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ABSTRACT 

The method of constructing unitary S-matrices developed in a recent 

paper is generalized and applied to two versions of the multiperipheral model. 

In these models the standard perturbation expansion of the S-matrix diverges, 

so an alternative expansion with improved convergence properties is developed. 

It is shown that the unitarity condition generates a new type of cut in the angular 

momentum plane which is dynamical in origin in contrast to the essentially 

kinematical Mandelstam cuts. This new type of cut insures that the Froissart 

bound on the total cross section is obeyed. In an exactly solvable model it is 

shown that the contribution of the multiregge region of phase space to the total 

cross section always decreases as a power of the energy if the input Regge 

trajectory is one or less. It is argued that the qualitative features of the models 

discussed here will hold for a wide class of multiperipheral-like models. 
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1. INTRODUCTION 

In order to discuss diffraction scattering and particle production at high 

energies it is essential to take into account the constrainst of multiparticle 

unitary. In a recent paper’ a class of solvable models was constructed for 

which the multiparticle S-matrix is exactly unitary at high energies. 2 As in 

the multiperipheral model, it is assumed that particles are produced and 

absorbed from chains; however, in order to satisfy unitarity it is essential to 

take into account diagrams, such as those shown in Figure 1, in which pro- 

duction takes place from more than one chain. In I we considered a class of 

models in which only one particle is created or destroyed on each chain. In 

the present paper we generalize our results to include chains from which an 

arbitrary number of particles can be created or destroyed. 

The classic multiperipheral and multiregge models have well-known dif- 

ficulties withunitaritywhichcanlead to violations of the Froissartbound. ’ This 

problem can be overcome by including production and absorptive effects in the pro- 

due tion amplitudes. 4 One then finds that the Froissart bound is saturated from 

the multiregge region of phase space. This is unsatisfactory experimentally, _ ~--_.- 

since particles produced at high energies tend to have rather low relative 

energies. The region of large relative energies, the multiregge region, is 

sparsely populated at best. We find that the unitarity condition, properly en- 

forced, produces a new type of cut in the angular momentum place which pre- 

serves the Froissart bound and decreases the importance of the multiregge 

contribution. This unitarity cut is of a dynamical origin which is to be con- 

trasted with the almost kinematical origin of the familiar Mandelstam’ and 
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AFS6 cuts. The Mandelstam cuts are also present here. The unitarity cut 

actually forces the contribution of the multiregge region to decrease at large 

energies except for rather narrow ranges of the parameters of the theory. 

In Section II we present our procedure for constructing unitary models. 

The input is the amplitude for the production of n particles from a single 

chain, Wn, shown in Figure 2. For a wide range of input functions it is 

pass.ible to construct a multiparticle S-matrix that is unitary for all physical 

values of the total energy. 

The essential feature of our procedure is that production from more than 

one chain is taken into account. Suppose the amplitude Wn is taken from the 

multiperipheral model and that the elementary particle or Reggeon being ex- 

changed has spin (Y. Then Wn will have a high energy behavior of the form sol. 

On the other hand, amplitudes corresponding to the exchange of N chains will 

have asymptotic behavior of the form S 1 +N(cY-1) 
, aside from logarithmic 

factors. Clearly when o! M 1 as in the case of Pomeron exchange, multi-chain 

exchange is important. As we shall see in specific models, even when a! is 

much less than one, multi-chain effects are important whenever the coupling 

constant associated with particle production becomes large. 

For the models discussed here the standard perturbation expansion of 

the S-matrix diverges. In fact each S-matrix element has a branch point at 

zero value of the coupling constant. This divergence is of a general nature and 

is probably present in many field theories. 
7 Nevertheless it is possible to 

develop a convergent series expansion for the S-matrix whose form guarantees 

that unitary is satisfied. 
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In Section III we consider a specific form for W, which is based on the multi- 

peripheral model, but which is simple enough so that every S-matrix element 

can be written down in closed form. It has two parameters, the coupling 

constant of the produced mesons and the position of the fixed pole which is ex- 

changed along the multiperipheral chain. The most striking features of this 

model can be seen by studying the elastic scattering amplitude. This ampli- 

tude-has contributions from ladder graphs shown.in Figure 3a. As in the multi- 

peripheral model, the leading singularity in the angular momentum plane 

arising from these graphs is a pole. However, the elastic amplitude also has 

terms arising from checkerboard diagrams of the form shown in Figure 3b. 

If one sums over all checkerboard graphs with N vertical lines, the leading 

l-plane singularity is again a pole. In addition, after summing over all N 

one obtains a square-root branch cut in the B-plane. It should be emphasized 

that this singularity is of a completely different origin than the familiar 
. 

Mandelstam cut. It arises only after a sum over an infinite number of exchanges. 

This cut has its origins in the divergence of the sum of the perturbation ex- 

pansion mentioned above. 

For small values of the coupling constant associated with particle pro- 

duction the cut is far to the left of the Q-plane, and the leading singularity is 

the pole arising from the ladder graphs. As the coupling constant is increased 

the dynamical poles move to the right; however, the branch point moves even 

faster and overtakes them. As each pole collides with the branch point, it 

moves through it onto an unphysical sheet. For large enough values of the 

coupling constant all of the d-plane poles are to the right of one; however, no 



-5- 

pole reaches one before passing on to the unphysical sheet so there is no 

violation of the Froissart bound. For most values of the parameters in the 

model the branch point never reaches one. After colliding with the last pole 

it turns around and retreats towards minus infinity if the coupling constant 

is increased indefinitely. Nevertheless, for a very restricted range of values 

for the coupling constant, the leading singularity reaches the point Q = 1. In 

this -case the Froissart bound is saturated. This. occurs only if the input 

pole is itself above 1. 

In Section IV we test the generality of the cut mechanism by considering 

a model in which Wn is essentially the amplitude of the multiperipheral model. 

In this case the S-matrix elements cannot be written down in closed form. 

However, after introducing O-functions into Wn which guarantee that the sub- 

energies along each chain are large, it is possible to write down an integral 

equation that sums the checkerboard graphs with N vertical lines. It is then 

shown that the square root branch cut found in the previous model is also 

present here and that all singularities in the Q-plane to the right of one are on 

an unphysical sheet. It appears that these properties are far more general 

than the simple models that we have studied explicitly. 

For the models discussed in Sections III and IV it is possible to write 

down cross sections for particle production in both inclusive and exclusive 

experiments. These results are also given in Sections III and IV. 

In Section V we conclude by briefly summarizing our results. 
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II. CONSTRUCTION OF THE S-MATRIX 

In the present work we shall discuss models with two types of particles. 

