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Abstract 

A self-consistent dynamical mechanism is suggested, which 

appears to be compatible with conventional ideas about relativ- 

istic field theory, and which prevents the appearance of the quanta 

of the field in outgoing or incoming scattering states. 

A model calculation is provided which illustrates the mech- 

anism. The model produces a spectrum of conventional hadron 

states which corresponds to an infinitely rising Regge trajectory. 

All the states are physical. When SU(3) internal quantum numbers 

are included, it is argued that the mechanism is stable only if the 

physical states have zero triality. 
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I. Introduction 

During the past decade, all the experimental evidence accumulated about 

hadrons has indicated that they are composite. The theoretical pictures which 

have been successful in accounting in some way for a range of phenomena have 

also incorporated a description of the particles which could be called a compos- 

ite one. We list, very briefly, the outstanding ones which include this feature. 

We have first the S-matrix bootstrap mechanism.I In this context, it became 

clear that the particle states should be on Regge trajectories, just as bound 

states in the nonrelativistic Schriidinger equation. Next, the SU(6) ideas2 were 

most consistently developed in terms of a nonrelativistic bound quark model. 3 

The formulation of current algebra4 is also most easily seen to be consistent if 

the currents are formed from quark field operators, with commutation relations 

which are like those of free fields. If this is so, then the hadron matrix elements 

should acquire their structure through that in the “states,” that is, one should 

have composite hadrons . The asymptotic behavior of the elastic5 and inelastic’ 

hadron form factors has been qualitatively accounted for in a simple way in a 

model in which the photon interacts with a structureless virtual current inside 

the hadron. The asymptotic form is obtained by requiring the appropriate be- 

havior of the bound-state wave function at short distances. 

Finally, if the hadrons lie on infinitely rising Regge trajectories, 7,8 there is 

suggested a composite model of hadrons made from quarks moving in an infi- 

nitely deep potential well. The latter feature could also account for the absence 

of free quarks in the world.’ 

We therefore ask whether it is possible to construct a consistent relativistic 

model of a deep potential well. In this paper, we should like to suggest ore pos- 

sible mechanism which could accomplish this. Our aim is the development of a 
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composite model of hadrons composed of quarks which cannot escape (be created) 

in the collisions of physical hadrons. This process will not be forbidden by in- 

ternal symmetry properties or any kinematic restriction on the quark mass. In- 

deed, the model mechanism will be consistent with very light quarks such as 

those favored by quark modelists. The paper will be organized as follows: In 

Section II, we review well-known facts about infinitely deep wells in the Schrijdinger 

equation. In Section III, we suggest how these features can be generalized to rela- 

tivistic field theory. In Section IV, we apply the idea to a simple model, and in 

Section V, we complete the asymptotic spectrum in the model. In Section VI, we 

discuss the self-consistency of our mechanism. In Section VII, we discuss the 

SU(3) structure and indicate how the dynamics is stable if the ordinary hadrons 

have triality zero. 

II. Nonrelativistic Wells with Oscillator Walls 

In order to motivate the development of the relativistic picture of a deep well, 

we should like to review trivial and well-known facts about the nonrelativistic 

Schrodinger equation. The purpose will be solely to help to orient the reader 

when we discuss the real problem. The transition from the nonrelativistic con- 

text to the relativistic is often easiest if one works in momentum space nonrela- 

tivistically. Therefore, we write the Schriidinger equation for a particle inter- 

acting with a potent ial V , 

(2-l) 

In the case of finite range forces, the potential V(k) is regular at zero momentum 

transfer, i.e. , V(0) is finite. Consequently, no care is required in the integra- 

tion of the right-hand side at p = q. However, since when E > 0, the right-hand 
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side of (2.1) , in general, has no desire to vanish when p2 = 2mE, a pole is 

produced in e,(p) at p” = 2 mE. The residue at the pole, that is, the right-hand 

side of (2. l), evaluated at p2 = 2mE, is the scattering amplitude. This is 

the asymptotic amplitude of the coordinate space wave function at large distances 

from the potential. Since we must integrate over the pole to solve (2.11, 

boundary conditions are required to specify the integration path and to charac- 

terize the degeneracy of the eigenstate. These determine whether we have an in- 

coming or outgoing particle amplitude associated with a given final or incident 

direction (or angular momentum). 

