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1. INTRODUCTION 

In previous work 1,293 it has been shown that a discrepancy of about 8% 

still seems to exist between theory and experiment for the process of thermal 

radiative neutron capture on protons. This is termed, after Austern and Rost, 4 

the interaction effect. In our opinion the best values to date are 334.2-+- .5 mb 

for experiment5 and 309.5 tt 5 mb for theory. 1 The present work was motivated 

by the slim possibility that the doubly radiative.cross section, that is 

n-tp- d + 2y, might be anomalously large and thereby explain the interaction 

effect, since the number of capture y’s is not in general measured in experi- 

ments . In this work we find that the doubly radiative cross section is many 

orders of magnitude too small to explain the interaction effect. There is how- 

ever a very interesting relation between the doubly radiative cross section and 

the singly radiative cross section for capture from the 3S np state. 

To be specific we find in this work that the doubly radiative cross section 

depends critically on the overlap integral between the 3S continuum wave func- 

tion and the deuteron wave function. These states are normally considered to 

be orthogonal, and an estimate based on this assumption yields a doubly 

radiative cross section of only 10 -4 pb. On the other hand if the overlap 

integral is anomalously large, 236 and roughly equal to that between the ‘S 

continuum wave function and the deuteron wave function, two things occur: 

(1) the singly radiative capture cross section from the 3S state increases 

greatly, becoming about 8% of that from the ‘S state and raising the total 

theoretical cross section to agree with the experimental value; (2) the doubly 

radiative cross section increases enormously, from 10 -4 pb to about 42 pb. 

The doubly radiative process thus becomes measurable. 
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Our understanding of nucleon dynamics is not complete so we cannot 

definitely rule out the possibility of an anomalously large overlap integral 

between the 3S continuum wave function and deuteron wave function. An 

experimental measurement of the doubly radiative cross section should pro- 

vide a direct test of this orthogonality and thus, indirectly, a clarification of 

the role of the 3S initial state in singly radiative capture. 

Our calculation is based on the diagrams in Fig. 1, although we will only 

use Fig. la. Our use of these diagrams is justified, in Section 2, by the posi- 

tion of their singularities. 7,8,9,10 The amplitude described by Fig. la 

involves a generalized Compton amplitude, wherein a nucleon emits two photons 

and becomes virtual. This amplitude will be obtained in Section 3, in analogy 

with the Compton scattering low energy theorem of Goldberger and Gell-Mann, 11 

and Low, 12 the GGL theorem. The relation between the two diagrams in 

Fig. 1 will be discussed in Section 4, and we will justify our neglect of Fig. lb. 

In Sections 5 and 6 we will calculate the total cross section for capture from 

the two Q=O states, 1 S and 3S, that are expected to dominate. Within conven- 

tional theory, assuming orthogonality of the 3S and the deuteron wave functions 

the doubly radiative cross section is found to be of order 10 -4 pb. If the 

orthogonality is sacrificed however we find, as noted previously, that the doubly 

radiative cross section could be as large as 42 pb. In Section 8 we summarize 

briefly the theory of singly radiative np capture, 192 and show the relation 

between singly radiative capture from the 3S state and doubly radiative capture. 

Two appendices are included, one in which some details of the singularity 

structure of several skeletonized Feynman diagrams are discussed, and 

another in which our calculation method in terms of wave functions is heuris- 

tically derived. 
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2. CHOICE OF DIAGRAMS 

There are numerous diagrams one may draw to represent the interaction 

of two photons with a neutron-proton system and some criterion for the selec- 

tion of the most important diagrams is necessary. We wish to justify the 

choice of the two already discussed, as drawn in Fig. 1. For this purpose 

we will investigate the analytic structure of the amplitudes corresponding to 

various diagrams. There are well known and very convenient techniques for 

studying the analytic structure of Feynman amplitudes without actually per- 

forming the various integrals; in particular the singularities of the amplitudes 

may be obtained by the methods of Landau7, Cutkosky, 
8 and Bjorken. 9,lO 

We 

will follow the standard practice in dispersion calculations of assuming that 

the diagrams with singularities closest to the physical region are dominant. 10,13 

We wish to emphasize that our classification of diagrams according to 

their singularity structure is quite independent of the actual means of calcula- 

tion . I4 We will in fact use a nonrelativistic reduction of the Feynman ampli- 

tudes as discussed in several previous works 1,14,15 and summarized in 

Appendix B. 

Let us choose convenient variables in terms of which the amplitude may 

be assumed to be an analytic function with isolated singularities. We will work 

in a frame where the neutron and proton are both initially at rest and have zero 

relative momentum. The two photons then are emitted with four-momenta q1 

and q2’ while the deuteron recoils with three-momentum equal to -(?& +z2). 

We will consider the amplitude as a function of the invariant four-vector 

square, 
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and the angle 8 between the photons, as shown in Fig. 3. The choice of q2 is 

in close analogy to common practice in electron scattering theory. 10,16,17 

The sum of the photon energies is equal to E , the deuteron binding energy, if 

the deuteron recoil energy is neglected. Thus we may write the invariant q2 

approximately as 

q2 = (ql+q2)2 = 2q1* q2 = 4 ITI l(E- iFI I) sin 20 5 (2.2) 

when the emitted photons are on the mass shell, i. e., in the physical region. 

