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Abstract 

The three-particle unitarity relations are solved explicitly 

in order to derive a general representation for the measurable 

three-body amplitudes. The representation is characterized by 

a well-defined set of real parameters which are the equivalent of 

a phase shift analysis for the three-body problem. The resulting 

parameterization is suitable for both the data analysis of three- 

particle final states, and as a starting point for a three-body 

phenomenology . 
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I. Introduction 

In this article, we propose a scheme for parameterizing all measurable 

amplitudes of a three-particle system in an explicitly unitary fashion. As in 

the familiar phase-shift analysis of two-body scattering, such a scheme has 

the advantage of specifying the amplitudes in terms of the truly arbitrary pa- 

rameters which remain after the constraints of unitarity are satisfied. One 

obvious motivation for such a development is to provide a systematic frame- 

work for the data analysis of three-particle final states. Additionally, one 

would expect this to be a useful starting point in phenomenological approaches 
., 

to the three-body problem, such as that proposed recently by Noyes. 1 

The procedure we shall follow is based on the explicit solution of the 

three-particle unitarity relations, the key step being an expansion of the break- 

up and three-free-particle amplitudes in terms of an advantageous complete 

set. The problem then reduces formally to a system of coupled channels, the 

solution to which can be obtained via a straightforward application of well-known 

techniques. 2 The development is completely general; although we will employ 

non-relativistic kinematics, the necessary modifications for the relativistic 

case will be obvious. 
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II. General Solution of the Unitarity Constraints 

In what follows, we shall assume that the amplitudes under consideration are 

characterized by a set of conserved quantum numbers. d, a set of auxiliary quan- 

turn numbers c, the channel index a!, and the continuous momentum variables p,q. 

For example, -$ may consist of the total angular momentum, total isospin, their 

z-components, etc. ; c contains the angular momentum of two of the particles, the 

angular momentum of the third particle relative to the c.m. of this pair, and sirn- 

ilarly for the spins and isospins allowed by the set A. We will assume that in 

practice, for a given J, the set ais restricted to a finite number of different com- 

binations, and hence can be characterized by a single index n, such that 1 I n 5 N 
A’ 

This would be the case, for example, if the interactions between the particles are 

effectively zero in all but a finite number of partial-waves. One may then describe 

the three-body system via the states 1 c1! pq&> . 

If, for simplicity, we assume that there is but one bound state in each two- 

body channel, the measurable three-body amplitudes are as follows: 

(1) An amplitude describing the scattering at c.m. energy W > 0 from 

an initial state of three free particles to a final state of three free 

particles; we denote this by F A n n, (q, q’;W), where the continuous 

variables q, q’ are restricted to the finite domain 0 < q, q’ _< Qo, 

with Qa = (2 M, W)1’2, MQ! being the reduced mass appropriate to 

the variable q. 

cd (2) An amplitude Bn; 6, m, (q, W) describing break-up of the bound state 

of particles p and y, 6’ # /3 # y. Here the index m’ ranges over 

the subset of c which is compatible with $ and the bound state, i. e. , 

(3) The elastic scattering and bound state rearrangement amplitudes 

I& 6m; 6’mv WI; th ese are non-vanishing when W is greater than 
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the thresholds - EF, -E6,, corresponding to the two-body binding 

energies E6, E6,. 

It is well known that these amplitudes satisfy the unitarity constraints3 

Qo! 

dQQ$, $f&, Q ;WJFnwn, (Q, q’;w)* 44 

Q(Y 
B~61mlWW -$$,,(q W)* = -in , P , 2s 01 dQQ2K,Fm,, ’ (q,Q;W)~,;8'm,,(Q,w~* 

n’, 0 

(1) 

- i2n 
c , 
Y,m 

Here /-Lo is the reduced mass appropriate to the variable p, while 

Ka = [2P, (W -Q2,2 Ma)] 1’2 , 

(2) 
qy = pMy(w + ~~jll/B. 
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Recently, Noyes has suggested that one replace the dependence of these 

amplitudes on the continuous variable q in terms of an expansion in some com- 

plete set of functions on (O,Q,). This approach takes into account the realities 

of data analysis, in which one really only has information for a finite set of 

points qk, and is clearly analogous to the familiar partial-wave analysis of two- 

particle amplitudes. As in this analogy, we wish to express the coefficients of 

this expansion in terms of an arbitrary set of real parameters in such a way that 

the amplitudes manifestly satisfy the unitarity constraints. The parameters thus 

defined are the equivalent of a phase shift analysis for the three-body problem. 