Those whose momenta are labelled by pa and pb will be referred to as nucleons 

although we shall neglect spin and internal quantum numbers. All of the states 

of interest will contain two nucleons which will be treated as non-identical 

particles. The S-matrix will be taken to be unity when acting on states with 

other than two nucleons. The second type of particle, whose momenta are 

labelled by qi, will be referred to as pions. The pions can be created and des- 

troyed, and we shall consider states with arbitrary numbers of them. The 

pions will be treated as identical particles. We take the beam direction to be 

along the z axis, and write a general four vector q in terms of the transverse 

momentum, CJ, which is a two-dimensional vector in the x-y plane; and the 

longitudinal rapidity, - y, defined by 

Y = Gq40+qz)/(q0-qz)] . 

Let us start by considering the amplitude, Wn, for the production of n 

pions from a single chain. This amplitude is shown in Figure 2. A complete 

set of variables for describing Wn is 

Y f Qn(s/m2) 

and 
zi,Yi i = 1,2,... n. 

(1) 
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Here m is the nucleon mass and s the square of the center of mass energy. 

At high energies Y is the difference of rapidities of the incident nucleons. 

From rotational invariance Wn can only depend on the scalar products of A 

and theji, so there are just the required 3n+ 2 independent variables. 

By crossing symmetry Wn also describes chains in which some or all of 

the pions are incoming. It is convenient to introduce a single operator which 

handles all possible processes described by Wn. To this end we introduce 

creation and annihilation operators for the pions. In our normalization the 

commutation relations are given by 

[a(wW+(qW)] = 2(2n)3s2(q-q’)s(y-y’) . -,.d 

Recalling that under crossing q - -q and y -c y, we can write the required N 

operator, Zn, in the form 

n 

dpadpbdp;dp;, xi 
i=l 

dqi . & 

ix.(p + a Pb-Pa-Pb) n 
- e . 

.c[ 
a(,4i7 Y i) e 

iqi.x 
+ a+(-zi9 Yi) e 

-iii-x 1 . . i=l 

Here 1 _Paz Y,i-pb’ Yb > is a two nucleon state, and si is the four-vector obtained 

from qi by making the substitution q. - -,gi. -1 The Lorentz invariant phase 

space volume is given by dq = d2%dy/2 (2a)3. We have normal ordered the 

creation and annihilation operators of the pions so that a pion which is emitted 

from the chain cannot be reabsorbed on it. The important point to notice is 

(3) 

(4) 
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that Zn is an hermitian operator provided Wn is real and is invariant under a 

change of sign of all the transverse momenta. These are the two major re- 

stric tions which we place on the Wn. Since we wish to consider chains involving 

an arbitrary number of pions it is convenient to introduce the hermitian operator 

co 
z = c 

n=O ‘n * 

The unitarity of the S-matrix can now be guaranteed by writing 1,2 

s = c iN 
N’ 

ZN = eiZ . 
N=O - 

(5) 

(6) 

what is being said in Eq. (6) is that all of the chains exchanged between the 

nucleons are uncorrelated except for the constraints imposed by energy- 

momentum conservation. This is certainly the simplest ansatz that one can 

make. It is suggested by the relativistic eikonal model*; however, in this case 

there is no requirement of straight line propagation for the nucleons. 

Eq. (6) provides a convenient definition of the S-matrix when the model 

is exactly solvable or when the matrix elements of the power series in Z con- 

verge. An example is the model of production amplitudes discussed in I. 

However, in the models to be discussed below the matrix elements of ZN grow 

like exp(c ? ), so the defining series for S diverges rather badly. In such cases 

it is necessary to use an alternative construction procedure. We first intro- 

duce the auxiliary operator &z) defined by 

S(Z) = c 
‘N N-d2?, $-,Z e 

N=O ’ 
(7) 
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and then write the S-matrix as 

a, 

s=+ s 
L 

dxewX S(zeBdX) , 
-co 

where d is a parameter chosen so that the sum in Eq. (7) and the integral in 

Eq. (8) converge. Whenever it is permissible to interchange the order of 

integration and summation Eqs. (7) and (8) reduce to Eq. (6). Even when this 

interchange is not possible, Eqs. (7) and (8) define an explicitly unitary S- 

matrix. To see this notice that formally 

03 

&Z) = 5 s 2 
du ecu exp[iZe 2 idu 

] , 
2 -co 

(8) 

(9) 

so 

S+S = >’ Irn& -fm &g ddu Ia dul exp FZ (,2d(x+iu)- .Zd(:‘- ““j] . (10) 
. 

The right hand side of Eq. (10) has a power series expansion in Z that con- 

verges magnificently. One easily sees that the coefficient of Z N vanishes 

identically for N > 1 and that S+S = SSf = 1. We realize that certain orders 

of integration have been freely interchanged, but there is no doubt that this 

new construction procedure is more general than the standard expansion. 

Once the Wn are specified the S-matrix is completely determined by 

Eqs. (4), (5), (7) and (8). The model is clearly broad enough to allow us to in- 

vestigate a wide range of production and absorption mechanisms. The major 

problem is to extract the predictions of the model for a particular choice of Wn. 

For the remainder of this paper we shall be concerned with a particularly 
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simple class of Wn which is suggested by the relativistic eikonal model. As 

was mentioned above, the only correlations between the chains are those im- 

posed by energy momentum conservation. These can be greatly simplified 

by introducing theta functions into the Wn which restrict the range of the pion 

rapidities. Energy-momentum conservation requires that in the center of 

mass 

iyp &Y-t& (11) 

where C is a constant which depends on mass ratios. We now introduce the 

further requirement that the Wn vanish unless 

1 yil : +(l-E)Y, (12) 

where E is an arbitrarily small positive number. At very high energies the 

restriction of Eq. (12) forces the nucleons to have energies of order &/2, 

and equal but opposite longitudinal momenta. 1 As long as the average multi- 
. 

plicity does not grow as fast as s ic , the pion variables can be dropped from 

the energy and longitudinal momentum conservation delta functions. 1 

It is convenient to introduce the variables 

and (13) 

and write the two nucleon state of definite total and relative transverse 

momentum as I p,, p y,, yb > . Eq. (4) now becomes 
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zn = d2pf ; 
dpadpb - 

Gw2 
d4i~ 

i=l ’ 

. &wn(y,A;q.,yi) IP- ~qi~P’;ya~yb > < EYEyaFyb ’ 
w-1 - 1 

n 

: 
I--V 

a(,gi3 Yi) + a+(-_qi, Yi) : ’ 
i=l 1 

At this point it is useful to introduce the co-ordinate, B, conjugate to p, 

B can be interpreted as the transverse distance between the nucleons. De- 
N 

fining the two nucleon state of definite B by 

Eq; (14)-becomes 

zn = d2b & dYa dYb n 
rI 

(W 
2 4n 4n i=l dqi $ . 