However, when the potential at long distances is singular, V(k) diverges at 

k = 0. In this case, the arguments in the preceding paragraph must be modified. 

For simplicity, let us suppose that in coordinate space, V diverges like CY r2 as 

r2 + co. We may then separate V into two parts: 

V(r) = VSR(r) + o r 2 
P 

where we assume that V SR (r) falls exponentially as r -+ 00. At short distances, 

V and VSR are identical. In this case, in momentum space, 

V(k) = vsRtk) - o (2x) v k 3 2 6(“) (k) 

where VsR( 0) is finite. Equation (2.1) becomes 

@E(P) = -“v”p +&?)+ J 4 vSRtp - 9) &t(i) * tw 

(2.3) 

(2.4) 

We now see that there is no reason for a singularity to develop in $E(p) when 

p2 = 2mE, since the right-hand side of (2.4) can adjust to the vanishing of 

the left-hand side. We find, instead, that since (2.4) is a differential 
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equation in p, boundary conditions at p = 0 and p = 00 , the singular points of 
n 

the operator v’ 
P 

,are required for a solution. Near p = 0, the V SR contribution 

in (2.4) is negligible but the momentum space centrifugal barrier contained in 

v z dominates. When we impose the boundary condition that $’ remains finite at 

p = 0, we eliminate one of the two solutions of (2.4). If we then trace this 

solution to p = co , we find in general an exploding (Gaussian) exponential solu- 

tion, dominated by the singular part of vi and the kinetic energy. If we impose 

the finite boundary condition at p =OO, it cannot be satisfied except for special 

values of E. This leads to the discrete spectrum of eigenvalues in the well. 

However, when E is so chosen, the actual form of the wave function as p -+ 00 

is governed by the second term in ( 2.4 ) , the short range potential, because 

in this case the oscillator potential gives an exponentially small contribution. 

That is, the spectrum of states is fixed predominantly by the long range part of 

V while the actual form of the wave function as p-00 is governed by the short 

range part of V. 

We note, of course, that when p2 = 2mE, 

(E -p2/2m) @E(P) z 0 l 

Hence, there is no asymptotic free wave function in coordinate space; the transi- 

tion matrix vanishes identically. 

In the next section, we shall study how all of these ideas can be taken over 

directly in a relativistic context. 

III. The Relativistic Well with Oscillator Walls 

Let us consider a relativistic field theory model with q(x) standing for the 

quark field operator. Since our mechanism will be dynamical, let us suppress 

spin and internal quantum numbers for the moment. We shall discuss these in 

Section VII. 
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We shall suppose the dynamics is characterized by 

(- q 2 +m2)q(x) =I(x)q(x) . (3.1) 

In (3. l), m stands for the physical mass of the quark. I(x) is an operator 

formed as a function of q(x), and the other fields to which the system is coupled. 

It will be taken as a local, relativistic operator, as is q(x). The ideas in this 

paper are meant to be completely conventional. Let us suppose that the eigen- 

states of the Hamiltonian of the system fall into two categories, “good”’ states IG> 

and “bad” states IB> . (These will later be distinguished by internal quantum 

numbers. ) The good states are the sorts of ordinary hadron states which are 

present in the world. The bad states, on the other hand, will contain ordinary 

hadrons and other things which do not exist in the world. In our model, it should 

be impossible to produce bad states through collisions of good states which are 

initially asymptotically separated. Thus, we shall try to insure that amplitudes 

like <Byut B ’ IG) vanish. Here, B,B’ are an asymptotically separated pair of 

bad states with a total “good” quantum number. The bad and good states will 

only be connected by.the quark field operator q(x). We shall assume that 

but 

<GlqlG’> E 0 and <BlqlB’> z 0. 

