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ABSTRACT 

Two models are presented for which the full multiparticle S-matrix 

is unitary at high energies. The production mechanism is based on the 

multiperipheral model. It is shown that the elastic scattering amplitude 

contains a new type of cut in the angular momentum plane which is dynam- 

ical in origin. This unitarity cut plays a crucial role in enforcing the 

Froissart bound. The contribution of the multiregge region of phase 

space to the total cross section is suppressed and decreases as a power 

of the energy in almost all situations. Inclusive cross sections have been 

discussed, but only elastic scattering will be treated here. 
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In order to construct a realistic model of diffraction scattering and particle 

production at high energies it is necessary to take into account the constraints of 

multiparticle unitarity. In this note we discuss two models for which the full multi- 

particle S-matrix is unitary at high energies. ’ The production mechanism is simi- 

lar to that of the multiperipheral model to the extent that secondary particles are 

created and destroyed from chains which are in turn exchanged between the high 

energy primary particles. However, in order for the models to satisfy unitarity, 

it is essential to take into account diagrams in which the secondaries are produced 

or destroyed from more than one chain. This means that the elastic scattering 

amplitude will have contributions from checkerboard diagrams such as the one 

shown in Fig. lb as well as from the familiar ladder diagrams of Fig. la. 

The most striking new feature of these models is the mechanism by which the 

Froissart bound is enforced. The sum of the checkerboard graphs, whose presence 

is required by unitarity‘, gives rise to a square root branch cut in the angular mo- 

mentum plane. It should be emphasized that this unitarity cut is dynamical in ori- 

gin as opposed to the almost kinematical origin of the familiar Mandelstam cuts, 

which are also present here, and the AFS cuts. The unitarity cut is not present in 

any individual diagram. It is associated with a divergence in the perturbation 

series for the S-matrix. 

As is well known, the standard multiperipheral and multiregge models do not 

have the constraints of unitarity built in. As a result, they can give rise to a vio- 

lation of the Froissart bound by having a regge pole to the right of Q=l. 2 In the 

present case it is also possible for the ladder graphs to generate a pole to the right 

of Q=l. However, in our solvable model we find that any pole which passes Q=l is 

always on an unphysical sheet because it has passed through the unitarity cut. Thus 

it is not possible to violate the Froissart bound. 3,4 
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In addition to enforcing this bound, the unitarity cut tends to decrease the im- 

portance of the multiregge region of phase space. For most values of the input 

parameters in our models, the multiregge region yields a small energy decreasing contri- 

bution to the total cross section. In our solvable model the leading Q-plane singu- 

larity arising from the multiregge region can reach unity only if the input pole is 

itself greater than one. In this situation the Froissart bound can be saturated. 

Let us now turn to the specification of the models to be discussed here. Two 

types of particles appear in our models. All states contain two nonidentical, spin- 

less ‘%ucleonP, plus an arbitrary number of identical “pion@. The pions can be 

created and destroyed, but not the nucleons. As in the eikonal model, it is assumed 

that the nucleons retain a large fraction of their longitudinal momenta throughout 

the scattering process. 5 Working in the center -of-mass, we take the S-matrix 

elements to be a function of Y, the rapidity difference between the nucleons; B, the 

transverse distance between the nucleons; and qi and yi, the transverse momentum 

and rapidity of the ith pion. In the eikonal approximation, the S-matrix is diagonal ( 

in Y and B. Our model is now completely specified by giving the amplitude for the 

production of n pions off a single chain, W,(Y, B;ql, yl, . . . , qn, yn). By crossing 

symmetry Wn also describes chains in which some or all of the pions are incoming. 

It is convenient to introduce a single operator, Zn, which handles all possible pro- 

duction and absorption processes involving n pions which is regulated by Wn in the 

following form, 

ii dqi -$ (1) 
i=l l 

where a and a+ are the pion creation and annihilation operators normalized such 

that [at, a’] = 2(27r)3 S2(s-st) 6(y-y’). The invariant phase space element is 

dq E d2g dy/2 (27r)3, and s E m2ey, where m is the nucleon mass. The creation 
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and annihilation operators have been normal ordered in Eq. (1) to prevent a pion 

from being reabsorbed on the same chain from which it was emitted. Since we 

wish to consider chains from which an arbitrary number of pions are created or 

destroyed, we introduce a hermitian operator and unitary S-matrix by 

w-q) = 2 zp,y , 
n=O 

00 
S(y, E$) = eiZflp El = c 

.N 
kz” . (2) 

N=O ’ 

Let us start by considering a model which is simple enough to be solved exactly. 