. -& W,(Y, ,B;zi, yi) I P -‘,gi’ B; Yay yb ’ < py B’ ya’ ‘b ’ NN 

n 

: 
Y 

a(qi,Yi) + a+(-qi9 Yi) : > 
i=l 3 

where 

WJY 9 pi’ Yi) = 
d2A iA.B 

- e - N W,(Y, A; qi’ yi) * 
w2 

NN 

(14) 

(15) 

(16) 

(17) 

Clearly the S-matrix is diagonal in B,. 
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At this stage the only function of the two nucleon projection operator 

is to give rise to the energy-momentum conservation delta function. We 

factor this delta function out of the problem, and then introduce the reduced 

operator 
. 

n n 
1 1 

q-p+ = 2s 2 iIIldqiW,tY. B_;Nqi’ Yi) : iIIl [q(4i’ Yi) + a+(-ji, Yi) 1 : 

Operators Z(Y, B) and S(Y,IJ) can be obtained from Zn(Y,_B) in direct analogy 
N 

with Eqs. (5), (7) and (8). It is also useful to introduce a scattering amplitude 

operator defined by 

- iA*B T2 - iA.B 
- “M(Y,B) = 2is d Be ““[l -S(Y,B)]. 

N 

(18) 

(1% 

Clearly these operators act in the Hilbert space spanned by the pion states. 

The only reference to the nucleon states that remains is in the diagonal variables 

Y and B. This reduction of the Hilbert space can only take place exactly in 

eikonal models. It should be emphasized that although the restrictions of 

Eq. (12) provide a simplification, they are by no means necessary for the con- 

struction of unitary models. 
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111. A SOLVABLE MODEL 

In order to illustrate our ideas we now construct a solvable model. 

Although this model is highly simplified, its solution contains most of the 

qualitative features of the more sophisticated model discussed in Section IV. 

In defining Wn we follow the spirit of the multiperipheral model to the 

extent that we order the rapidities along the chain. We take the exchange 

mechanism between adjacent particles on the chain to be that of a fixed pole. 

Working in the center of mass we write 

n 

-Yf(B) n e 
atYi-Yi+l) 

n 

e ‘(Yi-Yi+l )* (20) 
- i=() 

where y. = -Y~+~= 3 Y. The crucial simplification which allows us to solve 

the model in closed form is the neglect of all correlations involving the trans- 

v&se momenta of the pions. Of course this cannot be justified experimentally. 

However, we shall be primarily interested in the energy dependence of this 

model. Since the transverse momenta are limited, a fact which we build into 

the function g(q), it is hoped that their correlations do not play too strong a 

role in determining the dependence of the amplitudes on the total energy. 
8 

From rotational invariance g(q) must be a function of q”. Then making 

use of the symmetry of Wn as a function of the pion momenta, we find 

Z,(Y, B) = f(B) e (a-l)Y 1 
3 . 

(21) 
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It is convenient to introduce the annihilation operator 

3 (1-E )Y 
: d2q 

c = [hY)--- 
s 

-22 97 
(27q2 J-+ (1-e)Y 

4n g@ a(%, Y) , 

with 

1 d2q 
ho = 4n 

--+ g(qJ2 = h/(1-E) . 
wr) 

Clearly c and c+ satisfy the usual harmonic oscillator commutation relations 

[c,2] = 1 . 

The operator Z(Y, B) is given by 

z(Y,B) .= F 
n=O 

Z,(Y, B) 

= f(B) e(cr-l)y : e(h yh + ‘+) : 

= f(B) e (a-1 -3 X)Ye(2hY)Sx . 

In the last step we have introduced the hermitian “coordinate’* operator 

x = -Lt c f c+). The S-matrix operator S(Y, ,B) = e iZ(Y, B) 

fi 
- , is obviously 

diagonal in the coordinate representation. 

Let us start by considering elastic scattering of the two nucleons where 

the matrix element of S(Y, B) between states with no pions must be evaluated. 

In the coordinate representation this is just familiar ground state wave function 

(22) 

(23) 

(24) 

(25) 

of the harmonic oscillator: 
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< 01 S(Y,B) IO > = S,,(Y,B) 

00 
Y(a-l-iA) e(2AY$x 

3 

co 

= (2AY)-* exp 
[ 
-y(l+++h)2/2h 1 1 f * J- ?r Jo r 

(26) 

- exp -Qnr(l- cr+$h)/h - (Qnr)2/2hY +if(B) r - 1 . 
We can study the Q-plane structure of the elastic scattering amplitude by 

making use of Eq. (19) and taking the Laplace transform with respect to Y:’ 

co 
Mz2P-J3 = 

J 
dY e’Qy M22 (Y 3 ,B) 

0 
1 

J drr 
(2/A)+ EQ - a!$ (l-c& 1 

0 
co (27) + s drr 

(Z/A)’ [- (Q - ac,f - (~-a~)‘] - 1 

(- 

l es(z)r 

1 )I . 

where 

(1-O!-%h)2 
c! = 1-(1-o ++q2/21 = a- 2A 

* C 
(28) 

For thecase Q!< 1 +*A, wehave 

M22(Q,,B) = 2k-n 2 l/(Q-1) 
i 

. r (2/A)+ ((Q - cut)’ - (l- ac)’ + C(Q,B) , N 

where C(Q, B) is an entire function of Q for all values of ,B. Mz2(Q, B) clearly N 

has poles in the Q - plane at 
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a(N) = 1 + N(w1) + +JN(N-I) N = 1,2,... 

with residues 

P(N) = -2im2 [if(_B)IN/N! 

(30) 

(31) 

Notice that each power of f(B) corresponds to the exchange of one chain. The 

N = 1 pole arises from the exchange of a single fixed input pole. The N = 2 

pole arises from the ladder graphs and the poles with Nr 3 from the checker- 

board graphs with N vertical lines. 

In addition to the poles there is a fixed square root branch point at 

Q=CY 
C’ 

The associated cut runs along the negative real axis from - 03 to ac. 

It is clear from Eq. (29) that the only poles on the physical sheet are those 

for which ‘c!(N) - aC) is positive. These are the poles for which 

N 5 ?? = (l-a!+$)/~ , (32) 

where ?? is the value of N which produces a minimum of o!(N) as a function of N. 

Let us imagine increasing X from zero to infinity for a fixed value of 

a5 1. For small values of h the branch point is far to the left in the Q-plane. 

As h is increased all of the dynamical poles move to the right, but the branch 

point moves to the right even faster. The left-most pole on the physical sheet 

collides with the branch point whenever h is such that n is an integer since 

u(N) = l- (l-~z++h)~/2h=o~~. 