The physical region in q2 is thus the region from q2 = 0 to q2 = E 2 traced out 

as ITI I runs from 0 to E and 6 runs from 0 to n. In terms of the nearest 

singularity in the amplitude, which we shall find is q2 =4eM, this is very close 

to the origin q2 = 0. For simplicity in this section we will consider the special 

case of ql*q2- -0 which corresponds to 6=0 in the physical region, and to 

q2 = q: f qi throughout the q2 plane. 

Having chosen the convenient variable q2 we may refer to the literature 16,17 

to obtain the position of singularities in the qz plane. Only one unorthodox 

feature is involved in our analysis; as is customary, we consider the nucleons, 

deuteron, and photons as real external particles, but we also consider the 

continuum np system as a fictitious particle whose mass is equal to the sum of 

the neutron and proton masses. It is thus analogous to a bound np system in 

the limit of zero binding energy. This procedure is easily justified for a given 

diagram, and in general one may say that the position of the singularity is a 

continuous function of the mass of the external “particle”, i. e. , the continuum 

np system. 18 This is discussed further in Appendix A. 

In Fig. 4 we have listed a number of skeleton diagrams contributing to 

doubly radiative np capture. The nearest singularity to the physical region 
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q2= 0, is at q2=4Me, which occurs for the Compton-like amplitude in Fig. 4a 

which is the same as Fig. la. Figure 4b is merely one way in which the gen- 

eralized Compton amplitude in Fig. 4a can be dissected and must have the 

same singularity position, which is easy to verify explicitly. Figure 4c is 

another way to draw Fig. 4b and is included as a consistency check. Figure 4d 

is the interference term that occurs also in Fig. lb, and also has a singularity 

at q2 =4Me. Therefore the diagrams 4a to 4d all have the same singularity 

position; they are clearly contained implicitly in the diagrams of Fig. 1. The 

remaining diagrams have singularities which are at least five times as far 

from q2 = 0 and will be neglected. We thereby have a plausible justification 

for retaining only the diagrams in Fig. 1, as already discussed in the 

introduction. 

In Appendix A the behavior of the singularity as a function of the mass of 

the np system for Fig. 4a is discussed further (see Fig. 5), as well as the 

singularity positions of the other diagrams in Fig. 4. 

3. GENERALIZED LOW ENERGY COMPTON AMPLITUDE 

Compton scattering on spin l/2 targets is a well-studied process. The 

expansion of the amplitude in powers of the photon energy was investigated 

by Gell-Mann and Goldberger, 11 and Low, l2 (GGL) in 1954. They discovered 

that to first order in w, the incident photon energy, the amplitude is express- 

ible in terms of only the charge and magnetic moment of the target. Their 

result is derivable on such general grounds that it is generally referred to as 

a low energy theorem. More recently systems of higher spin have been studied, 

and higher powers in w considered; the resultant amplitudes of course contain 

structure dependent functions. 19,20 

-6- 



Our present concern is with photons of frequency around 1 MeV, so a low 

energy theorem is precisely what we need. We must, however, consider a 

situation where two photons of arbitrary frequency are emitted forward in 

time. The GGL theorem is obtained by either classical means, renormalized 

quantum field theory, or by evaluation of Feynman diagrams. We therefore 

expect a generalized Compton amplitude as calculated from the Feynman 

diagrams in Fig. 2 to be a good approximation; indeed the GGL low energy 

theorem is a special case, and provides an “anchor” when one photon line is 

time reversed. 

It is straightforward to obtain the low energy amplitude for Fig. 2. We 

merely write the Dirac spinors and matrices in terms of Pauli spinors x and 

spin matrices o, and retain appropriate powers of the momenta and energy. 

For the np capture problem the initial neutron and proton are very nearly at 

rest in the lab frame so we will obtain our generalized Compton amplitude for 

a nucleon originally at rest. 

Evaluation of the diagrams in Fig. 2 yields the invariant amplitude 

(3.1) 
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where the bracket corresponds to a generalized GGL Compton amplitude and 

is explicitly given by 

2 
ii-l P2-W4 

+ p (F2Xii2) x (~lx~l) - z + 
W -lW+- a2) 

4M2 4M2 
(F2X qz, 

-- - 
nl(nlX El) + (i$ X Fl)Zl f;z ( n2 X F2) + (Z2 X F2)Z2 

2 2 1 1 l E 1 

(3.2a) 

for the proton; only the protons charge ep and magnetic moment pp enter to 

first order in frequency. For the neutron only the terms quadratic in the 

magnetic moment occur since there is no charge scattering 
11 

2 

Tn = 
k-j + ~$-$.) 

4M2 
(;;z x T2) * (;;1 x Fl) 

+ 
4M2 

(~2xx2)x(-zlxiil) *-z (3.2b) 

For brevity we shall write either amplitude as 

T = To + S.-r; (3.3) 

where To refers to the first three terms in (3.2a) or the first term in (3.2b) 

which contain no spin operators, and B”.F refers to the remaining terms. In 

analogy with low energy Compton scattering, which we will discuss below, 

To will be called the Thompson term and g-7 the spin flip term. 
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As an anchor to the GGL theorem we note that for the case w1 = -w2 =-w, 

corresponding to Compton scattering, the amplitude (3.2a) reduces to 

--. 2 
2 * 52 

TP=M+ 
ri?E 

4M2 
(F2X;;,) x (Fl xq, l ; 

i@ -1)2w 
+ 

4M2 
(7xX l ‘T;) 2 1 (3.4) 

which agrees with the familiar result of GGL. ‘I’ l2 

It is clear that the process of N- N+ 2y is kinematically forbidden for a 

free nucleon, N. In the problem under consideration the final nucleon is bound 

in the deuteron and is no longer on the mass shell, so the process becomes 

allowed. It should be stressed that the exact amplitude which should be used 

for the two photon emission would therefore involve an off-mass-shell final 

nucleon. Our assumption is that the amplitude is a smooth function of the mass 

of the final nucleon. 