(The assumption that (BlqlB’) = 0 will be modified in the more realistic model 

when we incorporate the internal symmetry explicitly. ) 

If we apply (3.1) to the calculation of 

<BlqJG> ’ 
we find the equation 

(3.2) 
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where only IB> states occur as a consequence of the assumption that (G’lqlG> = 0. 

In (3.2), u = -(B-G)2 is the virtual mass of the quark. In analogy with the 

situation in the nonrelativistic Schrodinger equation (2. l), we ask whether it is 

possible to have the vanishing of the left-hand side of (3.2) at the posit ion of 

the physical quark mass compatible with the right-hand side. We conjecture that 

it will be if the operator I has matrix elements between bad states which are suf- 

ficiently singular so that the right-hand side involves differential operators in the 

variable u. This circumstance will be exactly analogous to the same situation in 

the nonrelativistic Schrodinger equation described in Section II. If we can accom- 

plish this, then the matrix elements <Byut q(G) and <BIG,in q> will vanish iden- 

tically. (They would be proportional to (-u+m2)<BiqlG> luXm2 = 0.) Thus it 

will be impossible to generate free quarks or the bad eigenstates of the Hamilton- 

ian by a process which involves an incoming good state. Naturally, the same con- 

siderations must also apply to the antiquark operator. For simplicity, in the naive 

model we assume total neutrality. We shall discuss the more realistic case which 

includes SU(3) in Section VII. 

We now ask whether or not it is contradictory to assume that the operator I is 

singular enough between bad states so that the right-hand side of (3.2) contains 

a differential operator in u. 

Clearly, the simplest possibility will result if the same channel is involved on 

the right-hand side of (3.2) as occurs on the left-hand side. Thus, we assume 

that the place where it is most reasonable to have a singularity is in the elastic 

matrix elements of I between bad states. Therefore, we suppose that <B/I/B’> , 

when m 2 2 
B =m B’ is so singular at t = - (B -B’)2 = 0 that the effect of the integra- 

tion over B’ in (3.2) produces a differential operator in u. Since, when mB 

=m B,, t is always negative in the integration over B’, it becomes zero only when 
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I 

u’ zz -(B’ -Q2 + u, that is, where the virtual quark scatters elastically from 

the “potential” I. Naturally, the singularity in the matrix element of I at t = 0 

cannot be associated with a real threshold at t = 0, since zero mass particles 

can play no role in hadronic processes. Consequently, the singularity in I at 

t = 0 must be a consequence of compositeness, that is, it must be analogous to 

(but will not be) a so-called anomalous threshold. In our simple model, this 

compositeness will be associated with the fact that the bad states are composed 

of a virtual quark and good particles. As a consequence of the good particles 

being on infinitely rising Regge trajectories, the bad states will have singular 

form factors at t = 0 (see Section VI). 

In summary, we conjecture that the role of the oscillator well in a relativ- 

istic theory is played by a set of states B, with singular (at t = 0) elastic matrix 

elements of the interaction I. We know of no work in relativistic quantum theory 

which says that such a singularity violates a sacred principle. That is, such a 

singularity is compatible with totally conventional ideas. The states with such 

singular form factors will then not appear in the real world, since a quark will be 

glued on them. This bound system will be a resulting physical state. It will be 

on an infinitely rising trajectory corresponding to the excitations of the quark in 

the well. In the next section, we shall study what some of the consequences of 

such an assumption will be, in the context of our simple model. 

IV. A Simple Relativistic Model with Oscillator Walls 

To illustrate the idea, we shall make a simple mode1 calculation. We as- 

sume q(x) is a spinless field and that we wish to solve (3.2) for those states 

G which are massive. We assume that these occur as a consequence of a t = 0 
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10 
singularity in the elastic matrix element, 

(B IdB’> (4.1) 

where mB = m B’ ’ We shall 

particle state IB > . 

We suppose that as t -+ 

assume initially that there is only one spinless 

0, the matrix element (4.1) has the form, 

<BJIIB~>= 2nymi Lim ($fA 
P-0 p2-t 

=4T 
2 

YmB at 5 -5 S”(&t) 

where t = -(B-B’)2. This form is motivated by the potential 

(4.2) 

(4.3) 

where 

,w 
-iiF- 

1 

p2-t 

as a function of t. 

