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ABSTRACT 

A model calculation of nucleon-nucleon scattering is presented, which 

results in an amplitude that in the elastic high energy limit realizes the 

Wu-Yang idea regarding the relation between the elastic form factor of 

the nucleon and the differential cross section; and which is consistent 

with the behavior of the differential cross section for the production of 

nucleon resonances. The calculation makes use of results obtained with 

the same model in the study of electroproduction. 

(Submitted to Phys. Rev. ) 

* 
Supported in part by the U. S. Atomic Energy Commission and in part by 
Centro de Investigation y de Estudios Avanzados de1 Instituto Politecnico 
National and Consejo National de Ciencia y Tecnolog$a, Mexico. 



This paper presents a calculation of nucleon-nucleon scattering at very 

high energies using a model which has proved useful’ to describe deep inelastic 

electroproduction, scaling and the nucleon’s elastic and inelastic form factors. 

The basic idea of the model is that at high energies the nucleon trajectories 

can beparameterized by the four-momentum,which remains constant except 

for sudden changes due to hard collisions. 

The nucleon is coupled to a neutral, massive and soft2 vector meson field. 

The probability that this field adjusts itself in such a way that no real mesons 

are radiated upon the nucleon’s collision has been previously calculated’ and 

shown to be of the right form to account for the nucleon’s form factors. If 

additionally the nucleon possesses a spectrum of excited states of an appropriate 

density3 the scaling behavior of the uW2 structure function of the electropro- 

duction experiments can also be accounted for. 

These ideas will be applied here to study the very high energy scattering of 

two nucleons , under the following considerations and assumptions : 

(a) An inelastic collision between two nucleons occurs when they come into 

close range of one another at high energy. The very strong interaction excites 

the nucleons to resonant states which are the outgoing scattered particles. 

These later decay, producing two jets of particles. In addition one can have 

the quasi-elastic production of soft bremsstrahlung particles. 4 In this paper only 

the inelastic collisions corresponding to the excitation process will be considered. 

(b) The probability amplitude for the production of two resonant states of 

masses m 1, m2 and four-momenta P 
W’ 

P2c1 (with PI2 = m12, P22 = m22) in 

the s >> m12, m22 limit is proportional to the product of the density of states 

corresponding to those masses. The total amplitude for such a process, up to an 

overall factor, is obtained by multiplying the densities times the matrix element 
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for no real meson bremsstrahlung, ’ given by exp [-W/2] with 

w=p- 
w3 s d4k S(k2 -p2) ?+k) j;*(k) 

Tp(k) = 
J 

eilMJ,(x) d4x 

(1) 

(2) 

~1 is the meson mass and Jp(x) is the conserved current distribution correspond- 

ing to the process. 

(c) The spectrum density has the form consistent with the scaling behavior 

of the deep inelastic electroproduc tion strut ture functions. 1 

(d) The decay of the resonant states can be treated independently of the 

collision process, and proper account of it should not greatly affect the results 

of (b). 

The current distribution corresponding to the scattering plp2 -+ PIP2 of 
0 

Figure 1 is: 

J,(x) = g plp(Ep )-l a(%+- (E 
1 p1 

)-l $x0) 8 (-x0) 

+ Plj$EP 1) -l 6(z+- (EP 
1 

)-l ?lxo) e(x’) 

+ p2y. P2 (E J-l &- (Ep2)-1 S2X0) 8 (-x0) 

+ P2jA(FP2) -’ 6(x”- (E )-l s2xo, e(x’, 1 
p2 I 

where g is the meson-current coupling constant and pit” = (EP , 3i), Pi’ = (E 

Pi2 =m2, P 2 i 
p , pi); 

2 i 
i =m. ; 

1 
i =l, 2. 
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Thus mi are the invariant masses of the observed jets; m is the rest mass 

of the nucleon. / 

W can be written in the form 

w =wf+ &b!k ‘tk2 -p2) [[kprtie - kpl?ic]’ 

[ 
-I- p2 p2 

kp2 + ie - kP2 + ie 1 2 

p1 p2 

3 

2 
+ kpl+ie -kP2+it- 

+ p2 p1 2 
kp2 + ie - kP1 + ie 1 

p1 p2 1 2 
kpl + ie - kp2 + ie 

-[ 

p1 p2 2 
kP1 + ie - kP2 + ie 

II 
(4) 

with 

w*= g” 
/ d4k S(k2 - 

2 m2 
2 (27q3 

p2) faTi) @pf+ ie) 6(kp1) ’ Gq ‘(@2) 

