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ABSTRACT 

We use the recent deuteron Compton data to evaluate the 

J=O fixed pole in neutron Compton scattering. This calculation 

includes the effects of both Glauber and Fermi motion corrections 

in the extraction of the free neutron cross section from the 

deuteron data, The result is consistent with the Born answer, 

zero.’ As a by-product, we show that the f:A2 ratio in Compton 

scattering is much larger than previously expected. 
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Recently there has been a great deal of speculation concerning the exist- 

ence and nature of fixed poles in two photon processes. Damashek and Gilman, 

and also Dominguez, Ferro-Fontan, and Suaya, ’ have established that a 

description of the high energy data of on-shell proton Compton scattering 

requires, in addition to the standard Regge terms, a constant real part whose 

magnitude and sign agrees, within errors with the Thomson limit 

fl(0) = - $ . 

It is tempting to interpret this extra real part as a “fixed pole” in the language 

of Reggeism. Many attempts have been made in the literature to understand 

the nature and source of such a fixed pole. In particular Brodsky , Close and 

Gunion have shown that such a term arises naturally in any composite theory 

of the hadrons , when a pointlike coupling for the photon is allowed. Its residue 

has particularly simple behavior as a function of the photon mass squared in 

theories which exhibit exact scaling. 3 In such theories the fixed pole is seen 

as arising from the coherent sum of 7fseagull17 terms for the individual proton 

constituents (quarks, bare hadrons). For the simplest composite systems (for 

which divergent Regge behavior is not present) the value of the fixed pole would 

be given by 

-c (2) 
i 

where hi is the charge of the ith parton and x is the fraction of the incident 

hadron’s momentum it carries in a properly chosen infinite momentum frame, 2 

M is the hadron’s total mass. Thus in the three quark model the ratio of the 

proton fixed pole to that of the neutron would be 3/2. Despite the fact that the 

prediction is no longer so simple in the presence of leading Regge behavior, 
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it is still true that the fixed pole probes the nature of the hadron’s constituents 

in composite theories. In the most general case its value provides a constraint 

between the “wee” and the ffhardtl partons. 4 

This point of view is to be contrasted with that which relates the value of 

the fixed pole to the low energy theorem. 5 Were the fixed pole correlated with 

the Born term in this fashion then it should not occur in neutron Compton 

scattering. It would be most curious if a composite theory with scaling were 

to give a t’Born’t answer - that is if the sum of the bare constituent Born 

terms were to equal that of the composite particle. 

In this paper we attempt to determine whether or not an additional constant 

real part is in fact required in the case of the neutron, using the recent results 

for Compton scattering on deuterium6 and the available proton Compton data. 

In section I we discuss the calculable corrections to the deuterium data, their 

uncertainty, and possible modifications due to other more poorly understood 

deuteron effects. In section II we present the high energy Regge fits to the 

neutron total cross section necessary to an evaluation of the fixed pole. In 

section III we evaluate the relevant finite energy sum rules and obtain values 

for the fixed pole of the neutron as a function of the deuteron wave function and the 

high energy Regge parameters used. Surprisingly,the result is fairly inde- 

pendent of the deuteron wave functions, and except for extreme choices of the 

Regge parameters is consistent with zero. We have also calculated, for 

comparison, the value of the on-shell proton fixed pole. Cur Regge parameters 

(determined using all available high energy data) differ somewhat from those 

used previously. 1 The value of the fixed pole is not, however, substantially 

altered. 
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Section I 

In this section we consider the corrections that must be made in order to 

extract the necessary integrals of the free neutron cross section. There 

are a number of effects which we do not attempt to correct for. These include 

those that would arise from a proper relativistic treatment of the deuteron, 

final state interactions, and the creation of virtual excited states within the 

deuteron. The magnitude of such corrections is not well known though there 

exist a variety of arguments that suggest they are small. 7 We shall, in what 

follows, ignore them. 