In order to compute the resulting asymptotic spectrum, we omit all other 

matrix elements, since the mass of the asymptotic states should be dominated 

by the t = 0 singularity in I. We shall assume that the state 1~) has spin J. 

Then the wave function (B 1 ql G, J > will have the form 

<BIdG,J> =ciJW ‘$l.eempJ6&) , (4.4) 
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where T J 
Pl 

. ..a pJ@,) is a totally symmetric traceless tensor of rank J formed 

using the unit vector 

Further, G TJ = 0. We normalize TJ so that 
pi ~l”“I-Li”“C1J 

T;, . . . . p,(@G)* T; . . . . 

1 
pJ(“G) = pJ(‘G - ‘I,, 

where P,(z) is the ordinary Legendre polynomial. We insert 

(3.2)) written in the form: 

(4.4) into 

(-u+m2)<Blq(G> = 

I 

h S(B’O)8(Bf2 +mi)<BIIIB> <B’IqjG> 
cz73 

(4.5) 

(4.6) 

+ channels with m , B+ mB’ 

and then drop other channels and the matrix elements of I for t # 0. Thus we ob- 

tain with (4.3) for I, 

(4.7) 

(-u+m2)qJ(u) =m2y m +m B j6 G B)2-$(mG-mB)2-@$ (4.3) 
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Since the right-hand side of (3.2) now contains a differential operator in u, 

(-u+m2)<BlqlG) vanishes identically at u = m2. We might say that the differ- 

ential operator has made the free quark pole ineffectual. Therefore, <B? +> 

and <B ( Hin G> vanish identically . The quarks cannot get out. 

The range of u relevant to the calculation of the matrix element <BlqlG> is 

-ot,<u_<(mB-mG)2 . (4.9) 

Another range of u is physical, namely, 

(mGfmg)2 5 u <Oo . (4.10) 

We shall postpone for the moment the discussion of the second “crossed” range. 

The differential equation (4.8) has two regular singular points, u= (mGhmB)2, 

and an irregular singular point at u = cc , Nothing special occurs at the position 
2 

of the quark mass u = m . As u -+ -cc , the solutions of (4.8) become 

*2 
mB 

-LL . 
e J Y 

We must choose the bounded solution, 

2 - 
J 

U 

-= -7 ’ 
e 

If we integrate this form back to the singular point, u = (mB -mG)2, we will find, 

in general, an unbounded function. We quantize the mass spectrum of the states 

G, so that qJ is finite at u = (mG - mB)2 . This is exactly analogous to the situa- 

tion in the nonrelativistic Schrijdinger equation. Naturally, we may also study 

(4.8) in the range (4.10). These solutions may be interpreted as the “crossed” 

matrix elements, (0 1 q(B, G) , for example. In this domain, both asymptotic 
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solutions, 

are allowed. We must choose the linear combination which remains finite at the 

other regular singular point, u = (mG + mB)2. No quantization is required since 

both solutions at the irregular singular point u = cc are allowed. However, the 

solution that we obtain in this fashion will not, in general, be the “crossed” version 

of the solution obtained in the other range (4.9). Crossing symmetry will, there- 

fore, in general, be violated when the crossing involves the B and G channels. 

V. Asymptotic Spectrum 

To calculate the mass spectrum which results from the boundary conditions 

on qJ described above, it is convenient to use the dimensionless variable z, 

2 2 2mBmGz=mG+mB-u , (5-l) 

which runs over a range independent of mG, namely, for the bound-state channel, 

u +-co, 1 < z 5 co and for the crossed channel, -co 5 z 5 -1. The differ- 

ential equation (4.8) becomes 

If we let 

qJ= 1 J 

tz 2 3/4 Q ) - 1) 

we eliminate the 5 term in (5.2) to obtain the equation, 

(5.3) 
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This differential equation has resisted being related to one of the standard ones 

in mathematical physics. However, since (5.3) can be reasonably expected 

to describe correctly only the massive states which are most sensitive to the 

t = 0 singularity in I, a W.K. B. quantization should give all the accuracy one 

could reasonably expect to make any sense. 