2 
ml 

2 \ 

’ (kPl+ie) *(kP2) (5) 
In the limit of forward elastic scattering W -+ Wf. Wf will be dropped from 

now on by the referral of all amplitudes to the forward scattering case. 5 

The total amplitude A(s) t, u) will be proportional to: 

A@, t, u) - ptm12) ptm22) exp C-W23 (6) 
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where p(mi2) is the density of states with mass mi. 

W can be easily written in the form 

2 
w= - &- D [F(A) + F(x) + F( e ) + F(r) - F(u) - F( %] 

with 

F(x) = 1 - 2x + 1 

[x (X + l)] Ii2 
h I(xy2 m +(x+11) I 

tm - m)2 - t 
‘= 14mm 1 

:= 
(m2-m)2 - t 

4m2m 

tm -m12-u 
c = 14m m 1 

i- = 
(m -m)2 -u 

24m m 
2 

s -(ml +m2)2 
u = 

4mlm2 

: = s -Pm,2 
4m2 

S = (pl + p,,” = (PI + P212 

t = (Pl - PlP = CP2 - P2j2 

(7) 

(8) 

(9) 

(10) 

(12) 

(13) 

(14) 

(15) 

(16) 
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I 
, 

u = cp2 - P,)2 = (PI - P2)2 

s 

a0 
D = N+Y) dy = Not~o); y. ’ 0 

YO 

(1’) 

(18) 

and where N 1, No are Bessel functions of the second kind. 

The y. lower limit in the integral of Eq. (18) should rigorously be zero. 

However it is shifted to a positive number in order to cut off the ultraviolet 

logarithmic divergence of Eq. (4). This is necessary to be consistent with 

the assumed soft character of the neutral meson field. y. will be chosen to be 

a constant such that NO(yO) is positive. 6 

With the definition 

g2 

Y”z 

Nobo) > o 

2 (19) 

Eq. (6) can be written as: 

A(s,t,u) - p(m,2)p(m22) exp (y [F(A) + F(x) + F(c) + F(g) - F(o) - F(z)]) (20) 

Various limits of Eq. (20) will be discussed: 

(1) For elastic scattering ml = m2 = m. Equation (20) reduces to the result 

of Fried and Gaisser:7 

A elastic - exp { 2ytFta) + F(P) - F( 77 I,} (21) 

with a! = - t/4m2 ,p = -u/4m2, r7 = (6 - 4m2)/4m2. 
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Forfixedta.nds+cc , F(P)-F(q)-+Oand 

A elastic srY_,w exp [ WW)] = G2W (22) 

t fixed 

Since G(t),the elastic form factor, 7 is exp { yF(a) 1 . Therefore Fried and 

Gaisser pointed out that the model realizes the Yang-Wu idea* relating the 

elastic differential cross section to the fourth power of the form factor. 

When x is large F( x )+ Pn(4 x ) 
-1 ; and the elastic form factor behaves 

as 

0 -Y 
G(t) - 2 

-t >>rn 
3 (23) 

Experimentally a value of y = 2 is consistent with the data. 

(2) For the inelastic scattering case and in the kinematical region 

2 2 
s>>ml ,m2; 1 m >>m, m2>>m, one has A, x, 4 , r, c , G all large and 

taking the values: 

41 ml -bF (1 -t/m12) 

“2 4X-,---m- (1 - t/m22) 

464 “1 
m (1 - u/m12) 

4sh - 2 (1 - u/m22) 

4Cr *s-- 
“lrn2 

(24) 

(25) 

(26) 

(27) 

(28) 
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Hence Eq. (20) takes the form: 

A(s,t ,u) - 
s>>m 2 2 , m 1 2 

ml’ m2 >>m 

2 
I 

j!l 1 

(29) 

(30) 

Ofcourses+t+u=2m2+m12+m22. When ml, m2 are kept fixed and 

s, -t, -u are separately large, Eq. (30) becomes: 

799 Showing the appearance of the Krisch variable (ut/s). For s >> mi2, 

jul >> m. 2 
1 

and t, mi fixed one has 

(31) 

