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1. Introduction 

In many theories for multiparticle systems, like the Faddeev equations for 

three-particle systems, the input information is not the explicit inter-particle 

potentials but rather the two particle transition amplitudes t(l?,z E -t- ie). How- 

ever, two-particle scattering experiments provide direct information only on the 

on-the-energy-shell part of these amplitudes, corresponding to IF I = I$ I = k, 
n 

where k” /2~ = E is the energy, while in the multiparticle theories the scattering 

amplitude is in general also needed for off-shell values of the momenta,, and for 

negative energies. 

The methods to extract information on the off-shell parts of t from on-shell 

parts in one way or another exploit the assumption that t corresponds to a unitary 

S-matrix or, more precisely, that the solutions to the Schrddinger equation cor- 

responding to different energies form a complete set. The most well-known 

consequence of this so-called unitarity condition on t is of course that the on- 

shell transition amplitude itself in every partial wave can be parameterized in 

terms of a real function of energy, the phase-shift 6Q(k), 

Im $(k,k;E + ie) = - $k sin cY1(k)e 
q(k) 

Other well-known consequences, ’ also applying to partial wave amplitudes, are 

that the amplitude can be expressed in closed form in terms of half-off-shell 

amplitudes, 2,3,4 e. g. , for the imaginary part of t1 

t&p’ ,p; E + ie) = -npk t&p’ ,k; E + i.e ) t,*(k,p; E + ie) (1*2) 

and, moreover, that only the modulus of the half-off-shell amplitude depends 

on the off-shell momentum, leaving it with the same phase-factor as the 
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corresponding on-shell amplitude, 

$0’ ,k; E + ie) = fn@ ,k) $(k,k; E f ie) (1.3) 

where the half-off-shell factor fe@ ,k) is real. Thus, in every partial wave, 

the completely off-shell amplitude can be parametrized in terms of the two real 

functions Gp(k) and fmCp, k). 

The remaining general restrictions on t due to the unitarity condition3 are 

less t-ransparent, since they are expressed in the form of an integral relation 

which is quadratic in the half-off-shell amplitude. However, in the important 

special case when the transition amplitude corresponds to an interaction potential 

which is diagonal in configuration space (a condition that excludes, for instance, 

separable interactions) the situation is considerably simplified. From the 

solutions to the inverse problem of scattering theory, 5 it is known that in this 

case the quadratic unitarity condition can be reduced to a linear integral equa- 

tion, through which an in principle unique potential can be deduced using on- 

shell and bound state properties of the two-particle system. But once the 

potential is known, the off-shell extension of the transition amplitude is obtain- 

able as the solution to the Lippmann-Schwinger equation. in this way also the 

off-shell amplitude is uniquely determined by the phase-shift together with, in 

the case of a partial wave with bound states, the bound state energies and 

normalizations. 

The procedure just outlined can obviously be simplified if the potential 

itself is of less interest and the main objective is to find the off-shell extension 

of a given on-shell amplitude. In the present paper, such a simplified pro- 

cedure is developed, through which the half-off-shell factor fI@ ,k) can be obtained 

from the phase shift and the bound state parameters, and in which the 
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intermediate step of actually calculating the potential has been eliminated. The 

basic ingredient is the Marchenko integral equation from the theory of the inverse 

scattering problem, 536 but rather than considering its solution in configuration 

space, as in the conventional discussion of the equation, it is shown that a certain 

momentum space transform of the solution is closely related to the half-off-shell 

factor. After this observation, what remains is essentially to develope methods 

to solve the Marchenko equation that are suitable’ for the subsequent calculation 

of the half-off-shell factor. In this paper, the iterative solution will be discussed 

in some detail, but a more general method based on the Fredholm solution will 

also be outlined. Finally, it is known that for Bargmann SQ(k)-matrices the 

Marchenko equation has a separable kernel and hence a closed form solution. 

Through a calculation closely related to the Schmidt process it will be indicated 

how this fact can be used to transform the Marchenko equation into a similar 

equation for which the above methods of solution are expected to be more rapidly 

converging. 