We take the exchange mechanism between adjacent particles on the chain to be that 

of a fixed pole, and ignore correlations between transverse momenta. The rapidi- 

ties are taken to be strongly ordered. Working in the center-of -mass, we then 

write6 

$ WJY, l$s,l, Yl’ l l l , Q Y,) = e 
-Yf(B) 

n a(Yi-Yi+l) 
II e 

i=O 
’ bi-Yi+l) J!lg(e,, 9 f3) 

where y. = -y,-,, = i Y. It is convenient to introduce creation and annihilation oper- 

ators, c+ and c, defined by 

c =[W1’2/-j) f$ Gp-$Y) , 

where the effective coupling constant A is chosen so that [c, c’] = 1. Z(Y, B) and 

S(Y, B) can now be expressed in terms of the coordinate operator X = -!- (c + c+), 
J; 

Z(Y, B;X) = f(B) eq [(a-l-$,) Y+ (zAY)~/~ x] . 

Clearly S is diagonal in this coordinate representation. We shall be primarily 

interested in elastic scattering, so the matrix element of S is needed between states 
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with no pions: 

<o I S(YJ3) I o> = I+ &M~~(Y,EJ = -j&j? dxeNx2 exp iZ(Y,B;x), (4) 
-00 

where M22 is the elastic scattering amplitude. 

It is instructive to examine M22 in the angular momentum plane7: 

co 

J- 
dY e-Q’ 

0 
M22cG ,B) = 2 im2 

C 
(Q-1)-l-G(Q) (-if(B))l@) +C (Q, l3) 1 , (5) 

where 

G(Q) = I’ [(2/A)l’2 ((Q-O&~ - (l-a,) 1/2)l/[2A@!o)y2 

h(Q) = (2/7~)l’~ 
c (1-Q 1’2 - (Q-cY~)~‘~] , 

and C(Q, l3) is an entire function of Q for all values of B provided o < 1-t 2 LA If . 

a > l+$h, then 

M22(Q, B) = 2 im2 (Q-1) -I if(B)lh(Q) -I- C’(Q,B) , (6) 

where C f (Q, B) has only a branch point in Q at oc. The position of this new dynamical 

cut is Q! c = a! - (l-o! -$A)2/2h for any value of a. 

Figure 2 illustrates the Q-plane structure for the case CY < 1+ 2 LA. The - 

N-Reggeon exchange amplitude has a pole at a(N) = l-t- N(a-l)+iAN(N-1). The pole 

at Q=a!(l)=a! is due to the exchange of a single fixed input pole. The pole at 

a!(2)=2a!-l+A arises Tom the ladder graphs, and the poles with N> 3 from the 

checkerboard graphs with N vertical lines. In general, <OIZNIO >=fN(13) expYa!(N), 

so that the series expansion of S given in Eq. (2) diverges. The poles with N22 

are dynamical in origin and the quadratic dependence of a(N) is due to the fact that 

the number of attractive pairwise interactions increases as N(N-1)/2. The square 

root branch point at Q= oc is directly related to the above divergence of the per- 

turbation expansion. Notice that 01~ 5 1 for all values of h and o. The only poles 
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on the physical sheet are those for which NC-~ = 1 -a! +ih)/h . Let us imagine 

that the coupling constant is increased from zero to infinity at a fixed value of ~~51. 

For small values of h the branch point is far to the left in the Q-plane. As A is in- 

creased the dynamical poles move to the right, but the branch point moves even 

faster. Each pole eventually collides with the branch point and then moves off onto 

the unphysical sheet. At A= 2(1-a) the branch point circles the fixed pole and starts 

to retreat back to the left. Therefore, for A->2(1-a) the branch point is the only 

singularity on the physical sheet. 

The behavior of the cross section as the parameters are varied is now easy to 

follow. The total cross section is dominated by the dynamical pole arising from 

the ladder graphs as long as this singularity is on the physical sheet. We thus have 

UT(s) - (s/m2)2a!-2+h for h 5 3 2(1-a). On the other hand, for A > i(l-ar) the branch 

point dominates and we then find O,(S) N (s/m 2 crc-1 [Qn(s/m’)]-“‘. Thus for ) 

01 < l+ i h the total cross section always goes to zero at high energies. This in- 

cludes the case (~=l, which is given above with ac= -h/8. 

For CY > l+ i h the scattering amplitude has a branch point at Q=ac and an addi- 

tional singularity at Q=l. To illuminate the form of this singularity we make the 

particular choice f(E) = e -B/R . Then the Fourier transform with respect to B gives 

2 2 -3/2 
M22(Q, 6) = 2 im R o + ctQ,,a> 3 (7) 

where R o = R l- Q! + $h and c(Q, 4) has only the branch point at Q=cuc. 
1 

The two- 

dimensional momentum transfer is A, and at high energies, t N - h2. The first 

term in Eq, (15) is just the Q-plane singularity associated with scattering from a 

black disc of radius ROY. 

2 [Qns/m2]2.4 

It gives rise to a total cross section of the form 

CT(s) = 27~R6 If one increases Q! for fixed h, the square root branch 

points at Q=l& iR6& enter the physical sheet through the unitarity cut when 
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O!=l+ 5 h. At this point ac=l, and RO=O. Notice that for sufficiently large values 

of h the total cross section always goes to zero at high energies for fixed a!. 