After colliding with the branch point the poles moves off onto the unphysical 

sheets as h is increased further. At A = 2 (1 - 01)) the branch point circles 

around the pole at a(l) = a! and then starts to retreat down the negative real 

axis. For h > 2(1- o), the branch point is the only singularity of M22 on the 

(33) 
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physical sheet. Notice that for large values of h all of the dynamical poles 

are to the right of Q = 1; however, any pole that reaches Q = 1 is on the un- 

physical sheet. 

For a(2) 1 (yc, that is h < 3 2 (1 - a), the pole from the ladder graphs 

controls the high energy behavior of the total cross section and 

a,(s) - (s/m2)2(@-1) + A d2B [f(_B)]2 . 
S-,* 

(34) 

However for ac > a(2), or h > 3 2 (l- a), one has 

a- l 
UT(S) - Mm2) c (x/2h + 

s - O3 [Qn(s/m2)+ s&l; [(l- ac)%J*j I? rl + [(I - (x )?.]i] 4 L c h 
(35) 

ii? 

* ’ d2B [f(B)] 
[t 1 - q ;J- 

Note that if the fixed input pole has spin a! 5 1 + $A, the total cross section 

goes to zero asymptotically. In particular, for a! = 1, we have for all values of 

the coupling constant 

a,ts)- ( 2h-- ’ 
S - * [Qn(s/m2)]’ 

d2_B[f(_B)]’ . 

Now let us consider what happens if 01 is increased for a fixed value of h. 

As mentioned above, for a! > 1 - 8 IL, the branch point at (Ye is the only singu- 

larity on the physical sheet. (yc reaches 1 when a! = 1 + 4 A. At this point the 

total cross section falls like [Qn(s/m21eB at large energies. As a! circles 

the point 1 + i h we move from the positive to the negative branch of (1 - ac) 
8 . 

(36) 
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The function C(Q, B) defined in Eq. (29) then develops a singularity. Returning 

to Eq. (27), M22(Q, B) can now be written in the form 

1 

M22 (Q, z) 
(2/h )” [ (Q-ac) +i + (1- a& 

= 2im2 (Q- 1)-l [- if(E)] + C’(Q, B) , N 

where the only singularity of C’(Q, B) is the branch point at Q = 01~. 

It is instructive at this point to consider a particular choice for f(g). 

Choosing f(g) = e -B/R and taking the Fourier transform with respect to ,B 

gives 

M22(Q,e) = 2im2 R”o 
-3/2 + C”(Q,$ 

(37) 

(38) 

where 

RO = R(a!-1-$A) , (3% 

and C” has only the branch point at Q = aC. The first term in Eq. (38) is just 

the Q-plane singularity corresponding to the scattering from a black disc of 

radius ROY. It gives rise to a total cross section of the form2 

a,(S) - 27rR2, [Qn(s/m2)12 . 
S-WC0 

(49) 

The complex conjugate branch points of Eq. (38) enter the physical sheet 

through the square root cut when ac = 1, i. e. when a! = 1 + gh. As (I! is 

increased further the radius of the black disc increases according to Eq. (39) 

and (yc decreases. It is amusing that the Froissart bound can only be saturated 

for a rather limited range of the parameters. If Q is now held fixed, and h is 

increased, R. shrinks to zero at h = 2(cr- 1). For A > 2(cr-1) the branch 

point at ac is again the only singularity of M22. So, for h large enough the 

total cross section always vanishes at infinite energy. 
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In preparation for the more sophisticated model to be discussed in 

Section Iv, it is instructive to consider the series expansion of S(Y, B) in 

powers of Z(Y,B). Since 

< OIZ(Y,B)NIO> = 6 f(B) N e Y [N(cw-1) + ;A N(N-l)] 
3 . N (41) 

the series expansion for S(Y, B) given in Eq. (6) diverges. In fact if we write 

f(E) = GF(B), the S-matrix has a branch point as a function of G at G = 0. 

On the other hand, it is possible to choose the parameter d so that the series 

for S22 is well defined: 

< 0 I S(Z) I 0 > = 
2 [if(B)]N 

ii! e 
Y [N(a-1) +$AN(I+l)l -d2N2 - e . (42) 

n=O 

The most convenient choice is d = ($hY)’ . Then 

< 0 I g(Z) I 0 > = exp Y(a!-l-$A) I 2 
and Eq. (26) follows immediately from Eq. (8). 

We conclude this section by briefly considering production processes. 

The inclusive cross section for the production of a single pion by two incident 

nucleons is 

(43) 



J 

-2o- 

da 1 -=- 
d2s_dy 2(2Tq3 J 

d2Bn$oJfidqi$1(4Y.q Y , , q ,y IS(Y,B)10>i2 
i-1 ’ N -1’ lj...Nn n 

1 Z.Z- 
2 (2rq3 

d3B < Ol [s+tyrE)9 a+(%Y)][S(Y,B), a(%~)] IO > 

(44) 

1 =- 
2 W)” 

c d3B < 01 [Z(Y,B), a+(q,y)]S+S-[a(q,y), Z+y,B)]I 0 > 

1 =- 
2 (2aJ3 

d2B < 0 I Z(Y,B)2 1 0 > . 

Thus the single particle inclusive distribution is determined by the ladder 

graphs independent of whether the pole arising from these graphs is on the phy- 

sical sheet or not. All contributions to the inclusive cross section arising from 

the checkerboard graphs have cancelled. 

If h 5 g (l- c@ the situation is more complicated. First consider the 
. 

case Q! 5 1. The total cross section is now dominated at high energies by the 

. 

branch point at Q = 01 
C’ 

From Eqs. (35) and (41) we see that the average multi- 

plicity is now given by 

ii = C(s/m2) 
[2(a-1) + A + (l-f+)] 

[Qn(s/m2)] 3’2 , (46) 

where C is a constant. In Section II we mentioned that the type of model pre- 

sently being considered is internally consistent only if 5 grows less rapidly 
1E thans2 . Since E must lie between zero and one, h is restricted to 

1 
(4-3 ~9 + (7-6a)” I , a5 1. (47) 
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The equality holds for E = 1 at which point ho is infinite. Thus, although 

the effective coupling constant, h , is limited in range, the ‘*real,‘* coupling 

constant h o can take on any value between zero and infinity. 

For o! > 1 and h < 2(c~l) the total cross section is given by Eq. (40) 

and the multiplicity by 

2 ii = C’ (s/m ) 2a-2 ” [Qn(s/m2)]-I. 

Clearly we must require that a! 5 5/4 and h 5 5/2-2 Q. Finally, for (Y > 1 

and A? 2(a-l), n is again given by Eq. (46). The restriction of Eq. (47) 

still holds with the further requirement that c~ 5 9/8. 

The restructions on h and a! are rather artificial. They arise only be- 

cause we have insisted on simplifying the model by dropping the pion variables 

from the energy and longitudinal momentum conservation delta functions, as 

discussed in Section II. 