4. ISOTOPICS AND THE INTERFERENCE DIAGRAM 

The two diagrams in Fig. 1 are not entirely independent but may be related 

by isotopics if we assume that there exists an analogue of the generalized low 

energy Compton amplitude of Section 3 in a form which we will discuss. We 

will assume, for the same reasons as for singly radiative np capture, that the 

neutron is captured predominantly from the two Q=O states, the ‘S and 3S. 

Consider capture from the ‘5 state first. This involves an isovector 

transition of the np system, so the general form of amplitude that results from 
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evaluating the diagram in Fig. la can be inferred from equations (3.2a) and 

(3.2b) to be 

A1 = A(e2 - p e:) + B -en&-+$ 1 [ + C tepp)2 - Wn2 1 (4-I) 

where ep= e is the proton charge and we have formally retained the neutron 

charge, en=O, to make the isovector nature manifest: only differences 

between proton and neutron parameters occur. The coefficients A, B, and 

C will of course depend on the np wave functions and spin matrix elements; 

these will be discussed in the following sections but here we wish to leave 

them unspecified. In similar fashion we see that Fig. lb will lead to an ampli- 

tude with the general form 

A2 = D(epen) + F 

Only products of neutron and proton parameters occur in the interference 

term. 

We can tie together the amplitudes in (4.1) and (4.2) if we assume that, 

in analogy with the results of Section 3, the total amplitude can be obtained 

from the diagrams of Fig. 6. That is, the np system in the ‘S and I=1 state 

emits a photon and proceeds as either an I=0 or I=1 virtual np state, then emits 

another photon to emerge as an PO deuteron. Since one vertex must be iso- 

vector and the other isoscalar the general form of this amplitude is easily 

seen to be 

A3 = H(ep-en)(ep+en) + I(ep-en)(el-lp+el-Ln) 

+ J(w P-wnMp+en) + Ktwp+wnNwp-wn~ (4.3) 

- 10 - 



Each term is the product of an isovector and an isoscalar 2 nucleon vertex 

function. If we now set A3=AI+A2 we find that the coefficients of the nucleon 

charge and moment parameters must obey 

H=A, K=C, D=O, G=O, B=J+I, F=I- J (4.4) 

We are interested in only a reasonably good approximation; in A3 it is evident 

that I and J should be comparable but not exactly equal. This is because they 

correspond to diagrams with np intermediate states of different isospin. For 

simplicity we will assume that Jr I, or that F may be ignored compared to 

A, B, and C. This means that the diagram in Fig. lb will be ignored, which 

makes our calculation much simpler. In summary, for the ‘S initial state, we 

have only the amplitude from Fig. la, which for en= 0 has the general form 

A 1 = Aei + Bep(epp) (4.5) 

Consider-next capture from the ‘S state. We proceed as before and write 

for the amplitude corresponding to Fig. la 

A4 = a(eE+ 2) + b eptwp) +en(wnJ 
1. 

and Fig. lb 

The amplitude corresponding to Fig. 6 is 

A6 = h(ep+en)2 + m(e p - ‘n) 
2 

+ n(ep + e,)tw, + ek+J 

+ Pte ,-e,)twp-wn~ 

Now equating A6 =A4 +A5 we obtain 

a=h+m, d=2(h-m), c=q+r, b=n+p 

f=n-p, g=2tq-r) 

(4.6) 

(4.7) 

(4.8) 

(J-9) 
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As we will show in Section 6, b and c are small compared to a. Thus (4.9) 

leads us to expect that, since there are no selection rules forbidding either 

I=0 or I=1 intermediate states, a and d are large while b, c, f, and g are 

small. This implies, as we will see in more detail in Section 6, that ampli- 

tude for capture from the 3S state takes the form, with e,=O, 

(4-B) 

We conclude that with our assumptions and within the approximations dis- 

cussed we can neglect the amplitude corresponding to Fig. lb for both the IS 

and 3S initial states. 

5. THE IS INITIAL STATE 

We wish to show in this section that the cross section for doubly radiative 

np capture from the ‘S initial state alone is extremely small. The discussion 

of the preceding sections and Eqs. (3.2a) and (3.2b) provide us with the means 

of calculating the amplitude corresponding to Fig. la. Indeed as has been 

extensively discussed in the literature the S matrix may be written as a three- 

dimensional matrix element of an appropriate amplitude, that is the generalized 

Compton amplitude, between the initial state $i and the final state $f of the np 

system, with momentum conservation, phase, and normalization factors. 1,14,15,16 

A very simple and heuristic derivation of this result, based on Feynman dia- 

grams, is also given in Appendix B. 15 In terms of generalized Compton ampli- 

tudes T of Section 4 we therefore write 

-l/2 
S = ie2(27r)4s4(Q’ - Q+q) (40102) s 

@l(y) T(A) Gi(y) emisq2d3y (5.1) 
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where Q is the initial np total four-momentum, Q’ is the final deuteron four- 

momentum, q is the total four-momentum of both photons, and T (4 will be 

further discussed below. 