The unitarity cut which we have exhibited explicitly in this solvable but quite 

general model, will be present in a wide class of multiperipheral-like models. To 

see this point, let us consider a form for Wn more closely related to the standard 

multiregge model: 

m-1 
W,cY, a,;sl,~p o .f+y,) = H p&J e 

a! t$)“i 

i=l 
’ txi> ’ g(k_jj,~+l) 9 

j=l 
w 

i+l 
where $ is the two-dimensional momentum conjugate to IJ, ki = c qj, and 

j=l 
xi=yi -y. 1+1' 

In the region of phase space in which all subenergies are large, 

this choice for Wn exactly reproduces the multiregge amplitude. 

The present model cannot be solved analytically; however, it is possible to 

write down an integral equation for the amplitude ZN = < 0 I ZN I 0 > 0 A typical 

diagram contributing to Z4 is shown in Fig. lb. Clearly ZN gives the contribution 

to the elastic scattering amplitude arising from N reggeon exchange. It is conven- 

ient to work in the Q-plane. We introduce the Green’s function for the propagation 

of N free reggeons, GN(Q), by 

and the N reggeon potential , VN, by 

vN= EVij , 
i<j 

where 
N 

<k’ -1 ,o. A&lVijlk,, . AN> = - n: (274 
2 2 6 

Q#i, j 
(I$-~) 



If we take the input trajectory to be linear and write 01(k) = a-arks, then the inte- 

gral equation for ZN is exactly analogous to the Lippman-Schwinger equation in 

two -dimensions. 8 The quantity that corresponds to the energy variable is 

EN= -Q+ N(o!-1). Clearly, determining the position of the leading regge pole that 

contributes to ZN is equivalent to solving for the ground state energy of a two- 

dimensional, N-body system. One expects that the residue function, p(k), and the 

vertex function g(k, k’) will be regular at the origin and will go to zero for large 

values of their arguments. Since there are + N(N-1) attractive potential energy 

terms and N repulsive kinetic energy terms in the Hamiltonian, one expects the 

binding energy of the ground state to grow like N2. In other words, the leading 

regge pole should move to the right in the Q-plane as N2. For a wide range of 

input functions, it is in fact possible to prove that the t=O intercept of the leading 

pole has the form’ aN(0) = a(N) -bN+ cN2, where c is a positive constant and a(N) 

is expected to go like a-constant for large N. It follows at once that the series ex- 

pansion for the S-matrix given in Eq. (4) diverges, just as it does for the solvable 

model. 

It is convenient as well as necessary to introduce an alternative definition of 

the S-matrix by writing 
00 

s(z) =+ / tie -x2 iZ(Z e2dx, , (11) 
37 --oo 

where 

g(Z) = 2 $ ZN e-d2N2 . 
N=O l 

(12) 

d is a real constant whose numerical value is at our disposal. When it is permiss- 

ible to interchange the order of summation and integration, one recovers Eq. (2). 

However, even when this is not possible, one can show by formal manipulation that 

the S-matrix defined by Eqs. (11) and (12) is unitary. 
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It is now a simple matter to compute the contribution of the leading regge poles 

in Z N to the elastic scattering amplitude. A particularly simple choice for d which 

guarantees the convergence of the series of Eq. (12) is d=(cY) l/2 . One finds that in 

the present model there are an infinite number of square root branch points in the 

Q-plane. At +O they are located at at(N) =a(N) -b2/4c. The Q-plane structure of the 

elastic amplitude is essentially the same as in the case of the solvable model. In 

particular the mechanism for avoiding violation of the Froissart bound is the same - 

the unitarity cut. 

The point we wish to emphasize is that the mechanism for avoiding violation or 

saturation of the Froissart bound, discussed in these two rather single models, is 

likely to be present in a wide class of models. Unitarity requires that we take into 

account the checkerboard diagrams of Fig. lb as well as the more familiar ladder 

diagrams., A simple counting argument then shows that the amplitudes ZN will have 

poles arbitrarily far to the right in the Q-plane unless the forces between reggeons 

saturate. It is hard to see how these features could be changed in more sophisticated 

models that take into account low subenergy effects. Since the S-matrix is explicitly 

unitary, it cannot have Q-plane singularities in the physical sheet to the right of Q=l. 

As a result, it must have branch cuts which are of a different type than those dis- 

cussed by Mandelstam. 9 In our solvable model we find that if the input trajectory 

is one or less, the multiregge region of phase space provides a contribution to the 

total cross section that decreases as a power of the energy. Hence the experimen- 

tally observed constant total cross sections must arise from other sources, such as 

the fragmentation region or the low subenergy pionization region. 

Figure Captions 

1. Typical ladder (a) and checkerboard (b) graphs. 

2. Analyticity in Q-plane. Dashed poles on unphysical sheet. 
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