The solution in the domain 1 5 z 5 cc is governed by an exponentially 

falling wave function at z = cc and a solution finite at z = 1. If we apply the 

standard W.K. B. method to join these, we find as a consequence the eigenvalue 

condition on m G’ 

zrt labels the turning points. This rule should give reliable results for the 

limiting cases, J large, n arbitrary, or n large, J arbitrary where arbitrary 

means large or small. In Regge terminology, n = 0 labels the leading trajectory, 

n 2 1 labels the daughters. The case where both n and J are large, which will 

be important to obtain quantitative results in the next section, has not been dealt 

with so far. However, when n is fixed and J is asymptotic or when J is fixed and 

n is asymptotic, approximations may be made to the integrand of (5.4) which 

allow a simple analytic evaluation. The results 11 are 

2 
mG 2 = m J 

mB 

(5.4) 

J >> n (5.5a) 
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and 

’ n m J ’ ’ 
(5.5b) 

It is encouraging to note that the leading Regge trajectory, as well as that of all 

the daughters, becomes linear as J- co. However, the linearity occurs in 

the asymptotic region when all the daughters merge with the mother. 

If we study the other region, z 5 -1, which corresponds to the crossed 

channels <O(q(B,G> (or <B,s IqlO > ) , we see that the solution obtained for 

the region z 2 1 is not relevant, since it is not finite at the singular point z = - 1 

in general. In this channel, we solve the differential equation with the finite solu- 

tion at z = - 1. .The asymptotic form for large z is then of the form, a sin(G) + 

b cos &? . Therefore, no quantization condition is required. The amplitude 

corresponds to an asymptotic state consisting of a bad particle and an incoming 

(or outgoing) physical hadron. There will be an infinite set of such bad states 

corresponding to all possible physical hadrons which result from the quantization 

in the negative z channel. Approximate wave functions may again be obtained 

with the W.K. B. method. This channel is relevant for the calculation of contri- 

butions to the absorptive part of the quark field propagator, 

<o IT(q(x) q(0)) 10) . 

The asymptotic form of the absorptive part of this for large mass can be com- 

puted using the W.K.B. wave functions. It is, of course, natural to assume 

that the lowest mass bad particle has the quantum numbers of the quark, i.e. , 
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is the “physical” quark. This work has not yet been carried out. It is not yet 

clear of what utility the quark propagator would be. 

VI. Self-Consistency 

We shall now try to determine to what extent the ansatz (4.2) concern- 

ing the t = 0 singularity in the elastic matrix elements of I is self-consistent. 

Thus, we now will calculate the matrix elements of I. To begin, for simplicity, 

we suppose the interaction I is a contact interaction of the form 

1 = Gitx))2 f counter terms. 

Let us first calculate the matrix elements of q2 between the “good” hadron 

states, 

<G1q(0)21G’) = C(clq(O)lB> <B/q(O)lG’> 
B 

(6-l) 

We consider in particular the elastic matrix elements between states of the 

same spin. We use the wave functions (4.4) to find 

<G, J,h . . . (q(0)2\G: J,pi *. *> = 

I 

d4B d (B2+mk)6(Bo) qJ(B*G)*qJ(B*G’) l 

cd 

(6.2) 

where it will be helpful to denote the argument of the wave function as B. G 

rather than u = - (B -G)2. It will be useful to define a single invariant form 

factor by multiplying the above by a tensor 12 

M+*~J > ,+“k$ (G,G,) 

(6.3) 

and contracting on pl . . . “J. As t -0, (6.3) will reduce to -g Vi 
. . . . 
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so the corresponding form factor is equivalent to an average over the spin states. 

We then obtain 

O(B”)qJ*(B* G)qJ(B. G’)PJ 
G- G’rni+B. G’B. G 

. (6.4) 

Since the matrix elements <Blq\G> were obtained from a linear differential 

equation in u, they are defined up to an overall normalization factor. Conse- 

quently, FL (0) > 0 but is otherwise arbitrary at this point. We also note that 

Ft is smooth near t = 0, so the virtual quark in one hadron will feel no singular 

potential with respect to another. 