2. The Half-Off-Shell Factor and the Marcher&o Theory 

The system under consideration is two nonrelativistic particles interacting 

via the potential vQ( r), and the discussion will be restricted to an uncoupled 

partial wave in which, for simplicity, there is at most one bound state. Let 

f*(k;r) be the solutions to the SchrGdinger equation 

1 d 2 it Q(Q+l) + 2~ VP(r) 1 UQ(k;r) =k2 UQ(k;r) 

that satisfies the boundary condition at infinity 

lim fj”) 
r--m 

(k;r)/hd*) (kr) = 1 
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(“) ha (kr) = nQ(kr) f i jQ(kr) are spherical Bessel functions in the notation of Messiah. 
7 

The Marchenko treatment of the inverse problem of scattering theory is based 

on the observation that the solution fQ (‘)(k. ) ,r is related to the free particle solu- 

tion hj’) (kr) via a real Volterra kernel function AQ(r ‘, r), 
5 

co 

fr) (k;r’) = h(,i)(krl) + -$ f rr’drff AQ(r’,r”)hg (“)(krl,) (2.3) 
r’ 

In order to establish a relation between AQ(rf, I“‘) and the off-shell transition 

amplitude, it is convenient to introduce the outgoing wave scattering solution to 

the SchrGdinger equation (2. l), 

$j’) (k;r) = 6 i6Q(k) Im [fy) (k;r) eiap(kq 

where the normalization is such that 

\ 
co 

s 
r2dr $l)* (p’;r) $h+)(p;r) = + S(p’-p) (2.5) 

0 P 

The momentum space transform of $Q (+)(k. ) ,r is related to the transition amplitude 

through 

r2dr j (pr) $(+)(k;r) = + @p-k) - 2’ Q Q $(p,k; E+ie) (2.6) 
P p2 -k2 -ie 

Replacing f(m’) (k;r) in (2.4) by the expression (2. 3), and using the fact that 

co 
s r2dr j,@r) h(Q+.)(kr) = &I 1 

0 P2 -k2 -ie 
(2.7) 
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it is straightforward to show that 

fQ@ ) k, = (f)" + (I?' - k2) r’dr’ jQ@r)AQ(r, r’)Im 
i6Q tk) 1 

(2.8) 
where fQ(p, k) is the half-off-shell factor introduced in section 1. 

For partial waves with Q > 0, the Marchenko theory as introduced above has some 

unsatisfactory features related to the divergence of f 6’) (k;r) and hr)(kr) 

at the origin. For example, if f Q (+I (k;r) f (‘) rom (2.3) is used in (2.4)) IJ Q (k;r) on 

the left hand side is proportional to rQ for small r, while the two terms on the 

right hand side individually diverge as r -Q-l . The same difficulty shows up in 

(2.8) where the left hand side is finite for p - 00, while the two terms on the right 

hand side diverge in this limit. In order to overcome this problem, consider a 

solution ht(*) (k;r) to the equation (2.1) with the boundary condition (2.2) and a 

potential 

vQ(r) = - Q(Q+l) 
2pr2 

B(R - r) (2.9) 

where e(x) =lforx> Oand e(x) =Oforx<O. The behavior of vQ(r) for r < R is 

rather arbitrary. One only requires that the Schrijdinger equation in this region 

is reducible to an effective s-wave equation for which the irregular solution 

diverges no worse than r-l at the origin. Another, equally simple choice for 

the potential would be to take 

‘Qtr) = B(R - r) (2.9’) 

so that the potential is continuous at r = R. 

Assuming now that hF(*) (k;r) has a representation analogous to (2.3)) 
co 

h:(*)(k;r’) = hF)(krf) + -$- J r”dr” AF(rl,rfl)hF)(kr”) , 

r’ 
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this expression can be combined with (2.3) to give 

ff)@;rf) = h:(‘)(k;r’) + + 
r 7 r”dr” BQ(r’,r”)hQ R(*+k;r”) (2.11) 

r’ 

where B is again a Volterra kernel. In operator notation, 1 -I- B = (l+A)(l+A R -1 ) , 

but if AR is a Volterra operator, so is B. If this representation is introduced in 

(2.4), the two terms on the right hand side only diverge as r-l at the origin, as 

in the-Q =0 case, and this divergence is always compensated for by the weight 

fat tor r2 appearing in all integrals. The relation between B and the half-off-shell 

factor is obtained in the same way as was equation (2.8): 

R 

fQ@,k) = @! + (p2 - k2) sinak,(k) -[r2dr Im jQ(pr) hf(+)C,r;r) -h(Q)(kr) e 
isQt@) 

1 

f prdr 7 r’dr’ jQ(pr)BQ(r,r’) Im ,h;(‘)(k;r’) e 
idQtk) 

1 (2.12) 
0 r 

Here, the integral R2 
/ 

r dr(...) can be evaluated exactly, and it is easy to verify 
0 

that it contains a term that exactly cancels the @/k$ term in (2.12), as expected. 