The exclusive cross section for the production of n pions is given by 

n 
1 

yp) = F 
.I 

d2B r[ dqi1<~i,yi;...~n,ynIS10>12. 
i=l 

The production amplitude can be written in the form 

n 

< NqlJl) ’ * e-n7 n q y ISIO. = r-l i = 1 gtqi)AntY, B) 3 

(48) 

(49) 

(50) 

with 
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co 

$ 

2 
An(Y,B) = (2hY) -n/2 1 

J;; ,Do &GX H,(x) kx, 

(51) 

= (2hY) 
-(n-1)/2 1 

z / -oo dx emx2 HnW1 (x) $x).if(lJ) e [(a!-1-a h)Y + (2hY$ x] . 

H,(x) is the Hermite polynomial of order n and 

ii(x) = exp 
[ if(E) e 

[(cr-1-i h)Y + (ZAI$xl I . (52) 

Clearly the pions are produced independently. Furthermore, the pro- 

duction amplitude is independent of the rapidities of the pions, so that 

1 
qy) = ;;r N . I- 

d2B I A,(Y, B) I 2 (hY)n . 
N (53) 

For h 5 g (l-o!), the only important contributions to the high energy pro- 

duction amplitudes come from diagrams in which all pions are produced from a 

single chain. In this case one sees from F&. (51) that 

A,W B) N if(B) eytcrel) , 

and 

y&s) -* (s/m2)2([Y-1)[hPn(s/m 2 )] 
s--b* 

“;;‘! d2_B [f(_B)12 . 

Since these are the same graphs that are considered in the multiperipheral 

model, the poisson distribution is hardly surprising. 

For those values of Q! and h for which the square root branch point 

dominates the total cross section the situation is more complicated. For 

(54) 

(55) 
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h 5 2(1-a) and n C-C Y Eqs. (54) and (55) still hold. On the other hand, for 

h > 2(1-a) we see from Eq. (51) that 

A,(Y, B) = - e 
tat- 1)Y 

PAY) 
-n/2 

Hnel[(l- ac)‘Ya] [- if(z)] (1 + +a - a)/h r&i +a-1) N 

(56) 

fern<< Yanda!< l+*h. For n ;s Y the explicit expression for cn is 

rather involved and we shall not write it down. It is clear, however, that the 

pion distribution is not Poisson. Similarly, the pion distribution deviates 

markedly from a Poisson distribution for the case of black disc scattering. 

It is left as an exercise for the reader to show that for all values of A and a! 

the identity co 

xl 
n=O 

onts) = DTtS) (57) 

follows directly from Eq. (51). 
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IV. A MULTI-PERIPHERAL MODEL 

In this section we shall discuss a form for Wn which is based on the multi- 

peripheral or multiregge model. Ideally one would like to take Wn to be the 

ordinary multi-peripheral amplitude and define the S-matrix via Eqs. (4), (7) 

and (8). This program is technically difficult, but not impossible. We hope to 

return to it at a later time. For the present we shall consider a slightly 

simplified form for Wn which correctly reproduces the multi-peripheral 

amplitude for large values of the sub-energies. This is an interesting region 

since it is the large sub-energy tails that lead to difficulty with the Froissart 

bound in the ordinary multi-peripheral model and saturate that bound in 

improved treatments. 3 Our main aim here is to show how these terms can 

add up to give a small, energy decreasing contribution to the total cross 

section in the present model. We shall see that the cut mechanism discussed 

in section III operates here also. 

We again impose the restriction on the pion rapidities given in Eq. (12). 

This has the effect of guaranteeing that the first and last sub-energies along 

each chain are large. It is convenient to introduce the variables (see figure 2) 

i-l n+l 
k =- 
-i Cai= y Cl -i 

j=O j=i 

(58) 

X. 
1 

= Yi-1 - Yi 7 

where 

and (59) 

Y, = -yn+l = 3Y. 
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We then write the amplitude Wn as 

n+l 
01 (kiNi 

W,(X 6 a17 Yl’ * ’ l ’ 2n7 Y,) = II Pl_ki) e e(xi) ’ 

i=l 

n (60) 

. II g@j7 ,&j+l)* 
j=l 

a(kJ and p(k) are the trajectory and reside functions of the Regge pole exchanged 

between adjacent particles along the chain. 10 One factor of the vertex function 

g is to be associated with the creation or destruction of each pion. As was 

mentioned above, the amplitude for Wn coincides with the multiperipheral 

amplitude only when all the sub-energies are large. Only then are all the 

momentum transfers transverse and all the rapidities strongly ordered. 

Expressions for the operators Z(Y, ,B) and M(Y, ,A) can now be read off 

from Eqs. (17) - (19), We start by considering the elastic scattering amplitude. 

The first step is to calculate the matrix elements of Z N between states with no 

pions . Let us define 

-iA* B 
z,(y, 4, = d2ze - - <OIZ(Y,B)NIO>. (61) 

Then the contribution from the exchange of a single chain is just the familiar 

Regge pole amplitude, 

Z,(Y, &) = (2m2P P@)e 
W~(p-~l 

(62) 
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The terms of second order in Z(Y, B) give rise to the ladder graphs of 

figure 3a. We have 

oc) 

z2w9 = Cz,“(Y,g 
n=O 

= 2 (2s)-2Jd2_B e-+’ “s:: dqi 

n=O i=l 

s W,(Y,_B;sl,y1; l ’ ‘s,Y,) w,(y7 B,; sl,Yl; D O” Tn,yn) 

= 2 (Zs7z/ 1: 
n=O 

z2 z * 4n 6 ( El xi - Y) 

n+l 
Xi[a(ki) + ~(~ +,ki)] 

. II P(!$i)PQ +,kije 
i=l 

n 

H g~j 7 ,kj+l)gti? + k’7 ~ + $j+l) “3 (63) 
j=l 

Eq. (63) is simplified by taking the Laplace transform with respect to Y: 

Zi(Q, A) E f* dY e-” Z$Y, A) 
0 

= 2 Pcki)P(~ +-ki) [Q -~cki)-~(~ +,ki)+2]-’ 

n 
. IT (4~)-l gckj 7 ~j+l) g(~ + k. ) 

"J 
k +,Ej+l)' (64) 

j=l 
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The sum in Eq. (63) is the solution to an integral equation which is 

completely analogous to the Lippman-Schwinger equation in two-dimensions. 11 

To see this in detail, and for later use, the free Green’s function for the 

propagation of two Reggeons is defined by 

<_ki -kB I G,(Q) I,kl -k2 > = (‘~ii "2~1 -,Ei) “2ck2 -j$, 

b(kl) +W2)-Q-2?, 

and the potential between two Reggeons by 

‘Nki -k~ IV12 l,kl -k2 > -_k$) 

3 
’ I.P~,)P(!&P($)P(!$)l (4n)-1 g(!$> ,&2)@$,9 j$)* 

The full Green’s function, g,(Q), satisfies the operator equation 

g2tQ) = G2N + G2W12 g,(Q). 