We can now calculate the corresponding matrix element of I between the 

states IB> . 

FBtt) = <B1q2b3 = c <BlqlG, J> <G, JlqlB’) = 
G,J 

e(G”)qJ*(B* G)qJ(B’. G) pJ(gG. $G) 
(6.5) 

where 

. (6.6) 
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If, in the integrations in mG - (6.5), we let G--c- 
mB 

B , we see that each term 

in (6.5) becomes identical to (6.4). Therefore, we find 

F*(t) = 

Consequently, we see that as t - 0 

Q(t) - c 
G,J 

2 
“G 
2 
mB 

F;(O) 

(6-V 

(6.8) 

where I B = hFB. 

We note that, as a consequence of our initial ansatz, we have obtained 

a mass spectrum which extends over an infinite range. Therefore, the sum over 

this spectrum in (6.8) extends to infinity. Further, the constants F:(O) are, 

at this point, arbitrary positive numbers. Therefore, we should choose them to 

behave for large mG and J so that the sum in (6.8) diverges as t -0 in the 

way to represent the singularity in our initial ansatz, (4.2). To compute the 

necessary constants, we require a calculation of the spectrum, rni, as a function 

of (n, J) when they are both large. This requires an evaluation of (5.4) for 

general, large values of n and J. To study the form of the singularity near t = 0, 

we also require the W.K. B. wave functions. Neither of these calculations has 

been made so far. However, to the extent that the diverging mass spectrum with 

positive FJG(0) makes an arbitrary singularity at t = 0 possible, consistency may 

be achieved. 

The physical picture is, however, clear. The heavy hadrons are larger and 

larger, since they correspond to a virtual quark rattling in the oscillator well 

provided by the bad particle. This allows self-consistency, the generation of 

the walls of the well by the interaction of the quark with a virtual quark present 
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in the bad particle regarded as formed from a hadron and the quark. Since there 

are an infinite number of ways that this can occur, we get the infinitely high walls. 

The quark force need not be large. Its strength only mainly affects the hadron 

level spacing. 

VII. Internal Symmetry 

The picture we have developed now allows us to discuss the consistency of 

our dynamical mechanism with the internal quantum numbers of quarks. We 

shall begin by assuming that the quarks are coupled through a neutral vector 

meson glue, that is, we assume that we have a field equation of the form 

(yP(+ aJ + m)q(x) = gy - A(x) q (xl 

and 

( -a2+h 2 P 1 A 4(x) * 3 

Then (7. l), taken between B and G states, becomes 

(r-G-*)+m)<*W> =g C<BIAC”IB$ yP<B’IqlG> . 
B’ 

Further, 

(7-l) 

(7.2) 

(7.3) 

We imagine inserting the solution of (7.3) into (7.2). We then will 

draw pictures to represent the terms in this formula. The picture of (7.2) 
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and (7.3) is given in Fig. 1. The analogous equations for the antiquark operator 

S are represented in Fig. 2. These figures are not Feynman diagrams but merely 

a representation of the above formulas. The qualitative feature provided by the 

vector meson glue is of an attraction in the qq interaction, repulsion in the qq or 

55 interaction. 

We denote with s a state which, at this point, may be good or bad. If our 

mechanism is to be self-consistent, we should have a deep well in the channel 

with attraction, and, as a consequence, a linearly rising Regge spectrum of 

states for the hadrons described as an excited quark moving in the well. It is 

clear that this is self-consistent with the first terms in Fig. 1 and 2, that is, if 

we input a singular well, we will obtain a spectrum which leads to a singular well 

as discussed in Sections IV, V, and VI. If, however, the mechanism is to be 

stable, we should not have to worry about cancellations which could come from 

the repulsive second term in Fig. 1 and 2. Hence the states s1 and s2 must not 

lie on infinitely rising Regge trajectories, that is, they must be bad. We shall 

discuss in a moment the dynamical consistency of this assumption. Let us sup- 

pose that the quark carries a baryon number bq. The baryon numbers of 

the states G, B1, etc., we call bG, bB , . . . . We then have the relations which 
1 

follow from conservation of baryon numbers in Fig. 1 and 2, 

bG = bq + bB 
1 

bG = -bq+bB 
2 

b*l 
= bsl+b 

q 

b*2 = bsl - bq * 

If we express the baryon numbers of the bad states coupled to G in terms of bG 
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and b 
‘4 