By construction, the half-off-shell factor is independent of the parameter R, and 

the expression (2.12) depends on R only to the extent that to different R-values 

correspond different kernels BQ(r , r’). 

3. The Marcher&o Equation and Its Iterative Solution 

Because of the relation (2.12) between the Marcher&o Function BQ(r’, r) and 

the half-off-shell factor, the problem of computing the half-off-shell continuation 

of a given on-shell amplitude is equivalent to the determination of BQ(r’,r), or 

rather its transform as given in (2.12), from the phase shifts and bound state 

parameters only. This is exactly what the Marchenko theory amounts to, and 
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our goal is a reformulation of this theory such that the calculation of the half- 

off-shell factor according to (2.12) becomes simple and straightforward. 

As was mentioned in the introduction, one main ingredient in the Marchenko 

theory is the completeness relation for the regular solutions (2.4) to the 

Schrb’dinger equation, 

k2dk $6+)(k;r’) $(+I* Q (kr) + C+f(r’) +r(r) = ’ 6(r’-r) 
7 

(3.1) 
0 

Here $f (r) is the bound state wave function corresponding to a binding energy 

B> 0, and C is a normalization constant. $f (r) is related to BQ(r’ , r) through the 

formula (2.11) with k = i J2pB = i K , 

z+hf (r’) = h:(+)(i K; r’) f + J 
rf 

rftdrl’ BQ(rV,rTf)h;(+)(iK; rff) 

(3.2) 

Let B be the operator corresponding to the kernel r-%,-l BQ(r ‘, r) Q (I: - rl). As 

an operator relation, the completeness relation (3.1) reads 

(l+B)(l-F)(l+B+) = 1 (3.3) 

where the kernel of the operator F is 

1 
s FQ@‘d = i 1 k2dk Reb(‘)(k;r ‘) hf(‘)(k;r) le2i6Q(k)-I)] 

_ c hR(+) - p (1 K;r’) h 
Q (iK ;r) Rt+)* (3.4) 

After multiplication with (1 + B)-l = 1 4 %, equation (3. 3) reads 

Bi(rl,r) @@l-r) = FQ(rl,r)+ 
P 

dr” FQ(rl,rfT)Bef(rlf 
r 

,r) + $(rl,r)O(r -r?) 

(3.5) co 

= Fl(rf,r) f J drllFQ(rl,rfl)Bl(rT1,r), r’> r (3.6) 
r 
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Equation (3.6) can now for every fixed r be considered as a linear integral equation 

for Bi(r ’ , r) in terms of Fa(rl, r), where Fl(rl, r) only depends on the phaseshift 

?jQ(k) and the bound state parameters Y and C in (3.4). In the following, equation 

(3.6) will be referred to as the (slightly generalized) Marchenko equation. 

When considering methods to solve equation (3.6) it should be kept in mind 

that it is not really Bi(r’,r) but rather the expression (2.12) that is of primary 

interest, If the half-off-shell function were to be calculated with the help of 

equation (3.6) as it stands, the first step would be to transform the momentum 

space data into the configuration space function FQ(r ’ ,r). The next step would be 

to solve the equation (3.6) for BQ(r ‘, r), and the last step to transform the solution 

into the momentum space half-off-shell factor fQ(p, k). Since in any application of 

the theory, the on-shell data are known with limited accuracy and in a finite energy 

range, transformations back and forth between momentum and configuration space 

should clearly be avoided. 8 The straightforward way to achieve that is to try to 

convert equation (3.6) into a momentum space Marchenko equation. The result 

is unfortunately a rather complicated integral equation in two variables with a 

singular kernel. 9 

The approach to be followed here will be to introduce formal, configuration 

space solutions to the Marcher&o equation (3.6) in the expression (2.12) for the 

half-off-shell factor, and try to rewrite the result in such a way that all trans- 

formations to configuration space are eliminated. For the iterative solution to 

the Marchenko equation this approach amounts to interchanging order of integration 
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in the expression 

n=l 0 r r 

h~(i)(k;rf)ei6Q(k~ FQ(r’,r”)‘.” FQ(rn ?)jQtv) 

(3.7) 

so that all r-integrations are carried out before the k-integrations in the FQ(rl, r):s. 