Now Z,(Q, 4) is obtained from g2(Q) via the equation 

(27r)262(a- 4.‘) Z,(Q,fl) = - (2m2)-2 < F2(bt) Ig,(Q) I F2(fs) > , 

where 

<Is1 k2 I F(k) > = (2n) 2 2 6 (kl +h2 

(65) 

(66) 

(67) 

(68) 

(69) 

The analogy with the Lippman-Schwinger equations becomes exact if we take 

the input trajectories to be linear: 

n 
a!(kJ = cl! - ck!l_k‘. (70) 
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The “free Hamiltoniant’ is then 

(71) 

and the quantity E2 = -Q+2(a! - 1) plays the role of energy. Notice that as long 

as the functions p(k) and g(k_, k,’ ) have no zeroes, the potential is purely 

attractive. As a result, for strong enough coupling there will always be bound 

states, i.e. , Regge poles. 

As is well known, the integral equation for the ladder graphs simplifies 

considerably if the vertex function, g, is taken to be a constant. In this case 

the potential is separable and we have 

2 
z2(Q7&) = J(Q, A) il - & J(Q,~jj-l, (72) 

where 

d2_k 
J(Q,$ = -2 P(& + +A)@ -&l) [Q -2(cr -1) + 2cul_k2+ &cPh2] -? 

(270 . , 
(73) 

As Q increases from 2(o! - 1) - ia’ a2, J(Q) &) decreases monotonically. There 

is obviously a single Regge pole to the right of the branch point at Q =2(cr-1) -i o, h2. 

Since the separable approximation does not appreciably simplify the general 

checkerboard diagrams, we shall retain the dependence of the vertex functions 

on the transverse momenta. 

Integral equations for the checkerboard graphs with N vertical lines can 

be written down in analogy with the one for the ladder graphs. There is one new 

complication here. For N ( 3 the fact that the rapidities are ordered along 

each chain implies that the rapidities of all particles in the intermediate states 

are ordered. This is not true for N 2 4 as can be seen by considering the 
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simple example shown in figure 4. Any diagram for which the rapidity order 

is not completely determined can be written as a sum of terms, each of which 

does have a definite rapidity ordering. If we consider each of these terms to 

be a distinct diagram, then there is a one to one correspondence between our 

diagrams and those of non-relativistic potential scattering. The rapidity 

variables play a role analogous to that of the time variable in ordinary quantum 

mechanics. 

Proceeding as in the case of the ladder graphs, we introduce a free 

Green’s function for the propagation of N Reggeons , 

N 

<k’ -1’ l -l& lGN(Q)Il+-*&N > = II (27q2 “2(ki Nk; ) 
i=l 

(74) 
N 

i irl atki) - Q - Nl-l l 

The N-Reggeon potential is written as 

N 
vN= -v 

z ij’ 
i<j 

where 

<k’ -1 0.. k’ IV..1 k -N 1J -1’ “‘-kN> = - 
II (27q2 a2qcrn - ,kE,) 

m#i,j 

(75) 

(76) 

. (4~)-1 gcki 7 _kj) Gus 7 _kl> ’ 
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The full Green’s function gN(Q) is determined from the integral equation 

g,(Q) = GNtQ) + GNtQFN g,(Q) > (77) 

and ZN(Q, 6) is given by 

(27r)262(~ -nl)ZN(Q, 4) = - (2m2)-N < FN(al) [g,(Q) I FN@) > , 

where 

<k -1’ *.*;NiFN(~) > = (27r)2 S2( 5 k:+ A) 
i=l-l 

(79) 

(79) 

= (2~)~6~( + k. + A) <,ki* l l kN If,(b) > , 
i=l-l 

Clearly, obtaining gN(Q) is equivalent to solving the N-body Schroedinger 

equation in two-dimensions. We are most interested in the leading behavior 

of ZN(Y, 4) for large Y, or, in other words, in the right-most singularity of 

gN(Q) in the Q-plane. If there were no bound states, this singularity would be 

the N-Reggeon Mandelstam cut. However, in general we expect discrete bound 

state poles since the potential is attractive. 

Using the linear trajectory defined in Eq. (70), we introduce the N-Reggeon 

free Hamiltonian 
N 

HON = c a’ k2 4 (80) 
i=l 
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The Green’s function g,(Q) will have poles for those values of Q for which there 

are solutions to the eigenvalue equation 

HNtPNt&)’ = [HON+VNl 1 *N(A)> =ENI*N(f?)>, (81) 

with 

EN = -Q + N(a! - 1). (82) 

The two-Reggeon potentials V.. 
1J 

are well behaved at the origin and at infinity. 

We therefore expect that in the ground state of the N-Reggeon system, the 

kinetic energy will increase like N and the potential energy will decrease like 

-$$N(N - 1)) the number of pairwise Reggeon potentials. In the appendix we 

obtain upper and lower bounds on the ground state energy E& For a wide 

class of input functions p(k) and g(s, kl), EON does indeed decrease -4 N(N - 1) 

for large N. Denoting the leading trajectory function arising from the checker- 

board graphs with N vertical lines by aN@), we write 12 

a,(O) = a(N) - Nb + N2c G aN. (83) 

The results of the appendix show that c is a positive number and that 

[a(N) - Nb]/N2 goes to zero for large N. If aN has neither a branch point nor 

an essential singularity at N = 00, then b can be chosen so that a(N) goes to a 

constant for large N. 

Denoting the contribution to Z,(Y, fi) arising from the leading Regge pole 

by Z$Y, A) we write 
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In the appendix it is shown that for a wide range of inputs @,<A) is bounded by 

$/N, where PO is a constant. It is further argued that a$O) = CIJ~ goes to 

a constant at large N. 13 Our final results do not depend strongly on the precise 

form of /3,(A). 

The crucial result is Eq. (83). Since Z,(Q, LI) has poles arbitrarily far 

to the right in the Q -plane, it is clear that the series expansion for S(Y, l3) 

given in Eq. (6) can not converge. However, since S(Y, B) is unitary, S22(Y, B) 

is bounded by one for all Y and B. As a result, all of the poles in Z,(Q, ,A) to 

l2 the right of Q=O must be on an unphysical sheet of the Q-plane. To see how the 

branch cut arises in the present model, let us perform the sometimes risky 

operation of summing the contributions of the leasing poles in Z,(Y,f.l). First, 

Eq. (84) will be rewritten in the form 

Z$Y, 4) = (N + l)-lC,(R) pye 
Y[a(N)-bN+~N~-o~h&~-ll 

> (85) 

where we have made a linear expansion in A2 for the trajectory function. The 

results of the appendix imply that a (N), czh and C,(b) all bounded by constants 

for large N. 7 

Z$Y, 4) has contributions only from diagrams in which all N Reggeons 

interact, in other words only from connected graphs. Now the elastic S-matrix 

element, or rather its phase, is given by 

iX (Y,B) = Qn [S22(Y, ml = LS~2U,9 - 11, (86) 

where the superscript c means that S22 is computed by including only connected 

diagrams, From Eqs. (7) and (8) we see that the contribution of the pole terms 
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to X , using Eqs. 8 and 85, is 

c-3 

iX’(Y,AJ = + 
2 O” 

dx emx 
T2 --co c 

iN 
(N+ 1) ’ ‘N(h) . 