We noted in the preceding section that thermal np capture should be 

dominantly from the Q=O states, 1 S and 3S. The ‘S state is an I=0 state 

whereas the deuteron is I=l. Thus, as discussed in Section 4 and written in 

(4.1)) capture from the ‘S state involves only the difference between proton 

and neutron amplitudes. The T(A) amplitude in (5.1) should therefore be the 

difference between the proton and neutron generalized Compton amplitudes as 

obtained in (3.2a) and (3.2b). In the next section when we discuss the 3S state 

with I=1 we will use a similar expression, but with T (4 equal to the sum of 

proton and neutron generalized Compton amplitudes. 

For the deuteron and continuum np wave functions we use the following 

standard forms 

-1’2 pi = (4~) [Z(YVY] x 

(5.2) 
@f(Y) = (9 -112 ‘“‘J x,; ; =$1-g 

The functions z, u, and w represent the zero energy continuum np wave 

function, the S-wave component of the deuteron wave function, and the D-wave 

component of the deuteron wave function; S12 is the well-known tensor operator 

of nuclear physics and x, is the deuteron two-nucleon Pauli spin function 

given by 

x +1 =o!o!, x 0 = w+w/Jz, x-1 =PP (5 * 3) 
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The first spinor represents the proton spin state and the second the neutron 

spin state. The spin function x s for the initial np continuum state will be 

for the ‘S or singlet state, and the same as in (5.3) for the “S or triplet state. 

We will use a subscript “s” or “t” on the function z to distinguish between 

singlet and triplet states. 

Evaluation of (5.1) is elementary. We first note that ITI is of order 

~“2 MeV, or -0.Olfm -1 in natural units, while y 6 4 fm. Thus T.Fis of 

order 4 X 10 -2 . We may therefore replace the exponential in (5.1) by unity. 

It is then quite easy to evaluate (5.1) by substituting the isovector amplitude 

TtA) from (3.2a) and (3.2b). Since the generalized Compton amplitude T is 

independent of y one easily verifies that the D-state of the deuteron wave 

function drops out of (5.1) by orthogonality of the angular wave functions. 

Moreover the first term of T, the Thompson term To as written in (3.3), does 

not contribute due to the orthogonality of the triplet and singlet spin functions. 

What remains is the product of the spin flip term of the generalized Compton 

amplitude and an overlap of the functions z 
S 

and u, with appropriate phase, 

normalization, and momentum conservation factors. Specifically, after 

substitution (5.1) reduces to 

S = ie2(27r)4 64 (&‘-Q-q) (4Ulm2)-1’2 (xmzp l gx s) Hs (5.5) 

where Hs is the same overlap integral that appears in single radiative np 

capture 
03 

Hs = 
s U(Y) Z,(Y) dy (5-G) 

0 
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and g is the coefficient of CT in the amplitude T (4 for the isovector transition, 

as written in (3.3) : 

g=+ 2 
4; {I-1 1 

p - P$ (w2 - ol) (;i XT2) x (-;1X;;,) 

- (P, - 1) P2 - “1) F2x F-) 

- ulpp qz..x Fl) + (2.. x +i.. C 1 * T2 

-L- - 
- w2c”p [ n2(n2X E2) + (‘;zx72)~2 

1 I 
.-F 1 

(5-T) 

It is now only necessary to do phase space integration and spin sums on 

the S-matrix (5.5) to obtain a cross section for the ‘S initial state. This is 

quite simple and the result is a doubly differential cross section 

d”s 
dQd(w2 - WI) 

where vn is the incident neutron velocity. This is easily integrated and a total 

cross section obtained 

e2 
a,(2Y) = U(lY) 4n j$ - ( )( )( 2 7ia )[ tp +p ,2 + “iW2’P+l 

P n (Pp-Pn)2 1 (5 - 9) 
Here I is an approximation to the singly radiative theoretical cross section, 

given byI 

e2 E 3H2(p 
Q(lY) = ’ p-pn’2c30()mb 

(47r) 4M2vn 

Note that due to the configuration space independence of the spin flip term 

of the generalized Compton amplitudes (3.2) the total cross section (5.9) 
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depends on the np wave functions only through the simple matrix element Hs, 

which is the same as that which occurs in singly radiative np capture. L2 

Indeed the expression a(lr) in (5.10) accounts rather well, to about lo%, for 

the entire np radiative cross section, as we will discuss in Section ‘7. This 

implies in turn that the branching ratio a,(2~)/u(ly) is roughly independent of 

the deuteron wave functions and is given approximately by the coefficient of 

o(ly) in (5.9). Numerically this is about 3.4 x 10-l’, which implies a total 

doubly radiative cross section of only about 10 -4 pb for the IS initial state. 

In the context of present day experimental techniques this is probably unmeas- 

urably small, and certainly is a negligible part of the total radiative np capture 

cross section. I,5 

6. THE 3S INITIAL STATE 

In the preceding section we saw that the ‘S initial state gives rise to a 

very small doubly radiative capture cross section, - 10 -4 pb. In this section 

we will show that the same is expected to be true of the 3S initial state. 

However, this conclusion is critically dependent on the orthogonality of the 3S 

continuum and the deuteron 3S state. 296 If this orthogonality is not assumed 

we obtain as significantly larger effect, which will be discussed at the end of 

this section and further in Section 7. 