At least in the Q = 0 case this is easily done, as will be shown in detail in the next 

section. In section 5 the usefulness from numerical point of the resulting expres- 

sion is demonstrated for the test case of an s-wave spherical well interaction with 

no bound state. The results in section 7 indicate that this straightforward iterative 

series for the half-off-shell factor might not converge if the interaction is strong 

enough to support bound states in the partial wave of interest. 

4. The S-Wave Iterative Solution 

For the lowest partial wave Q = 0, the change in the order of integrations in 

(3. 7) is particularly simple. Consider the kernel Fo(r I, r), 

ca 
Fo(rt,r) = i 

J [ 
ik(rl+r) 

dk Re e (So(k) -1) 1 (4.1) 
0 

where So(k) = e 
2iSo(k) 

is the S-matrix in the Q = 0 partial wave, and where it has 

been assumed that there is no bound state. Since SQ(-k) = Si (k), the region of 

integration can be extended to (- co, 00)) so that 

co 
1 

Fo06r) = G J- 
ik(r’ + r) 

dk e F&W - 1) * (4.2) 
--co 

The imaginary contributions from the integral cancel. All r-integrations in 

(3.7) can now be carried out with the result for the half-off-shell 
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factor 

co 
fo(P,k) = 1 + (p2 -k2) 1 -&.- 

2p smdo(k) c/ 
dq’... dqn 1 

n=l --co m)” 

iSo i 

k+qn+ie 
tsotq”) -1) i 

qn+qnW1+ie 
(S,(cp) -1) * * * (SOW) - 1) 

X 

I 

1 1 

k+2q’+ . . . +2qn-f-p +ie k+2q’+.** +2q”-p+ie 1 (4-S) 
For the evaluation of the qV -integral, v = 1,2, . . . ,n, the modification of the 

integrand (q”” = k) 

So(qV) - 1 - Sotqv 1 - e 
- 2Uo(qV +I) 

(4.4) 

does not change the value of the integral but eliminates the (q’/ +I + qv + it-)-l 

singularily , so that 

co 
fo@,k)=l+(p2 2 1 1 

- k ) 4 sinso c 
A@, n +-A (k kd) n ’ 2 

P (4.5) 
n=l 

where 
co 

A,(k, q) = - L / dqn 
sWOtk) f $pn )) 

x 
k + qn 

An-lt&qn + 9) (4.6) 
--03 
co 

A+k:q) = - L J dq’ 
SiWO(k) + 6otq’)) iq)(q’) 1 

7r k +q’ 
-co I (4.7) q+q’+ie 

These expressions are particularly suited for the numerical calculation of fo(p,k) 

from 6. (k), as will be discussed in the next section. 
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5. A Numerical Example: The Spherical Well 

As a first test of the usefulness of the off-shell extension formula (4.5-7) 

from numerical point of view, the s-wave off-shell factor corresponding to a 

spherical well of range a = 2 Fermi and depth V. = 20 MeV has been calculated. 

With this choice of parameters, there is no bound state, and the s-wave phase 

shift is similar to the s-wave singlet n-p phaseshift at low momenta (figure 1). 

The functions An(k,q) of (4.6-7) have been computed successively on a 

24 X 24 mesh (note that An(k,q) = An(-k, -9)) using 24 point Gaussian quadrature. 

The values of An-l(qn,qn + q) on the right hand side of (4.6) were obtained by 

means of linear interpolation in the An 1 (k ,q) matrix, and const/q extrapolation 

outside this matrix. Al(k,q) was computed in a more careful manner in order to 

account properly both for the singularity at q’ +q = 0 and for the rapid variation of 

the integrand in the neighborhood of q’ = 0. The singularity was first shifted to 

the origin, and the d-function part of it was taken into account explicitly. The 

T and 7 pieces of the remaining principal part integral was then computed 
--03 0 
individually using identical 24 point Gaussian quadrature. Figure 2 shows the 

exact half-off-shell factor f,@,k) for k = 1.0 Fermi-l together with the result 

obtained from the formula (4.5-7) and interpolation in the matrix E A#4 
n=l 

for N = 5. The discrepancy at high momenta is mainly due to the fact that only 

4 of the 24 meshpoints are in the region Ip I > 2.0 Fermi-‘. 