We have attempted to include the Glauber corrections due to shadowing 

of one nucleon by the other and the “smearing!’ corrections considered recently 

by G. West and others. 7 

The Glauber corrections have been performed in the manner described 

by Hesse. 8 He gives the results for two extreme choices of the wave function 

of the deuteron, simple Gaussian and Gartenhaus , and for three possible choices 

of the ratio R& for yp -+ pp in the forward direction. The Glauber corrections 

that we quote correspond to the mean of the above possibilities with errors 

which include both the uncertainty in yp - pp (forward) and the uncertainty due 

to wave function choice. Table 1 lists the Glauber correction as a function of 

energy, for v > 2 GeV. - 

We consider in somewhat more detail the corrections due to Fermi motion 

as these are perhaps not as familiar as the Glauber ones. The effect arises 

because the energy of the photon-single nucleon collision varies according to 

the motion of the nucleons inside the deuteron. As a result the deuteron cross 

section (spin averaged) is given by 

“JgV) = j-d3pt;’ [f;(,j$+$(,$j [on(vf, P2) + “p’” ‘3 p”)] e [@ + q)2 - t”+p$2] 

(3) 
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where fS( IFI ) and fD( IFI ) represent the S and D wave components of the deuteron 

wave function and the invariants v ’ (the energy of the photon nucleon collision) 

and v (the total energy of the photon) are given by 

P*q v’ = - 
M ’ 

v = p*q 
MD 

(4) 

p and P are defined in Fig. 1 and are the nucleon and deuteron momenta 

respectively, M and MD are their masses. The above equation, Eq. (3), is 

written in the incoherent single scattering approximation. In addition we shall 

neglect off-shell dependences of the single nucleon cross sections. We use the 

standard nonrelativistic normalization of the wave functions’ 

J d3F If( =1 (5) 

Using Eq. (4) we rewrite Eq. (3) as 
00 

27rM Vi 
DD(V) = - 

V2 
$ [f2,(1~1) + f;flFl)1 mm J v Ic(v ‘)dv ’ 

0 V’ 

where Mvk = p”v * l~lv . AS suggested by West’ we use four momentum 

conservation at the N -P - D vertex as for a Feynman graph. 10 In addition 

we note that in the single scattering approach the spectator nucleon is on-shell 

so that 

J- 
-- 

p” = MD- ,pz f M2 (7) 

To develop a bit of intuition concerning Eq. (3) we discuss the corrections 

at high energy where Regge theory presumably applies for the cross sections. 

Were we to neglect the B function of Eq. (3) then the effect of the screening 

corrections would be very small so long as the cross section is smoothly 

behaved. For instance, were the cross section constant for large v then 
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Eq. (3) without the 8 function would yield 

1 u,(v) = u <x > V 

From Eq. (4) we have 

<VI> zz l- 
E +<T> 

V M 

(8) 

where E = the binding energy of the deuteron and T is the relativistic kinetic 

energy of the spectator nucleon. The correction would then be below the 1% 

level. However, when the 0 function is present it limits the available phase 

space. For v >>p2, M2 it reduces to the requirement, cos 8 < p”/l~l, 

Which is restrictive if p” of Eq. (7) is < IFI. This phase space effect reduces 

the deuteron cross section relative to the sum of the neutron and proton cross 

set tions . The magnitude of the correction will depend on the wave function 

used and is most sensitive to its high momentum components. That is it 

probes the short distance behavior of the wave function. It is thus clear that 

there is bound to be some change in the correction between “hard core” models 

and more smoothly behaved ones. 

We have computed the above screening corrections for a variety of the 

most ttacceptedt’ deuteron wave functions (e.g. , Hamada-Johnston, Lomon- 

Feshbach, Reid, Gartenhaus , etc. I1 ) we consider the high energy region 

(V > 2 GeV) and the low energy region separately. 

The “unsmearing” of the low energy neutron cross section is in general a 

rather complicated business. One must first take the low energy proton cross sec- 

tion, correct it for Fermi motion, and subtract it from the deuteron experimental 

data to obtain the “smeared” (denoted in general by a superscript s) neutron data. 

(Glauber corrections are also necessary for v > 1.1 GeV. ) To obtain the 
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“unsmeared” neutron total cross section it is in general necessary to use an 

iterative procedure 12 in which one applies Eq. (3) to tttestlY neutron data to 

see if the output agrees with the smeared cross section calculated as above. 

However, in section III we shall see that we require only the low energy inte- 

gral of the unsmeared neutron cross section. Using the proton data we find 

that an integral over the same low energy range of the smeared proton total 

cross section is related to the integral of the free proton cross section by a 

factor 1 - p,, which is nearly independent of the deuteron wave function. 