Evaluation of the S matrix for Fig. la with the 3S initial state proceeds 

exactly as with the ‘5 initial state, with T (4 now equal to the sum of the 

amplitudes (3.2a) and (3.2b). Repeating the steps discussed in Section 5 one 

finds that the contributions of the spin flip terms of the generalized Compton 

amplitudes are all smaller by a factor E/M than the contributions of the 

Thompson terms. We therefore retain only the largest of the Thompson terms 
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and discard the spin flip terms entirely, to obtain an approximate S matrix 

given by 

S = ie2 (%T)~S~(Q’ - Q - 4) (4 qa2) 
-l/2 

-- 
YE2 

[I 
03 

M 0 
u(Y) z,(Y) j, (F)dY (xLx,d (6-l) 

-- 
JlaO 

S:(Y) z,(y) j, (%f)dy(x;$S12(4) xmf) 
I 

; ; ==iglTl 

which represents both photons being emitted by the proton via a Thompson- 

like amplitude. The j, and j, which occur in (6.1) are spherical Bessel 

functions. 

The integrals over the deuteron wave functions that occur in (6.1) also 

occur in the theory of inelastic electron deuteron scattering 
17 and in the theory 

of singly radiative np capture. 192 They are referred to as Ht and Jt. In terms 

of Ht and Jt the S matrix is 

S = ie2(2x)4 64 (Q’ - Q + q) -l/2 5 -7 
(4~1~~) 2 

M 

(6.2) 

The sum over spins and phase space integration is elementary, as before, 

and yields a doubly differential cross section given by 

d”t 4re4 c2 
[ - &5 - q2] 3(H,2+ 8J;) 

dfid(w2 - ml) = (27r)5 vn 32 4M2 
(l+cos2 0) (6.3) 
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The total cross section is obtained by simple integration 

a,(3) = WY) te2/4r) 
4(H; + SJ;) 

37Wp - cl,) 2 Hf 
(6.4) 

where c(ly) = 300 mb is the singly radiative cross section in (5. lo), and Hs is 

the same matrix element as in (5.6). 

Let us now consider the matrix elements that occur in the result (6.4) and 

make an approximate evaluation. For this purpose we may use the well-known 

zero range approximations to the various np wave functions. Consider first 

(6.5) 

HS* 
The zero range wave functions for u and zs are, 

u(y) = JiGi emay ; ct = &I 

z,(y) = &(y-as) ; as = singlet scattering length 

so that 

Hs= d&i (6.6) 

The matrix element Jt involves the spherical Bessel function j, q $ ( > . 

Since the argument is very small we expand and retain only the lowest order 

term in q = E , which implies that j, = O(c2y2) and 

E2 co Jt’ - s 60& 0 
WY) z,(y) y2 dy (6.7) 

To evaluate this we shall use the zero range continuum state 

z,(y) = hi (y - atI ; at = triplet scattering length (6.8) 

For the deuteron 13 wave a rather crude tail approximation will be used 

\ 

w(y) = 7j JZOL evaY (6.9) 
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on 

Here 77 is the asymptotic D to S ratio of the deuteron, numericallyLL about 

3 x 10-2. This approximation for w(y) is justified by the factor y2 in (6.7) 

that weights the large y region where (6.9) is a decent approximation at the 

expense of the small y region, where it is not. The result is 

(6.10) 

where we have used the approximate relation at= l/a! in the last step. 23 It 

is evident that Jt is very much less than Hs. As we shall discuss shortly it 

may be totally neglected. 

Finally we must consider Ht. We expand j, (q $) about q=e=O, as with 

above, but retain the first two terms, of order 1 and of order E 2y2. 

co 
S 

2 fxl 
Ht = 

0 
U(Y) Z,(Y) dY - & s 0 

U(Y) z,(y) y2 dy (6.11) 

The first term is normally assumed to be zero since u(y) and z,(y) are both 

triplet states but have different energies. In a Schroedinger theory they 

would therefore be orthogonal. This would also be true in any theory where 

the 2- nucleon dynamics are determined by a unitary time displacement oper- 

ator, i.e., where the 2-nucleon dynamics is determined by a unitary time 

displacement operator, i.e., where the 2-nucleon Hamiltonian is Hermitian. 

It has been speculated, however, that a lack of orthogonality is possible since 

our understanding of two nucleon dynamics is incomplete. Moreover, such 

a nonorthogonality might solve the problem of the interaction effect. lw6 We 

will return to this question later in Section 7. For now we will merely set 

the first term in (6.11) equal to Hs times a dimensionless parameter A. 

Orthogonality then corresponds to R=O. 
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The second term of (6.11) is easily obtained using the wave functions in 

(6.5) and (6.8), so Ht may be written as 

Ht = AH (6.12) 

where we have again used at = l/a!. It should be noted that in the zero range 

limit the wave functions u and zt are indeed orthogonal if the above approximate 

triplet scattering length, l/cr, is used. 

We may now substitute (6.6)) (6. lo), and (6.12) into (6.4) to obtain a useful 

form for ut. 

3 
2 E 

GM(l-a!aS) (6.13) 

In (6.13) the contribution of Jt has been neglected since it is N lo3 times 

smaller than Ht. That is (6.13) is a pure S-wave zero range approximation. 

