of energy cannot
emit a photon near the maximum energy: energy conservation obviously
means that the emission of, say, two high energy photons cannot be

statistically independent. This is clearly an essential complication and it

is interesting fo see how we can treat it in a practical case.

Part of the answer we know already, without any further calculation:
those electrons which have lost only a small amount of energy still do
have a Poisson emission spectrum. Therefore we know that even for a
thick target the low energy loss electrons must distribute themselves

according to the previous resulfs

%&N' o —i— (€/B)°, (16)
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although now Wwe can no longer make a simple identification of the constants.

Since we do know the exact result for a very thin target, however, we
can imagine doing the thick térget problem by dividing the thick target up
into a series of thin slices and iterating the épectrum entering each slice
according to the thin target formula.

7 Let the electron distribution we wish to find be the dn/dE resulting
from a monoenergetic (6 function) beam entering the target. We call this
function G . It depends on Eq and the thickness T as well as E. Thus for

an arbitrary beam dn0 incident on the target what comes out is

dn _ dn®
% = f G (E,Eg T) a-EBdEO . 17)

Using what we know from Eg. (7) for the G on a thin target, we imagine

n the number of slices large so that T/n =t is small so that

-1+t

t -1+t
= g, (-%) : o as)

E.-E
t [0
G (E, E,, t) =—-—< )
0 E, \"E,

We introduce the scaled variable x = E/ EO’ and similarly in each slice
there will be an integration variable Ei which we scale to X; = Ei/ EO’

while x represents the final energy. Then iteration of Eq. (17) gives

G (E, Ej nhE, =

jdxn—l(  x )—1+t j?ﬁz_( _23_)—1+t
Xn-—l X <. X2 X, (19)
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We have an iteration with a ratio kernel, reflecting the "scaling" character
of the problem. It can be brought to a more familiar form involving a dif-

ference kernel by using y; = —!ani

y -1+¢
3 — n / - (y_yn"l ))
G(E, Eg,n)E) = G(y,nt) Ej = ¢ / dy, ,\l-e

-1+t ~14+t -1+t
y3 "(Y3"YZ) y2 '(y2"yl) . _yl
AN dy,\1-e dy,\1-e l1-e
0 2 1\ ;

0
20)

Now we have something precisely in the form suitable for the application of
f
the Laplace transf.ormle, whose " Faltung theorem" is precisely in the

form necded in Eq. (20). Using & as the symbol for the transform then

z! .y |E, = BE 0" @1)

where s is the transform variable and B is the usual Reta function17 which
arises because it is the Laplace transform of the kernel. Now letting
n -~ «, keeping nt = T fixed gives

(tB(s, )" — &V HYENT (22)

where®” Yy is the logarithmic derivative of the I' function and 5 the Euler

constant = 0.57 .... Inverting Eq. (21) gives us the final answer
-yT -1 ,
€ -y xYT
GO 1) = S V™ 23)

Ey

withy = fn EO/E.
If we express % Lin terms of the usual contour integral, then this

agrees with an answer that can be arrived at by the diffusion equation18



a+tieo

%1% _ ’EL e YT esy,e—zﬁ(S)T ds 24)
0 q ~1ic0

It may be verified by direct integration that Eq. (24) satisfies the normali~

zation property

E E
0 ax 0 «
, / aN gp - f G(E, E,T)E = 1 . @5)
, 0 0

and the necessary "group" property

jo?
=

E
0
G(E, E;, T) = f dE'G(E, E', T-)G(E', Ej» ) -
0
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