One can check that altering the proton data somewhat, performing the smearing 

and repeating the comparison of the smeared cross section integral to the 

unsmeared cross section integral, does not change the value of p,,. Since 

the neutron cross section is quite similar in shape to the proton cross section, 

to a very good approximation one may calculate the integral of the unsmeared 

neutron cross section by dividing the smeared cross section by 1 - /3,, as 

calculated using the proton data. (The deuteron wave function seen by the 

neutron is identical to that seen by the proton. ) 

The proton data used in the above procedure was taken from the Daresbury 

experiment for v > ,265 GeV. Below this we used extrapolated SLAC data, 

and the results of the Walker analysis of single pion photoproduction. 6 In order 

to compute the smeared proton cross section we used smooth fits to the free 

proton total cross section which incorporated five resonances plus a back- 

ground of the form 

S 

c 
an!N - Wthjn+I’2 (10) 

n=O 

We use the parameterization of the first resonance region, P33, given by 

Walker. 13 The 2nd, 3rd, 4th and “5th” resonances were parameterized using 

-7- 



standard nonrelativistic Breit-Wigner forms. The masses and widths of the 

resonances that result from the fits are close to the expected values if we 

attribute them to the P33(1238), D13(1520), F15(1688) and P13(1910). The 

5th resonance which we might identify as the Roper resonance was fixed at a 

1.430 GeV. The x2 for the fit up to W (=cm energy) = 2 GeV is 35.3 for 71 degrees 

of freedom. The interpolating fit is shown in Fig. 2. (We remark here that the 
2 

low energy integral, {h ap(v )dv , which we use for the proton fixed pole calcula- 

tion later, is some 18pb GeV less than that calculated using extrapolated SLAC 

data only.) 

The result of applying the Fermi motion correction to this proton input is 

shown in Figs. 2 and 3 for the Hamada-Johnston and Lomon-Feshbach (hard core) 

deuteron wave functions. p,, as defined by 

N N 

$ (v)dv = (1 - P,,) 1 “p’v )dv 

where N is the cutoff point, is given in Table 2 for two cutoff choices and for 

a variety of wavefunctions o We then computed the smeared neutron cross 

set tion using 

u”, (v) = UD(V) - u; (v) + UG 
The Glauber correction is zero below v = 1.1 GeV. 14 

The resulting smeared neutron cross section is given in Figs. 3 and 4 

for the Hamada-Johnston and Lomon-Feshbach hard core wave functions. We 

cannot resist making a comment concerning the appearance of the smeared 

cross section obtained above, namely that there appears to be a lack of any 

structure in the 3rd resonance region. 15 
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Finally we calculated the integral of the free neutron total cross section 

as 

J- 
u n (v)dv = ( 1 - Peff)-l/g; (v WV (13) 

The values for this integral are tabulated in Table 2 for the various wave 

functions used. In calculating the above integral it was necessary to assume 

values for on below v =O. 265 GeV as there is no deuteron data below this value. 

In this region we simply assumed that the proton and neutron cross sections 

are the same as would be expected on the basis of the known isospin for the 

P33 resonance. 

We consider in somewhat less detail the procedure followed for unsmear- 

ing the neutron data in the high energy region. There we require the smearing 

correction to each individual point as we wish in the end to make a Regge fit 

to the high energy data above v = 2 GeV. 

We first fitted the existing free proton total cross section data above 

v = 2 GeV. We inserted this smooth interpolation of the high energy proton 

data into the smearing formula Eq. (3) and obtained a smeared version of the 

interpolating curve. By comparing this with the input curve we calculated 

l-P(v)= -2.k.l . 
(7 b) 

p( v ) as calculated above is fairly wave function dependent. We have presented 

the results for a variety of wave functions in Fig. 5. Typically it is of the 

order 1.3 x 10 -2 *25%. It varies quite slowly with energy. One can also 

check that p is actually relatively independent of the high energy data used so 

long as no resonant structure is present and the general shape of the data is 

the same. This means that we may use this same p in unsmearing the neutron 
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data. In particular we calculated the free or unsmeared neutron cross section as 

UD u = --u+u n 1-P P G (15) 

The error for each point was calculated using the experimental errors in the 

deuteron and proton total cross sections and the theoretical errors in p and in 

the Glauber correction, uG. Typically the errors in this final unfolded high 

energy neutron cross section are of the order 12pb. (The experimental 

deuteron cross section error is typically 10pb.‘ The error in p, 0.3 x 10 -2 , 

combined with a 250 pb deuteron cross section contributes a 0.75pb error to 

o- n, while the proton cross section has a typical error of 5pb and the Glauber 

correction is uncertain by lpb. Thus the major source of error lies in the 

experimental uncertainties. ) 