Equation (6.13) is the main result of this work. If the deuteron wave 

function u and the np continuum wave function zt are orthogonal then A=0 and 

we have, with E =2.22 MeV, or=.232 fm -1 , and as=-23.7 fm 

(6.14) 

= 1.6 x 1O-7 I.Lb 

which is quite negligible compared even to as(2y) = 10 -4 pb discussed in 

Section 5. On the other hand A could be nonzero as discussed by Breit and 

Rustgi . 6 Indeed if A=1 the discrepancy in the total np capture cross section 

disappears, as has been shown in Ref. 2, and which will be discussed in 
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Section 7. For Ag 1 we have from (6.13) 

= 42 pb (6.15) 

It is therefore clear that ut is quite sensitive to the orthogonality of u and zt. 

From the preceding paragraph it is clear that a measurement of the 

doubly radiative np capture cross section, os + gt, would provide a very sensi- 

tive test of the orthogonality of the deuteron wave function u and the np 

continuum wave function z t. In particular the value A= 1, which would solve 

the long standing problem of the interaction effect, 6 provides a measurable 

cross section of about 42 pb, whereas A=0 leads to the very small cross 

section of Section 5, about 10 -4 pb. 

7. RELATION TO SINGLY RADIATIVE CAPTURE 

Singly radiative np capture is a well studied process and much material 

appears in the literature. 1-6 Here we will first summarize very briefly the 

results of previous work; specifically we will quote mainly from Refs. 1 and 2. 

The most recent experimental result for the total thermal np capture cross 

section is 

U = 334.2 f .5 mb 
ew (7-l) 

as obtained by Cox, Wynchank, and Collie.’ This result is in agreement with 

previous experimentall work, although more accurage, and no definite sources 

of systematic error have been suggested. 

The theoretical treatment of the problem has been under development for 

many years . Calculations of the transition from the ‘S state have been made 

using both a nonrelativistic wave function approach I,3 and a dispersion theo- 

retie approach. 
24,25,26 We believe that these are now in substantial agreement 
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as discussed in Ref. 1. Such small effects as meson exchange currents, 1 

incoherent nucleon excitations, 27 and relativistic corrections 192 have been 

included. The result of this work, in the notation of Refs. 1 and 2 is a total 

cross section for capture from the IS state of 

E 3(G12)2 

2M2 vn 
= 309.5 k 5 mb (7.2) 

which is about 8% below the experimental value in (7.1). (The numerical value 

of u in (7.2) is the conclusion of the present author and Ref. 1.) 

By far the largest part of the above theoretical result is due to an impulse 

approximation diagram - basically Fig. la but with a single photon emitted. 

The contribution of this diagram is that which is used in Sections 5 and 6, as 

given in (5.10). This corresponds to an invariant amplitude G.,2 given by 

G12 2 p = ’ (P -I-Q Hs (7.3) 

where H is the overlap integral between deuteron and the IS state already 

discussed in Section 5 and given in (5.6). 

The discrepancy between experiment and theory, (7.1) versus (7.2)) has 

stimulated interest in numerous possible mechanisms for increasing the 

theoretical result (7.2). In addition to the mesonic effects and relativistic 

corrections mentioned above it has been suggested by Breit and Rustgi’ that 

transitions from the 3S state could be anomalously large and contribute the 

missing 8%. Again in the notation of Ref. 2 the cross section for singly 

radiative capture from the 3S state may be written 

E 3(G; + Gt) 

2M3 vn 
(7.4) 
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Theoretical estimates of G3 and G4 indicate that this process is smaller than 

the IS process by about 3 orders of magnitude. This conclusion, however, is 

based on the orthogonality of the deuteron and 3S states. Indeed if we ignore 

the D state of the deuteron we can write explicitly2 

G4 = 0 

G3 = * tP,+P,) Ht 

(7.5) 

where Ht was discussed in Section 6 and is explicitly given by 

(7.6) 
= AHs - & & (2) 

In any theory based on a Hermitian Hamiltonian one of course expects the over- 

lap integral to be zero, or A=O. However, it is possible to question the basic 

interpretation of u and zt as simple eigenvectors of a nonrelativistic theory. 

In a relativistic theory of strong interactions one has virtual states possible 

that certainly do not correspond to any nonrelativistic limit; for example, there 

should be virtual mesons and virtual excited nucleon states present. It is not 

entirely clear how these virtual states should be treated in the nonrelativistic 

limit, and therefore whether the Hamiltonian describing the time evolution of 

the dressed 2-nucleon state should indeed be strictly Hermitian. 

Motivated by this uncertainty we may entertain the possibility that Ht is 

indeed large enough to explain the 8% discrepancy quoted above. That is we 

assume 

(7.7) 
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or 

334.2 mb = 309.5 mb 

(7.8) 
2 

G3 -E + .08 2 
G12 

Then Ht is easily obtained in terms of Hs 

G3 = R3G12 ; 
R3 Ht = - 
v2 

Thus 

(7.9) 

(7.10) 

In this estimate we have ignored the small exchange current contribution 

mentioned above. The value As 1 in (7.10) implies that the breaking of 

orthogonality between u and zt is very large indeed, in that the overlap integral 

between u and zt is roughly equal to that between u and zs where no orthogo- 

nality at all is present. It appears from (7.10) and the results of Section 6 that 

a measurement of the doubly radiative np capture cross section to an accuracy 

about . 01 mb should clarify the role of the 3S state in singly radiative np cap- 

ture by providing a test of u and zt orthogonality . 