A(s,t,u) - 
s, IuI >>m2 

2AO- ii’ 
i >>m j=l 

t, mi fixed 

3 
The density p(miY) consistent with scaling in electroproduction has been shown 

to bel: 

p(mi2) = -L- 
mi 

0 
2y Wi 

m2 -ET e 
i 

(33) 

- 
where y is given by Eq. (19), and Wi is an expression related to the de-excita- 

tion of the resonant state. lo As such, the exp { wi 1 will be incorporated to the 

undetermined proportionality factor in the amplitude according to assumption (d). 
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Substitution of Eq. (33) into Eq. (30), (32) and use of the experimental 

value y =2 greatly simplifies the mass dependent coefficient, which reduces to 

(ml4 9 a constant. 

Therefore Eq. (32) shows that in this case: 

A(s,t,u) - A(t)+ +)-2 (I- *y (34) 
s, It.11 >>mi2>Bm2 

t, mi fixed 

(3) Whenml-m,m2-m,s >>mi2andIuI,It(arelargesothatA,x, 

%X are large one has: 

ml 4h--+ m -+ 
( i “1 

“2 4xL$- -+ 

( ) m2 

45 -+ -$.- 
m 

(35) 

(36) 

(38) 

(39) 

(40) 
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Eq. (20) takes the form: 

2 
W,t,u) -T-- s >>rn: 

P(m$ I7 
i =I 

“i- m 

* $3 y 
i 

i B (41) 
-- 
mt2 i m’ i 

lul , ItI 3 mm. 
1 

Use of Eq. (33) with y =2 simplifies the mass dependent coefficient once again; 

and in the ItI , mi fixed; s - 00 case one has 

A(s,t,u) - 
S-+00 

I tl >> mmi, fixed 

W,-(- $T” (- $=G(+) G(--$) (42) 

mi fixed 

consistent with the idea of Elitzur 11 who studied pp +pp* assuming the right-most 

side of Eq. (42). 

The model presented here is not expected to provide an accurate description 

of the collision process when the energy and momentum transfers are small, 

and this can be seen in the behavior of the elastic form factor exp { yF(o)l , 

(L!=-L 
2’ When (Y is not very large one should use F(Q) as given by Eq. (8), 

and althtrgh F(0) = 0 as it should, the fit to the form factor provided by exp{yF(cr)i 

with y =2 is not accurate in the region 1 t 1 - m2. Nevertheless Elitzur finds that 

an expression of the type of Eq. (42) is reasonable using the experimental informa- 

tion precisely in such a kinematical region. 

Consideration of Eqs. (30), (33), (41) with y =2 shows 

(i.e. , one involving a large momentum transfer and/or a 1 

that for a hard collision 

arge excitation energy, 
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and s X= mi2) one can write: 

where 

2 

A(s,t,u)m n 
G(Ti)GtTi) 

i=l G(C i) 

Ti =l- - 
fz i 

q= l-- 
mu2 i 

xi = Ti + T’ 

(43) 

(44) 

(45) 

(46) 

and where G(x) = x -2 is the functional form of the elastic form factor of the 

nucleon. One may conjecture that Eq. (43) should remain true even in the 

region where the model is not accurate if one substitutes for G the experimental 

functional form. For example, the phenomenological dipole fit corresponds 

to the form: 

W;pole= (1 - -$-2 = (3) 2 [(1 - $) - (1 - $1” 

0 
(47) 

.65 

= [(l- -$) -.195]2 = [(l- 2 f- (l-J$n 

Therefore, the conjecture with a dipole fit states that for s >> mi2, E&. (43) will 

hold with 

G(A) = .65 

(A - .195) 
(48) 
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In order to have a comparison with experiment one can study the case of 

elastic proton-proton scattering with the help of Eqs. (43) - (46) and the dipole 

form of G(A) given by Eq. (48). Figure 2 shows a set of theoretical curves 

calculated with these equations where the ordinate is the ratio of 

X = (do-/dt)/(du/dt)t=O to the fourth power of G(t). The abscissa is the absolute 

value of the momentum transfer measured in GeV’. The curves are labelled by 

the incident momentum in the laboratory measured in GeV/c. 