The results for gn (free) are presented in Fig. 6, where for convenience 

we have binned together some of the low energy points. 16 

Section II 

The final preliminary to calculating the value of the fixed pole is the 

determination of the Regge parameters appropriate to the high energy free 

neutron total cross section. We have assumed the simplest Regge behavior 

up,,(v) = Ap n+ + , V 
(16) 

Corresponding to the presence of a Pomeranchuk term and an f-A2 Regge 

trajectory term. The intercept of the f-A2 has been taken from hadron 

physics at Q! (0) = .5. l7 

The results of fitting the parameters A and B in Eq. (16) are presented 

in Table 3 for a variety of cutoffs, and in Fig. 6 (where we plot the fit with 

the low energy cutoff at v = 2 GeV). We have also given in Table 3 and in 
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Fig. 6 the comparable fits to all proton data. Notable is the fact that the 

f-A2 trajectory for the neutron is comparable to that for the proton, 48 vs 52, 

with a similarly small difference in the Pomeranchuk term, 98.6pb vs 102.6pb, 

respectively. (Theoretically, of course, the Pomeron should be the same for 

both processes. One can perform a simultaneous fit to both cross sections with 

this constraint. The resulting parameters for the 2 GeV cutoff, also given in 

Table 3, are A 
P 

=An = 101.7, BP = 53.7, Bn -41.3 corresponding to a 

remarkably small A2/f ratio = o 13. ) This is to be compared with earlier 

parameterizations of the high energy neutron cross section which quoted much 

lower Bn values than the above (e. g. , 33, with a Pomeron of 100, for the UCSB’ 

data after Glauber corrections only). 

Section III 

We are now ready to use finite energy sum rules to obtain values for the 

fixed poles of both neutron and proton Compton scattering. The basic sum 

ruleI can be written 

N 

Fixed Pole = f(0) - 1 
27r2 J “,(v )dv - (NPp + 2 fip,-, ) 

“0 2 1 (17) 

!I? (0) = -3.Op.b Gev fn(0) = o.Opb GeV 

where for v > N we have assumed that the leading Regge parameterization is 

an accurate representation of the cross section involved. The integral in 

Eq. (17) has already been given in Table 2 for the usual variety of deuteron 

wave function choices. The necessary Regge parameters appeared in Table 3. 

In Table 4 we have tabulated the value of the fixed pole in neutron Compton 

scattering as a function of Regge parameters used (which of course depend 

somewhat on the cutoff of the high energy fit) and of the wave function. 
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Reasonably one can say that 

Fixed pole (neutron) = 0.0 f 1.5pb GeV (18) 

In Table 5 we present typical values for the proton fixed pole computed using 

Eq. (17) above with the Regge parameters of the proton high energy fit given 

in Table 3. The values are consistent with the Born answer 

Fixed pole(proton] = -3. Ok 0.8 pb GeV (19) 

The errors in the above numbers were obtained by examining the range 

of values for the fixed pole which appear in Tables 4 and 5. For the neutron 

the wave function causes an uncertainty of about .3pb GeV on the fixed pole 

while the error in the Regge parameters contributes about .9pb GeV (as 

calculated from Eq. (17) using the error matrices resulting from the fitting 

program). The additional .3pb GeV is designed to take into account the error 

in In resulting from altering the interpolation of the low energy data for the 

deuteron and proton. The error in the proton fixed pole includes . 5pbGeV 

from Regge uncertainties and . 3 pb GeV from the low energy interpolation. 

Conclusion 

We have shown that, using the new Daresbury data for deuteron Compton 

scattering, one obtains a result for the neutron fixed pole which is consistent 

with the Thomson limit (zero) as was the case in proton Compton scattering. 

This presents interesting theoretical problems. The deep inelastic data 

appears to require a composite theory of the hadrons in which the photon 

interacts with the charged constituents 0 Nonetheless, the fixed pole seems to 

be sensitive only to the total charge, i.e. , the noncomposite Born term, of 

the hadron. 
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2.0 2.3+0.5 

2.5 3.150.6 

3.0 3.5AO.7 

3.5 3.8*0.8 

4.0 4.OkO.8 

4.5 4.lhO.8 

5. 0 4.210.8 

5.5 4.2hO.8 

6.0 4.3*0.9 

6.5 4.3*0.9 

7.0 4.3hO.9 

8.0 4.4kO.9 

9.0 4.4&O. 9 

10.0 4.4*0.9 

11.0 4.4*0.9 

12.0 4.4hO.9 

13.0 4.4*0.9 

14.0 4.4&O. 9 

15.0 4.4hO.9 

16.0 4.4*0.9 

17.0 4.4*0.9 

18.0 4.4hO.9 

TABLE1 

Glauber Corrections 
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TABLE 2 

Integrals of the Free Neutron Cross Section 

and Peff for N = 2 CeV. 