We therefore introduce the complete orthonormal set of functions (in channel a) 

where P,(x) is the usual Legendre polynomial. It follows 

Qo! 

2pa 
I 

dQQ2Ka+; (Q,w)G;, tQ,W) = &, l 

0 

Defining the expansions 

c 
P i;,, 0; (9, w, $;I (9’ 2 w, , 

k,k’ 

I& n;ym, tq9w = y 

dw 

( 

nk;6’m;,2 

;;’ 2Mg+j, ) 

9pILW) 3 

(3) 

that 

and renormalizing the elastic and rearrangement amplitudes in the form 

cl 
E6m; 6’m’ 09 = (Q’$q6M6,q6,) -l/2 G4,w 

e6m;6’m’ ’ 

(4) 

(5) 
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Eq. (1) implies the following set of constraints among the coefficients: 

c b=d’w d;w* n’lk”;~mbn”k”;~‘m? . 
n”, k” 

Formally, the indices k, k’, k” take on an infinite number of values in the 

above equations. However, we would expect that the expansions of Eq. (5) may 

be safely truncated at a sufficiently large index KM; in practice, KM is determined 

by the number of data points available. With this assumption, it is clear that for 

a given A, the sets of indices labeling the above coefficients can be put into a 

unique correspondence with the single indices j = j(n,k) .<_ N, p = p((6,m) 5 N; 

where N = N 6 X K M, N = Ml + M2 + M3. Dropping the explicit A, W labels for 

simplicity, the above coefficients can be written as f. . , , b. JJ Jp, epply i.e., as 

matrix elements of the finite matrix operators f, b, e. One then obtains the fol- 

lowing compact representation of Eq. (7): 

f - fT =-inff? - iabb’ , 

b - b* =-in fb* - iabe’, 

e -eT =-iTee’- irbfb , 

where we have invoked time-reversal invariance to obtain such relations as 

e* =e t , e*e = ee*, etc. Before considering the most general realization of 
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this equation, we note that in the theoretical analysis of the three-body problem, 

it may be more convenient to work instead with the channel amplitudes T Pa 
such 

that T = c T 
p my 

T being the three-body t-matrix. If one then determines the 

constraints on T 
Pa 

such that the physical amplitudes derived from T satisfy the 

above unitarity relations, the resulting equations are identical to Eq. (S), except 

that the channel index P must also be incorporated into the overall index j. With 

this interpretation, Eq. (8) embodies the full content of three-particle unitarity 

for either experimental analysis or three-body phenomenology. 

In order to obtain the general solution of the coupled matrix equations given 

in Eq. (8), we consider first the e -e P relation, introducing the matrix (T= b t b, 

which is clearly Hermitian. Moreover, the time-reversal properties noted 

above imply that ais also real, and hence symmetric. If we represent the com- 

plex symmetric e by the real symmetric matrices A and B, e = A + iB, Eq. (8) 

implies that 

2iB = in(A2 + B2 + o+ i [B,A]) ; (9) 

the reality of athus requires that A and B commute. It follows that there exists 

a real orthogonal matrix U, such that 

UUT=l, 

T e=Ue’U , 

(10) 

where e’ is diagonal. Substituting this result into Eq. (8), we have that 

e’ -e’* + i7re’e’*= -i7rUTcU , (11) 

so that U must also diagonalize CT. Hence (T = U u ’ UT and Eq. (11) becomes a 
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scalar equation, with the solution 

(12) 

‘= 1- 
u/J ( 1 

2 /?r2 . 
77/J 

Thus e can be parameterized in terms of “eigen” phase-shifts and elasticities, 

as well as the “mixing” matrix U. 

The equation for f-f t is precisely identical, except that we must work with 

the matrix ii- = b bt . There is thus a real orthogonal matrix V such that 

f = Vf’VT, F= VSi.‘VT; with 

f; =+ 
i 

2i8. 
Tjje I-1, 1 

(13) 

The parameters determining the e , f matrices are not independent, however, 

but are related by the equation for b -b*. To solve the latter, we let b = V b” UT; 

thus 

b” _ b”* =-irf’b’* - iTboer* . 