N=l 

Y [a(N) - 1 
-e 

- cvbh2] 

03 1 -x 2 
f 7 J e iX ‘(x) 0 

-CU 
(87) 

In writing Eq. (87) we have taken d = (cY)‘. 

The asymptotic behavior of X ‘(Y, 4) can be read off directly from Eq. 

(87). 8 The integrand has quite different behavior depending on whether x is 

larger or smaller than x0 = bY’/2c’. For x 2 x0 we can integrate the series 

term by term. Writing 

xO co 
1 I =x 1 

T2 -me J 
2 P -xiX (x)= z ’ I+NL (88) 

N=l 

we see that for large Y 

iN 
IIW) = N! P,t$)e 

yb,t&) -ll 

0 (b/2c - N) - 
e-cY(b/2c - N)2 

I 
I 2 n (cY)‘(b/2c -N) ’ 

(89) 

On the other hand for x > x0 we can not integrate the series term by term. If 

CN(&), a(N) and Q;U are analytic ftmctions of N in the right half N-plane and do 
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not have a branch point or essential singularity at infinity we have 13,15 

5 = -& 
7T2 

J dx eBx2iX ‘(x) 

xO 

l [V,e 

-bY+2(cY)‘x]-1 

00 2 -4 1 -x -bY+2(c Y,$ 
dxe 

z exp [ iPOe 1 
7r xO 

- c,tge 
Y[a(0)-1-~b~21 1 ? 

r J 

z 
dx eeX- 

7r2 x0 
(90) 

-1 2 e-Yb2/4c Y[a(oo)- 1- o!Lk2] 
!ZY rJq&y e 

-Ko@)e 
Y [ a(0) - 1- czba2] 

I l 

In the present approximation, the elastic scattering amplitude is given by 

s -iA. B iX ‘(Y, BJ 
M22(Y, _a) = 2is d2Be N -[l- e I 0 (91) 

From Eq. (89) we see that as in the case of the solvable model there are only 

a finite number of Regge poles on the physical sheet of the Q-plane. One new 

feature is that there are an infinite number of square root branch points with 

a2 =0 intercepts at 

at(N) =a(N) - b2/4c. (92) 

In order to study the movement of the poles and branch points’in the Q-plane, 

it is convenient to introduce an effective pion coupling constant by writing 

g(lJ, kN’) = hig’(k,, kJ. Applying Feynman’s theorem to the eigenvalues of 
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Eq. (81) for large values of N, we see that c is a monotonically increasing 

function of A. Let us concentrate on the case of forward scattering, From the 

results of the appendix we know that there exists an integer No(h) such that 

Z,(Q, 2) has a pole on the physical sheet for all N 2 No(h). As A is increased 

from zero this pole can enter the physical sheet through the normal threshold 

branch point associated with the scattering of N free Reggeons. This branch 

point is located at Q = N(a! - 1). Alternatively the pole could enter the physical 

sheet through a branch point associated with the scattering of compound 

systems made up of a total of N-Reggeons, or through an anomalous threshold. 

However, for small values of A, these branch points are arbitrarly close to 

the point Q = N(ol - 1 ), As a result, 

C- O 
h -0 

(93) 

b -- l-o! 
A--O 

Let us start by considering values of the input parameters for which 

b > 0. For small values of A we see from Eqs. (89) and (90) that the branch 

points of Mz2(Q, A) are arbitrarily far to the left. Those Regge poles for which 

N 2 b/2c are on the physical sheet. As A is increased we know from Feynman’s 

theorem on derivatives of eigenvalues that the poles move to the right in the 

Q -plane. We also expect the branch points to move to the right. Whenever a 

pole collides with its corresponding cut, the pole moves on to an unphysical 

sheet. For large values of h we expect from our counting argument that the 

potential energy decreases like -cN(N - 1). We therefore write b = b’ + c. 

Although we can really say nothing about the behavior of bf, it would appear to 
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be an accident if it approached the value -c for large h. We therefore expect 

the branch points to turn around and retreat towards minus infinity if A is made 

large enough. If b’ does not grow as rapidly as c with increasing h, then there 

will be no poles on the physical sheet for sufficiently large values of A and the 

total cross section will go to zero at high energies. 

In the solvable model discussed earlier, a(N) = 1. In the present case we 

can say nothing about the function a(N) without further calculation. In particular 

we can not rule out the possibility of a(N) becoming large enough so that 

X ‘(Q, 4) has poles or cuts to the right of Q = 0. If this occurs then S22(Y, l3) 

will vanish for ,B inside a disc whose radius grows like Qn(s/m2). As is well 

known this behavior for S22(Y, EJ leads to a saturation of the Froissart bound. 

The Q-plane structure of the elastic amplitude is as given in Eq. (38). 

Finally let us imagine varying the input parameters so that b decreases 

through zero. For negative values of b the elastic scattering amplitude has no 

poles on the physical sheet. If a(N) > 1 for any value of N, we again have 

saturation of the Froissart bound when b = 0. However, if the magnitude of b 

becomes sufficiently large, the complex conjugate branch points of Eq. (38) 

will leave the physical sheet through a square root branch point as in the 

solvable model, The total cross section will then go to zero once again. If 

a(N) < 1 for all N then the square root branch points are the only singularities 

on the physical sheet of the Q-plane for negative values of b. 

Consider the problem of including non-leading contributions to Z,(Y) 6). 

- The series for S22 will certainly converge with d =(cY)‘. Furthermore, in the 

integral over x from minus infinity to x o, one can again interchange the order of 

integration and summation. The only change is to include lower order poles and 

branch points in the Q-plane. The real problem is to study the integral from x0 
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to infinity; this is difficult to do explicitly, but it is hard to see how the basic 

structure of the amplitude could be altered. 