Wave Function P eff InW @V) 

Hamada-Johnston 
(Hard Core) 

0.022 335.9 

Reid (Soft Core) 0.019 332.9 

Lomon-Feshbach 1 0.028 339.6 
(Hard Core) 

Lomon-Feshbach 2* 0.025 337.9 
(Hard Core) 

* 
The two Lomon-Feshbach wave functions differ in the predicted amount 
of D-wave mixture (see Ref. 11). 
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TABLE 3 

Regge Fits 

a+ n, 

Fit NO. 

1 

2 

Cutoff 
GeV 

2 

2 

2 

3 

4 

An 

t 

Bn 

(l-w (pb GeV1’2) 

98.6*3. 7 48.2k8.4 

95.7*3. 7 47.6*8.4 

1.3*4.5 101.7*1.7 4 

A 

2 102.6+2.0 

2 102.3k2.0 

uT(YP) 

BP 
51.8*4. 3 

53.Ok4.3 

84.6 

79 

2 101.7*1.7 53. 7i3.8 184 

3 104.2h2.5 47.5&6. 0 65. E 

4 101.6h3.3 55.4*9. 0 41. i 

X2 

99 

97 

184 

80 

57.4 

Jo. oi 
loints 

140 

140 

288 

96 

51 

148 

140 

288 

101 

55 

Comments 

with West corrections 

without the West 
corrections 

simultaneous fit 
to UT (y n) and 
u T(YP) with 

- 

e 

, 

A; =A 
P 

with West corrections 

with West corrections 

includes all data 

Without the data 
of Ballam, et al. , -- 
Hilpert, et al. , and -- 
Per1 et al. , (Ref. 6). -- 

Simultaneous fit 
to UT (yn) and 
‘TT(yp) with An=Ap 
(all data) 

includes all data 

includes all data 
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TABLE 4 

Neutron Fixed Pole 

Wave Function * 

Hamada-Johnston 
(Hard Core) 

Fit No. 

1 

2 

3 

Fixed Pole Error due to Regge 
(pb- GeV) parameter uncertainty 

-0. 3 j-0. 9 

-0.6 Ato. 9 

-0. 9 50. 5 

4 -0. 6 

Reid (Soft Core) 1 -0.0 

Lomon-Feshbach 2 
(Hard Core) 

1 -0.3 10. 9 

* 
Wave functions not given yield intermediate results. 
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TABLE 5 

Proton Fixed Pole 

Fit No. 

1 

2 

3 

4 

Fixed Pole Error due to Regge 
(pb-GeV) parameter uncertainty 

-3. 7 *o. 5 

-3.5 *o. 5 

-3.4 *o. 4 

-3.1 *O. 6 
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Figure Captions 

1. Kinematics. 

2. Experimental points of aT(yp) (open circles) and smeared photon-proton 

total cross sections, 0; (yp) (x) using the Hamada-Johnston wave 

function. The continuous curve is the result of our fit to the experimental 

points. 

3. Smeared oF(yp) (closed circles) and ot(yn) (open circles) using the 

Hamada-Johnston wave function. (Below v =O. 265 GeV we use gF(yn) = cF(yp). ) 

4. Smeared aF(yp) (closed circles) and os,(rn) (open circles) using the 

Lomon-Feshbach wave function. (Below v =O. 265 GeV we use o$yn) =at(yp). ) 

5. p as a function of photon energy, v , for the following wave functions : 

1. Lomon-Feshbach 1 (Hard Core) 

2. Lomon-Feshbach 2 (Hard Core) 

3. Reid (Hard Core) 

4. Hamada-Johnston (Hard Core) 

5. Reid (Soft Core). 

6. High energy photon-neutron total cross sections 

a Binned Daresbury data 

l UCSB (Ref. 6) 

0 DESY (Ref. 6). 

The neutron Regge fit corresponds to fit 1. Fit to aT(yp) is drawn for 

comparison (see Table 3). 
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