With the numerical calculations organized as outlined above, the computation 

of An from An 1 is neither harder nor more time consuming than the computation 

of A2 from A 1, and despite the fact that An is in principle an n-dimensional 

integral, the computer time required to calculate N terms in the series (4.5) 

is just proportional to N. This means that the expansion (4.5-7) is useful from 

a numerical point of view even when the rate of convergence is rather low. 
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6. The Fredholm Solution 

In this section a more general method to find the half-off-shell continuation 

of the on-shell amplitude will be outlined. It is based on the Fredholm solution 

to the Marcher&o equation (3.6) 10 

Bl(r I, r) = Y(r ‘, r;r )/A(r) (6.1) 

where 1: is treated as a parameter, and where 
co 

Y(r’,r;r) = C Yn(r’,r;r) (6.2) 
n=O 

00 

A(r) = 1 + Al(r) = c A,(r) (6.3) 
n=O 

03 

Yn(rf,r”;r) = / dp Y,-,(r’. p; r)F,$p, r’l)fF1(rl,r”)An(r), 
r 

r’;5 r, r” > r (6.4) 

03 

A,(r) = - k J- 
r 

dr’ Yn-l(r*,rl;r) (6.5) 

Yo(r’,rf’;r) = F1(r’,r”), r’? r, rll > r (6.6) 

ho(r) = 1 (6.7) 

The index L has been suppressed on all Y:s and AS. For the calculation of the 

half-off-shell factor according to equation (2.12), it is suitable to rewrite 

equation (6.1) as 

Bi(r’,r) = Y(r’,r;r) - Bl(r I, r) A’(r) (6.8) 
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and introduce a notation for the transform of Bi(r’, r) that appears in (2.12) 

Bf(k,p) =pk / rdr / r’dr’ Im [hf(+)(kr’)e 
ip) 

0 3 r 
(6.9) 

In terms of Bf(k,p), the relation (6.8) is an integral equation 

BI(k,p) =pk 7 rdr / 

0 r 

i$(k) 

3 
Y@‘& r)j#?r) (6.9) 

co 
-s dq BQ(k>q) A’(q,p) (6.10) 

-CO 

with the kernel 
co 

A’hp) = w ; / r2dr j,(sr)jp@r)AV) (6.11) 
0 

If in equation (6.10) the r-integrations in the inhomogeneous term and in the 

kernel are carried out before the k-integrations in the F!(r), r)-factors , in 

the same manner as in the expression (3. 7) for the iterative method, all 

transforms back and forth between momentum and configuration space are 

eliminated. The final step of solving equation (6.10) once the inhomogeneous 

term and the kernel have been calculated should be straightforward. 

The P = 0 case is again particularly simple, and the calculations can be 

carried through in almost the same way as in section 4. Here, however, the 

procedure is expected to work also if bound states are present. 

7. The Schmidt Process 

As an introduction to the use of the Schmidt process 10 when solving the 

Marchenko equation, the model problem of finding the half-off-shell factor 

corresponding to a Bargmann type s-wave S-matrix will be studied. In this case 

not only can the half-off-shell factor be written down in closed form but all the 
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integrations in the expansion (3. ‘7) can also be carried out. It is then possible to 

estimate the rate of convergence in the expansion. 

Let So(k) be a Bargmann type S-matrix, 11 

S;(k) = W-k)/R(k), R(k) = (k-i K)/(k + ib) V-1) 

If K > 0, this S-matrix corresponds to a bound state pole at k = iK , an additional 

pole at k = ib, b > K > 0 (to represent the dynamical cut), and no other singularities 

for Im k 2 0. If K < 0, there is no bound state, and only the “dynamical cutft pole 

remains in Im k > 0. 

If there is a bound state, it is further assumed that the normalization constant 

C in Fo(rl,r), 
a3 

Fo(rf,r) = & dk .ik(r’ f r) B (so @)-I) - c e°Ktr’ ’ r, 
K2 

U-2) 

-* 

is just 2~~ I’, r = (b + K)/(b - K ) , so that the contribution from the bound state 

pole in a contour integration evaluation of Fo(r I, r) exactly cantles the explicit 

bound state term. This choice of C corresponds to a Bargmann potential with a 

-1 range N b , while any other choice would correspond to a potential with a longer 
-1 11 range, WK . In this way the kernel Fo(rt,r) of the Marcher&o equation has a 

form that is independent of the sign of K , 

FO(rl,r) = -2b I? e -br ’ .-br 
(7.3) 

Moreover, Fo(rf , r) is separable in rf and r, so that the Marchenko equation has 

a closed form solution 

Bi(r’,r) = -2br e 
-br ’ .-br 

1 i- r e-2br ’ 
r’> r (7.4) 
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The half-off-shell factor can also be written in closed form: 

fo(p,k) = 1 - (p2 -k2)L .l I 
iSO 2ib 

cc! 
p sinso Irn e kj-ib o dr J 

re -2br ikr 
-2br e sin pr . 