Figure 2 also shows the 6 GM = 90’ curve and, as a dashed line, the 

asymptotic value of X/ G4(t) as s - 00 at that angle. That value is 28v 

12 Figure 3 is the set of the corresponding experimental curves. The most 

obvious difference between the model and the experiment is the theoretical 

absence of the dip at about t = -1.2 GeV2, which is present for incident momenta 

larger than 7 GeV/c. 13 

It is convenient to notice the combination of variables 

K = (1 - t/m2 - a) (1 - u/m2 - a) 

(2 - t/m2 - u/m2 - a) 
(49) 

appearing in Eq. (43). The parameter a = 0.195 if G(x) is given by Eq. (48 ) 

and zero if G(x) =x -2. When ItI , lul ---GO, m2 K- ut/s = /3’pf, the Krisch 

variable. 9 Recently Leader and Pennington 14 and Ball and Pinsky 15 have found 

variables which also reduce to the Krisch variable in some limit. 

Pinsky 16 has followed the idea of Odorico 17 and studied the dips in pp 

elastic scattering as zeroes of the amplitude in the u, t plane; such zeroes 

occurring on some lines for which his kinematical variable (essentially the 

Krisch variable) takes appropriate constant values. 

In the same spirit, and since K given by Eq. (49) is intimately related with 

the Krisch variable, one may (in the context of the model) attribute the presence 

- 12 - 



of a dip at t = -1.2 GeV’ in the elastic pp scattering case to a zero of the amplitude 

(which should arise in the undetermined overall factor) occurring at some value 

of K. 

A line of constant K is a hyperbola in the u , t plane with asymptotes 

u = - (K + a - l)m2 and t = -(K + a - l)m2. Its two vertices are located at 

cv* 3 v* ) with v* = {(i - K - a) *[K(K + a)]l/21 m2. 

An asymptotic zero will be present at -t= 1.2 GeV2 5 - % m2 setting K = 5 - a. 

Then one expects to find a zero at 90” in the center of mass at s = 4m2 -2v , 

i.e., s = 12m2 if a = 0 or s = 11. 8m2 if a = 0.195. The zero will rapidly approach 

its asymptotic position upon increasing s. The value s = 12m2 corresponds to an 

incident momentum in the laboratory of about 4.6 GeV/c. 

Figure 2 shows that for such an incident momentum the value of X/$(t) at 

90’ is in the vicinity of 27. This construction suggests that the appearance of 

zeroes in the elastic scattering amplitude could be related to the approach of 

X/G4(t) to an asymptotic value at eCN = 9o”. 

The amplitude (43) is symmetric under interchange u e--c t. This is natural 

since the model does not incorporate spin or isospin. When one talks about pp or 

nn elastic scattering one should in principle talk about the five independent 

helic ity amplitudes. 18 Nevertheless, if one assumes that at high energies one 

has helicity conservation only the nonflip helicity amplitude f, tt will be 
> 

important 19 and that is symmetric about 90’ for pp or nn. Therefore, in this 

context the amplitude (43) should be considered as the dominant amplitude in the 

process. 

When one considers pn - pn one can have the total isospin equal to zero or 

one. In the latter case fi+ ++ is symmetric about 90’ and in the former anti- 
, 

symmetric. Therefore one can have an asymmetry about 90” due t.o interference 
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between these amplitudes. However at high energies this asymmetry is expected 

to disappear 20 and Eq. (43) should again describe the process. 

For inelastic processes one should take the same attitude and expect that the 

expressions appearing in this paper, arising from a very simplified model, 

describe the main trend of the experimental facts. It will be interesting to see 

if they can be useful to parameterize the data of high energy nucleon-nucleon 

scattering that will soon be available from the new accelerator experiments. 
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Figure Captions 

1. Space time diagram of a nucleon-nucleon collision as considered in the 

model. 

2. Theoretical curves for X/&(t), X = (d(r/dt)/(du/dt)t=o. They have been 

calculated for the elastic scattering case with Eqs. (43) - (46) and Eq. (48). 

The curves are labelled by the incident momentum in the laboratory measured 

in GeV/c. Also shown are the eCM = 90” curve and, as a dashed line, the 

asymptotic value (s - oo) of X/G4(t) at that angle. 

3. The experimental curves corresponding to Figure 2, reproduced from 

J. V. Allaby et al. , Phys. Letters 34B, 431 (1971) (with the permission -- 

of North-Holland Publishing Company). 
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