Substituting the expressions given in Eq. (12) and (13) for e’ and f’, Eq. (14) 

becomes 

-2 i 
= qpe 

It is therefore clear that either fij = r) P, or that byP = 0. In the former case, 
i A. 

we let b” =RjPe 
W 

I’, where R. is real. It then follows that 
3I-c 

(14) 

(15) 

A. 31-L = zj + 6, , 
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up to an integral multiple of K which we incorporate into the sign of R. . 
3I-L 

In order to determine the R. 
JP 

, we first observe that although in principle 

there are N arbitrary diagonal elements 7j!, 
3 

and f < N diagonal elements E ’ , 
P 

the nature of i7 restricts all but g of the “; to be zero. To see this, we form 

an N X N matrix Z such that 

Z =b jk jk ’ k<N, 

(17) 

for j _< N. It follows that i? = Z Zt . However, all but the first N rows of Zt 

vanish identically, and hence ?? annihilates a subspace of dimension N - g. It 

follows that 5 may have at most E non-zero eigenvalues (the “3). From the 

above, we know that the 3 non-vanishing 3; must be identical with the N elements 

CT;* One can easily verify that there is no loss in generality in taking 

-1 = ‘k $t k LN, 

(18) 

any other permutation of the 3;Z can be realized by suitably choosing V. 

At this point, it is necessary to distinguish between several possibilities 

concerning the set B’ . 
I-1 

If we first assume that each element is distinct, the dis- 

cussion following Eq. (15) implies that 

(19) 
= 0 > j >N. 

The c quantities R ~~ determine the set 0; via the relation a’ = botbo, or 

R cll-L = (of2. Thus specifying the set qP determines the R ~~ completely. 4 
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If, however, some of the 7~ 
P 

are degenerate, the situation becomes more com- 

plicated, although in a trivial way. For example, suppose that ql and 17 2 are 

identical; Eq. (19) then holds for /L > 2. For P ,< 2, b” jll # 0 for j = 1,2, and 

these elements must satisfy 

2 2 

6 l- 
/l/-l’? - bo* b” 

‘I-1 jP.l’ = c R. R. 
JP JP’ ; 

p = 1,2 
j=l j=l 

(20) 

The solution of this is R jp = (u; )1’20jp’ where 0 is an arbitrary orthogonal 

matrix. Therefore, instead of the two real parameters R11,R22 which we re- 

quired in the non-degenerate case, we must specify the scale (a;) m and the 

one real parameter which characterizes 0. The extension to degeneracy greater 

than two is obvious; in practice, however, we would expect the non-degenerate 

case to be most common. 

III. Conclusion 

Assuming the non-degenerate case for definiteness, we can summarize our 

results as follows: The solution of the unitarity constraints represented in 

Eq. (8) can be totally specified by the N phases B., the E phases 6 the G real 
3 I-1’ 

numbers 7 
P’ 

an N X N orthogonal matrix V, and an G XE orthogonal matrix U. 

Since the arbitrary orthogonal matrix of dimension n is characterized by n(n - 1)/2 

real parameters, we conclude that a total of .K real parameters is required to 

completely specify the amplitudes e, b, f, where 

c/d’-= ;(N2+E2+N+3j?. 1 (21) 

This is to be compared with the 2 N2 + E2 + NE i 1 real parameters which would 

be required in the absence of unitarity constraints. 
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We have thus achieved a parameterization of three-body observables which 

is well defined and explicitly unitary. It is thus suitable for both the analysis of 

experimental data and as a starting point for a three-particle phenomenology. 

As an example of the usefulness of such a scheme, we note that we may employ 

it to clarify the extent to which the amplitude f (which at present cannot be meas- 

ured in practice) is determined by measurements of e and b. For simplicity, 

suppose that our system consisted of three scalar bosons interacting via two- 

body s-wave forces only, with a single (Q = 0) bound state between each pair. In 

terms of the above notation, we then have d = {J,M), ~7 is superfluous; thus 

NJ = 1, M8 = 1, N = KM, k = 3. By measuring the e and b amplitudes, we 

could determine all of the s j, act, 77, and the matrix U, as well as V. V. V. 31’ 12’ ‘3 

(the first three columns of V). To the extent that these columns determine V, we 

can explicitly determine f in terms of e and b. In fact, the knowledge of these 

three columns imposes 3N - 6 constraints on the N(N - 1)/2 parameters defining 

V, and hence f is completely determined in the approximation KM = 4, is deter- 

mined up to a single real parameter for KM = 5, etc. 
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