Breit and Rustgi’ have suggested that the overlap integral between u and 

zt could also be measured in an experiment with polarized neutrons captured 

on polarized protons o The present author has analyzed this problem in more 

detail with qualitatively the same conclusion as Breit and Rustgi. 2 Such an 

experiment, where one measures the angular distribution of the y’s emitted 
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in the capture process, however appears a great deal more difficult than a 

measurement of the total doubly radiative cross section to about 10 pb as 

discussed above. 

8. CONCLUSIONS 

We have estimated the doubly radiative np capture cross section to be 

about 10 -4 pb, if, as is normally assumed, the deuteron ground state and the 

zero energy triplet np state are orthogonal. Conversely if these states are 

not orthogonal, and the overlap is large enough to explain the radiative cap- 

ture discrepancy, the cross section could be very much larger, about 42 pb. 

A measurement of this cross section should therefore be a simple way to 

ascertain the role of the 3S initial state in the total np capture cross section. 
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APPENDIX A 

SINGULARITY POSITIONS FOR SOME DIAGRAMS 

We have noted in the text the singularity structure of the diagrams in 

Fig. 4. Several further comments are in order concerning the position of 

singularities. The singularity for Fig. la in the related process of elastic 

ed scatter is at 16 EM, which one may consider the prototype of anomalous 

thresholds. For our present problem we vary the mass of the external np 

system from 2M - E, the deuteron mass, to 2M, the zero energy np mass. 

As we do this the singularity moves continuously from 16 EM to 4 CM. One 

can verify this with the convenient geometrical method discussed by Bjorken 

and Drell” or the standard algebraic method discussed, for example, by 

Squires. 18 For a mass for the np system that is slightly above 2M we must 

use the algebraic method. Then if 2M+K is the mass the singularity moves 

off the real axis to a point (see Fig. 5) 

q2 = 4M(e-K) + 8M&K i (A. 1) 

Thus for K << E we can ignore K to an excellent approximation and are fully 

justified in considering the np state as the limit of a zero energy bound system, 

or “particle”. Capture of thermal neutrons with l/40 eV certainly satisfies 

the above energy criteria. 

Having satisfied ourselves of this we can obtain the singularities of 

Fig. 4c and Fig. 4e in terms of the individual qy and qi singularities, since 

q2 = qt+qi in our special case. Thus using referent es (18) and (10) and 

reasoning as above we may show that for Fig. 4c the singularity is at 4Me, 

and for Fig. 4c at 4Me + 16Me = 20 ME. 
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Diagrams 4b and 4d are conveniently handled by the geometrical method, 17 

and have the same singularity as 4a, that is, q2=4ME . The remaining dia- 

grams with pions are relatively insensitive to the external mass of the np 

system, and the position of their singularities is approximately the same as 

for elastic ed scattering, a well-known case. These may be obtained geo- 

metrically 
10 with ease, and are given in Fig. 4. 
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APPENDIX B 

THE FEYNMAN DIAGRAM AND WAVE FUNCTIONS 

We wish to consider the first diagram in Fig. 1 where one of the nucleons 

spontaneously emits two photons and drops into the deuteron ground state with 

respect to the other nucleon. The amplitude for the emission of two photons 

by the nucleon was discussed in Section 3. Here we wish to justify in a simple 

and heuristic way the writing of the total amplitude as a simple nonrelativistic 

matrix element, (5.1)) which arises naturally and intuitively from an approxi- 

mate evaluation of the first Feynman diagram in Fig. 1. The end result is 

very similar to that obtained for related processes such as singly radiative 

capture. Our development is heuristic and follows similar work by Kaschluhn 

and Lewin. 15 We include it here for completeness and because the present 

method is easily generalized to various other diagrams. 

Let us consider the Feynman diagram in Fig. la, which we have redrawn 

in Fig. 7 with momenta labeled. The two photons are represented by a 

single line of momentum q which is the sum of the photon four-momenta. The 

final deuteron has QT2=ML, while the initial line represents an np system of 

invariant mass near 2M. By conventional diagrammatic techniques lo the 

amplitude will be given by an integral of the form 

S= s d4k,d4k2d4k3 N 

(k:-M2-ie)(ki-M2-ie)(ki-M2-ie) 

x b4(kl+k2-Q) S4(k, +k3-Q’) S4(k2-k,-q3)] (B- 1) 

All of the vertex functions and photon and nucleon spins are contained in the 

numerator function N. 
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Integration over the variables k2 and kg is immediate. Instead of kl we 

introduce a new variable of integration h which is the relative np four- 

momentum and obeys 

kl=2 +A kl = 9 +A’ 

k2=$j -A kg = $ _ A’ 
tB.2) 

Here h’=h+q/2 and q=Q-Q’. Then the propagator functions become 

k;-M2-ie = A2+A-Q-P2-ic 

ki-M2-ic = h2-X.Q-P2-ic (B- 3) 

where the vectors are all four-vectors, and 

(y2 =M2vT M’ N_ ME 

p2 =M2-$ 0 
(B* 4) 

for the “zero” energy np state “decaying” to a deuteron. The integrand in 

(B. 1) has six singularities in A0 located at position R, given approximately 

R 1+ = 
--2 B2+‘5;‘Q h + 

2M + ie ; 
R1- = -2M - ie 

R2+ =2M.+ic ; 

R3+=2M+qO/2 +ie; 

R2- = - 

R3- = - 
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These are shown in Fig. 7. The amplitude can thus be written as 

S = (27r)4 S4(Q’ -Q+q) 
s 

d4Ad4P 4 

tw4 
6 (P-A-q/2) N 

x [ (ho - R1+Wo - RIJ (ho - R2,Xho - R2J ( ho -R3+Wo - R3J]-l (B. 6) 

This can be easily evaluated by residues using the contour C in Fig. 8. 