The exclusive and inclusive single particle production cross sections 

can be treated as in the solvable model. Using the relation 

ia(b,Y), Z(y, B)] = gZ(;Y - y, $B + b) Z&Y f y, A = 0). 

which holds if g(k, k’) is a constant, it is a straightforward matter to write 

down these cross sections. The rapidity distribution is particularly simple 

in the inclusive case. 

do 2 -= 
dY 57 Z,(3y-Y, A =0) Z2(&Y+y, A =o). 

which shows that the ladder graphs determine the inclusive distribution just 

as in the previous model, Eq. (44). The exclusive cross section is more 

complicated because the precise form of the eigenvalue spectrum o!,(A) must 

be used. The final result does not seem to be particularly illuminating. 
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V. SUMMARY 

The point we wish to emphasize is that the mechanism for avoiding viola- 

tion and saturation of the Froissart bound discussed in these solvable models 

is available in more general theories. In any unitary relativistic theory which 

does not exhibit saturation of forces, that is, in which the binding in the exchange 

channel grows faster than NQnN, where N is the number of exchanged quanta, 

the unitarity cut must develop. Since the amplitudes Z,(Q, A) then have poles 

arbitrarily far to the right in the Q-plane, this cut must arise to preserve 

unitarity. In the models discussed here, the binding energy of the ground state 

grows as N2 , which follows from the fact that the number of pairwise inter- 

actions grows as N(N - 1)/2. It is difficult to see how a similar result could 

fail to hold in more sophisticated models where low sub-energy effects are 

taken into account. Since the S matrix is unitary, the elastic scattering 

amplitude is forbidden to have any Q-plane poles to the right of one on the 

physical sheet. As a result it must have branch cuts in the Q-plane which have 

been exhibited in our models and which are of a different type than those dis- 

cussed by Mandelstam. 4 For the solvable model we find that if the input tra- 

jectory is 1 or below, the multiregge region provides a contribution to the 

total cross section which decreases as a power of the energy. Hence the 

experimentally observed constant total cross sections must arise from other 

sources, such as the fragmentation region or the low sub-energy pionization 

region. 
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APPENDIX 

In this appendix we obtain the bounds on the trajectory and residue functions 

that were employed in the text. We start by obtaining upper and lower bounds 

on the ground state energy, Eh, for the Hamiltonian of Eq. (81). An upper 

bound is obtained from the Rayleigh-Ritz variational principle. We use a 

separable trial function 

where 

Then 

N 

<k T 
-1 “‘“k,N Ii,> = n. f(k.) , 

i=l 

c d2k_ 

J (27r) 
lf(kN, I2 =l. 

E”N < N I - 3 N(N-1)J - 

with 

and 

s 

d2k_ d2~2 d”~i d2~ 
J=---- 

(27$ (27$ (27$ (2n) 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

We require that p(kN) and g($ k_‘) have no zeroes and that g(kN, g) is a symmetric 

function of its arguments. As a result, I and J are positive definite quantities, 
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In order to obtain a lower bound on EON, it is convenient to write the exact 

wave function in the form 

with $, normalized to 

(“5 + A) l$N(k+* ** k&I 
2 

= 1 

(A-7) 

Then 

E; = <$JNIHON +VNI+N> 

> <+NIVNI$N>=+N(N - 1) <$NIV121$N>. (A-8 1 - 

In the last step we have used the fact that z+~~(~cc,. l l kN) is a symmetric function 

of its arguments. 

Introducing the variables 

(A-9) 

we have 
N 

EON 2 - &N(N-I) 
f 

n 

i=3 

d2$ d2fs d2k_ 
--- 
(27r,2 (27q2 (27q2 

d2k_ 

G3-f) 

i=3 

(A-10) 
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Making use of the Schwartz inequality we see that 

N 

EON ) - &N(N - 1) 
J 

d2$ 
n - 

i=l tzn) 
(27$d2( 5 k. +k) 

i=l ”’ 

(A-11) 

where 

J 
d2k_ d2k_ 

L(KJ2 = - - 
(27r)2 (2K)2 

PtbJS+k,,&$-k,,P(4~+-ck_‘) 

p(Q~-k_‘) (4nj-2 g2(@+k, %IJ+gg2&-k_, 85 -k’) (A-12) 

The only requirements that we have made on p and g so far is that they have 

no zeroes and that they are well enough behaved so that all the integrals 

converge. We now impose the further requirement that there exists a finite 

L such that L 2 L(kJ for all 5. This is a very mild restriction. For example, 

we certainly expect that g is bounded for all values of its argument. Denoting 

its upper bound by gm, we have 

gm2 d2k 
L(K) L 4n J 

@=I 
p(g+_k)P(& - k,, * (A-13) 

The right hand side of Eq. (A-13) can be bounded by a constant for a wide range 

of p’s. From Eqs. (A-7) and (A-11) we now have 

-+N(N-I)J+NIL EON > -+N(N-~)L. - (A-14) 

Eq. (83) now follows directly from Eqs. (A-14) and (82). 
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The slope of the leading trajectory is more difficult to estimate. If the 

potential, VN, were Galilean invariant, then the only dependence of g,(Q) on 

the total transverse momentum would be through the free Green’s functions. 

In that case we would have the exact result 

aN(&) = AN - a’ h2/N . (A-15) 

However, VN can be Galilean invariant only if we choose /3 to be a constant and 

take g(k_, g) = g(k_- k_‘), a rather unlikely parameterization. In the general 

case the slope of the trajectory function o!,(b) will be effected by the 4 

dependence of the potentials. Writing the momenta 4 in terms of 2 and 

momenta relative to the center of mass, we see that & always enters the Vij in 

the form e/N, From our simple counting argument we expect oh(O) to go like 

a constant at large N. This is the assumption made in the text. It is by no 

means crucial to our argument. 

Finally we obtain a bound on the residue function, PN(&), where 

P,(e) = i’$,lf,t$+ I2 > (A-16) 

and I f,(G) > is defined in Eq. (79). Using the Schwartz inequality we see 

that 

= 
J 

J 
-i.A* b, 

= d2b iP”@l~ e 

+ 

N 

9 II Pty 
i= 1 

(A-17) 
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where p((b_) is the two-dimensional Fourier transform of p(k). One easily 

verifies that for most simple parameterizations of p(k), p,(h) can be bounded 

by a function of the form fly/N, where PO is a constant. For example, if we 

write p(k) = PO e -k2/P2, then 

(A-18) 
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12. Because of our normalization the poles in ZN(Q, 4) are one unit to the left 
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We denote by (UN(&) the position of the poles in Nlz2(Q,h). 
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at N = - m. However, in order to insure that the square root branch 

points in the P-plane exist it is really sufficient to have a,(a) increase 

like N2 for large N. 

14. The interested reader can use the same technique to obtain the high 

energy behavior of the solvable model discussed in section III. 
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FIGURE CAPTIONS 

Figure 1: General Production Graph 

Figure 2: Basic Form of Wn 

Fig&e 3: Elastic Ladder (a) and Checkerboard (b) Graphs 

Figure 4: Rapidity Orderings 
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