, we have 

b*l = b-bq 
b 

s1 = bG - 2bq 

b*2 = bG + 2bq 

b*2 =bG+b ’ 4 

Therefore, a good channel with baryon number bG must be coupled to four 

neighboring bad channels with baryon numbers bG -2bq, b G-bq, bG+bq, bG+2b . 
q 

We see that this pattern will be consistent with no good particles in bad channels and 

with TCP only if bG = 0, *3bq, f6bq, etc. It is natural to put the arbitrary unit 

bq = $ , so bG = 0, -+l, %2, etc. Further, if the quarks are SU(3) triplets with 

triality t = + 1, the above rule is equivalent to the statement that all good hadrons 

must have zero triality. Further, tg = t, = - 1 and tB2 = t, = + 1 will be the 
1 1 1 

trialities of the four neighboring bad channels, which are coupled by the quark 

field operator to the good channel. Naturally, the B2 with bq = l/3 is the physical 

quark. 

We must finally check whether or not the hypothesis that the states s1 and s2 

are bad is dynamically self-consistent. Therefore, we must study the equations 

for the matrix elements, 

We study the first of these. The calculation for the other is the same. The 

equation for (sllq B1> is pictorially represented in Fig. 3, where B1 couples 

to the good hadrons, G’ , with baryon number bG - 1. We see, however, that the 

effect is one of a repulsion in the channel with the singular potential. We might 

worry that the coupling to a singular repulsion would lead to a catastrophe of the 

sort which occurs in the nonrelativistic Schrijdinger equation with a potential -r2. 
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If we return to (5.2), we find that this is not so. If we reverse the sign of 

y in (5.2), we find that it has perfectly acceptable solutions corresponding 

to an open channel, i. e. , particles which can separate. (G is replaced by 

B1, B by sl.) The wave function has an asymptotic form for large z, e *2( i/y)6 . 

There is, therefore, no discrete quantization in the channel B1. However, in the 

crossed channel, 1 gl, B) , there can be quantization, but only with a finite num- 

ber of states produced. We see this if we look at (5.2), with mG+mBl) 

m -+m B s, and with y - -y, corresponding to the singular repulsion in the 

second term in Fig. 2, and with z I -1, corresponding to the crossed channel. 

We have in this case the equation (we take the form (5.3)) : 

or 

(7.4) 

When z - - CC , the bounded solution is 

2 

I--- 

mBl -- - l--z) 
Q xe y ms 

which leads to the possibility of bound states. However, we see that when J > 1, 

the “potential” is always of one sign. Therefore, there is no value of mBl which 

leads to an eigenvalue of (7.4). If J = 0, there is at most a finite number. 

Therefore, at best, we could find a few discrete channels. These would depend 

on the details of the other effects not contained in (7.4). The asymptotically 
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high spectrum would be continuous. Therefore, again our mechanism is con- 

sistent with the absence of a linearly rising trajectory for the bad particles. 

VIII. Discussion and Conclusions 

We have illustrated how it is possible to keep quarks inside of hadrons, if 

we allow an interaction operator (that is, a relativistic potential) to have matrix 

elements between certain states which are sufficiently singular at zero momentum 

transfer so that it becomes equivalent to a differential operator in the virtual 

quark mass. We have seen that if this singularity is in elastic matrix elements, 

it need not violate any sacred relativistic law. On the other hand, since the ordi- 

nary hadrons have matrix elements of this operator with smooth behavior, there 

will be no unusual long range effects expected to act between them. We have seen 

that the singularity at t = 0 could be expected to be self-consistent, that is, a con- 

sequence of itself. Further, the states with the peculiar form factors could not be 

produced in any process involving incoming ordinary hadrons. 