Consider first the Rl+ singularities alone. This contributes 

S = i(2?-r)4 64(Qr - Q+q) 
s 

We will not bother to write the contributions from the residues at RI+ and R3+ ; 

we merely note that they involve a factor of l/M3 and are therefore down by 

factors of p2/M2 from (B. 7), where p2 is some characteristic energy or 

momentum of the problem. This is expected to be the binding energy 

p” E N 2 MeV or the wave function momentum spread p- 100 MeV/c. In either 

case p2/M2 5 10 -2 , so RI+ is by far the most important singularity. 

It is easy to understand the physical significance of these results: the 

singularity at RI+ is for ho very small and corresponds to the virtual nucleons 

being very near the mass shell, that is ky = ki= ki- M. On the other hand 

the singularities at R2+ and R3+ correspond to roughly ky - 3M and 

ki = ki = -M, so the nucleons are quite far off the mass-shell. Clearly then 

the singularity at RI+ is the only one we need include if we intend a non- 

relativistic analysis. The relative size and the meaning of the R2+ and R3+ 

singularities simply place them outside the scope of nonrelativistic theory. 

We will therefore refer to RI+ as the wave function singularity. 
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To complete our reduction to a nonrelativistic matrix element we proceed 

with (B .7). Note first that the factor 

1 1 
y$2+a2 =4n S d3r eMar ,iC.Y 

r (B-8) 

is the Fourier transform of the asymptotic deuteron wave function (eBar/r). 

2 -1 We may therefore replace the symbol (T2+o ) by $;(A’), representing the 

momentum space nonrelativistic deuteron wave function. 

For the factor (h2+ p2)-l we will have similarly p=O for a zero energy 

np state, or p equal to a small imaginary number for a small relative np 

-d- energy K: p = 1 MK. As above we write 

1 1 - =- 
-a-e 47T 

d3r !?? e i%T= 1 
(B. 9) 

A +P S r 4n s 
d3r ei(z eizT= @itA) 

It is now clear that S can be written as a nonrelativistic matrix element 

S = i(2@464(Q’-Q+q) s $;(A+q/2) & qi(A) 4 
P@ 

(B. 10) 

Thus our goal has been achieved. Equation (B. 10) represents a non- 

relativistic reduction of the Feynman amplitude, and is expressed in terms 

of the deuteron asymptotic wave functions in momentum space and a vertex 

and current function. Moreover, it is very easy to see how (B. 10) can be 

generalized to more sophisticated wave functions; we merely alter ef and qi 

to whatever we choose, corresponding to the use of a more general or 

sophisticated npd vertex function. For further convenience we insert the 

Fourier transform of the momentum space wave functions into (B. 10) and 

work in configuration space. The various factors in N appropriate to the 
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I 

nonrelativistic matrix element are quite easily guessed. We thereby arrive 

at a working expression for the amplitude S. 

S = ie2(27r)464(Qf - Q + q) S c#J;(~ AGi(3 esiTa2 d3F (B. 11) 

where A is the amplitude for emission of 2 photons by a nucleon, as discussed 

in Section 3. 
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I 

FIGURE CAPTIONS 

1. The diagrams which represent the processes discussed in this paper. 

The first, (a), is the “Compton-like” process wherein one nucleon emits 

two real photons and enters the deuteron state with respect to the other 

nucleon, very much as in singly radiative np capture. The second, (b), 

is the “interference” process in which both nucleons emit a single photon. 

2. The diagrammatic content of the generalized Compton amplitude used in 

this work. The photon yl has three-momentum zl, energy wl, and 

polarization vector ‘“;, and similarly for photon y2. The nucleon has an 

initial spin xi, final spin xf , charge e, and magnetic moment p. We 

consider the nucleon to be initially at rest. 

3. Kinematics of the doubly radiative capture process. The deuteron recoils 

with three-momentum (-T), where z=?&+q2. Compared to its rest mass 

the kinetic energy associated with this recoil is negligible. 

4. Some diagrams whose singularity position is considered in Section 2 and 

Appendix A. Diagrams (a), (b), and (c) are implicitly contained in the 

diagram in Fig. la, while (d) is the same as Fig. lb. These are singular 

at q2=4Me. Other singularities are at: (e) 20 Me; (f) 4p2, where 1-1 is the 

pion mass; (g) 16pM; (h) XV&. 

5. Position of the singularity of Fig. 4a. As the np mass varies from 2M-e 

to 2M the singularity moves along the real axis from 16 Me to 4Me. As 

the kinetic energy, K , of the np system increases (a further mass increase) 

the singularity moves off axis along a parabola, as seen from Eq. (A. 1). 

The motion is continuous. 
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6. Isotopics of the capture process as discussed in Section 4. The ‘S initial 

state has I=l, the 3S initial state has I=O. The AI=0 vertices involve 

isoscalar nucleon parameters and the AI=1 involve isovector parameters. 

7. The Feynman diagram discussed in Appendix B. The line labeled q here 

refers to the 2y system, but the diagram and discussion are actually much 

more general. 

8. The singularities in the complex ho plane associated with the Feynman 

diagram in Fig. 7. The pole at RI+ is referred to as the “wave function” 

pole, as discussed in Appendix B. 
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