l+re i 
(7.5) 

On the other hand, the iterative expansion for fo(p ,k) is obtained from (2.12) and 

(3.7) 

fotp,k) = 1 i- (p2 - k2) i sin: 
I 

‘i60(k) ib 

(k) Ime - 
0 k + ib 

co 
X c (-g r” 

/ 1 1 
k+2inb+p - k+2inb-p )l ’ n=l 

(7.6) 

It is easy to verify that (7.6) is the result that is obtained if the integral in (7.5) 

is evaluated with the help of the expansion 

(1 + r e-2br)-1 = 2 (-l)n rn e-2nbr 
n=O 

(7.7) 

The expansion (7.6) for the half-off-shell factor evidently converges when 

I r I < 1. In other words, when there is no bound state. This result suggests that 

the absence of bound states is the criteria for convergence of the iterative expan- 

sion also in the general case. 

Observe that any Bargmann type S-matrix corresponds to a sum of separable 

terms for Fa (r’, r), so that the corresponding Marcher&o equation has a closed 

form solution. This suggests that the Schmidt process can be used in a natural 

way to rearrange the original Marchenko equation into a form for which the iterative 

and Fredholm solutions are more rapidly convergent, and for which the iterative 

solution converges when the iterative solution to the original Marchenko equation 
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diverges. As an example, let 

FoW,r) = Ft(r’,r) +Fb(r’,r) 

where 
cc 

Ff(r’,r) = ..&. / dk eiktr’+ r, 
-ca 

= -2bre -b(r’ + r) 

(7.8) 

(7.9) 
co 

Fb(r’,r) = $ J 
dk .ik(r’ f r) 

-CO 
[So(k) - ST(kj- 5 e- K(r’ + r, 

(7.10) 

Here, C” = 2K3r, andC’=C-C”(ifthereisnoboundstate, C=C’=Cfl=O 

and K < 0 is a free parameter). In this way the kernel in the Marchenko equation 

has been split into a separable term and a non-separable remainder, and through 

a calculation similar to that familiar from the Schmidt process, the Marchenko 

equation is transformed into 

-br’ .-br co 
Bi (r’,r) = -2br e 

-bp’l 

1 + r e-2br 
-!- 

J- dP'dP 6(r’ - pl) -2br e 
-br’, 

r l+ re-‘b:: I Fbb’, P) 

-r)+B& ‘1, 1 rf> r (7.11) 

The iterative solution to this equation can now be used in equation (3.9) to generate 

a new series expansion for the half-off-shell factor. As in section 4, the r- and 

p-integrations can be carried out before the k-integrations in the Fb(r ‘, r)-factors, 

with the only complication that the final r-integration cannot be handled as neatly 

as before. If the parameters of St(k) are suitably chosen, the resulting expansion 

should converge faster than the expansion (4.3)) and it can also be expected to 

converge in some cases when (4.3) diverges. 
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The Fredholm solution to equation (7.11) can be treated as was the Fredholm 

solution to the Marchenko equation in section 6. 

8. Summary 

The problem of computing the off-shell continuation of a given on-shell, 

partial wave scattering amplitude has been discussed when the underlying inter- 

action is diagonal in configuration space. It has been shown that the methods of 

the inverse problem of scattering theory can be recast in a form which allows the 

(in this case essentially unique) half-off-shell continuation of the amplitude to be 

calculated entirely in momentum space. This avoids the potentially troublesome 

fourier transforms of the experimental and hence imperfectly known S1(k)-matrix. 

The procedure proposed here has been shown to be satisfactory from a numerical 

point of view in the simple but not entirely trivial case of an s-wave spherical well 

interaction, with parameters chosen to simulate the singlet n-p interaction. In 

more complicated cases, that is in the presence of bound states and/or for 

higher partial waves, the numerical calculations are still expected to be managable 

although less straightforward. 
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Figure Captions 

1. The s-wave phase-shift 6o(k) for a spherical well with range 2 fermi and 

depth 20 MeV. II =c = 21r, = 1. 

2. The s-wave half-off-shell factor fo(p,k) for a spherical well with range 2 

fermi and depth 20 MeV, for k = 1 Fermi-‘. The solid line is the exact 

value, and the dashed line is obtained from formula (4.5) with n < 5. 
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