The mechanism we have provided is analogous to that which produces the dis- 

torted potential which acts between an electron and its image charge in a highly 

charged atom. Indeed the analogy might be even closer if we did not take the 

limit I-1 - 0 in (4.2), that is, if we let the well for the quark be deep but finite. 

In this case, the uniform spacing of hadron levels would be a low mass appraxima- 

tion. As the mass increases, the levels would begin to converge to an “ionization” 

limit. In this case, one would forecast the appearance of real quarks on the “out- 

side. ” The problem would be one analogous to barrier penetration with the rise 

of the cross section for quark production related to the curvature of the Regge 

trajectory. 
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We remark in conclusion that the idea presented here is most attractive 

because it is fairly simple. A few moments reflection will convince one that 

if it turns out to be correct, it might allow one to reconcile many of the seem- 

ingly contradictory approaches to problems in strong interactions. 
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Appendix A 

We first wish to evaluate (5.4)) when J is large. In this case mG/mB 

becomes large so we drop the terms 1 - (m/m,) 2 inside the root in (5.4). Let 

(mB/mG)2 = x . 

We then have for (5.4)) 

(n++) ‘II =ldz [ + {x2zipp 1 - (zlyl)2 ] 1’2 

The real positive roots of the cubic equation in z 

(x 
2 - 2 xz) (z2 -1) -yJ2=0 

define the range in (A. 1). Let us put 

z=xg . 

Then with x large we find 

J++s = 
X J t 

dt -2+ 1 yJ2 1 V2 -- 
& c 

X4 
‘?j - 

(A* 1) 

(A. 2) 

As x increases for fixed n, the integral should vanish. As y J2/x4 -+ l/27, the 

range of 5 becomes a vanishing interval around 5 = l/3. That is, x and J are 

both consistently large. If we evaluate (A. 2) in this limit, taking the leading 

and, next to leading terms in (A. 2) we obtain the first result in (5.5). Similar 

analysis yields the second form in (5.5). 
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It will be convenient to 

8 = Gp/mG > 

Appendix B 

define unit time-like 

gfl.’ = Gfp/m 
G’ 

vectors, 

If = BP/m* 

so that 
A 
BG = (bl + $” bag) 1 

( (b.g)2 - 1)1’2 
=b”p . 

Likewise 

91”,=t$+b%9 ’ 
( (b. g)2 - 1)1’2 

is a unit space-like vector. 

Then we want to find a tensor M 
* ‘PJ’ v 1’ - l v J 

(g,g’) so that 

TJ fbg’ 
“+J,~~“‘~J 

~l"+J (g, g’) 

(*. 1) 

where 

gb.gb = (g-g’+ g-b g’.b) 
((g.b)2-1)‘/2&‘.b)2-l)1’2 ’ 

P- 2) 

Let us suppose L; has the properties, 

I!“b b = gag’ 
PV 

then 

L “1 L”JTJ . . . 
Pl PJ vl”‘vJ 

(bgt) = TJ 
I-ll’ l l ELj ((LWg) 
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where 

(Wg = ((Lb) + g(W)) ; 
((be g’) -1) 

1/2 . 

Then if we use (A. 6) and (B. 3) we find 

TJ 
pl"'1'1J 

“d (Lpl?..LpJvJ) T;l...,J(bg,)=PJ(gbSg~) l 

We note that 

(Be 4) 

(*. 5) 

satisfies (B. 3). Further in (B. 4), we can drop all terms in L . . . L of the form 

Ii V. 

g or g’ ‘, since they give no contribution. In this way we obtain M. We see 

that as g - g’ , % M 
’ ’ l ‘J’ ’ 1’. l ‘J becomes gPIV 1 . . . p’lJv J . 

-27- 



- 

Bl 

- 

Fig. 1 



- 

. 

/ \ 
G 

Fig. 2 



. 

- - 

-- 

SI 2057A3 

Fig. 3 


