
I 

sue-Pm-1029 
. 

UNITARY MODELS OF MULTI-PARTICLE AMPLITUDES* 

R. Aviv and R. L. Sugar 

Department of Physics, University of California 

Santa Barbara, California 93106 

and 

R. Blankenbecler 

Stanford Linear Accelerator Center 

Stanford University 

Stanford, California 94305 

(Submitted to Phys. Rev.) 

* 
Work supported in part by the Atomic Energy commission 

and LL clle Xati.onal Science Foundation. 



ABSTRACT 

A class of models of multi-particle scattering 

and production amplitudes is constructed for which 

the S-matrix is exactly unitary at high energies. 

Two specific models are studied in detail. One leads 

to a constant total cross-section, the other to a 

logarithmically increasing one. Particle production 

in inclusive and exclusive experiments is considered 

for both models. 

-2- 



I. INTRODUCTION 

One of the central problems in strong interaction dynamics is 

to construct a realistic model of multi-particle scattering and 

production amplitudes. Certainly such a model must satisfy the 

constraints of multi-particle unitarity. Ideally one would like to 

construct models which automatically satisfy unitarity independent 

of any other physical input due to their structure. 
1 ‘.: 

As a first 

step in this direction we present a class of models for which the 

S-matrix elements satisfy all the multi-particle unitarity relations 

at high energies. To our 'knowledge this is the first example of a 

solvable multi-particle model with a unitary S-matrix. Although in 

some respects the present model is quite crude we believe that the 

ideas discussed here can be used to construct more sophisticated and 

hopefully more realistic models. 

In Section II we combined ideas from the multiperipheral and 

eikonal models to write down a general S-matrix element in our 

model. Each matrix element is written in terms of a single function, 

W, associated with the creation or destruction of one secondary 

particle. In Section III we show that at high energies the S-matrix 

is unitary for a wide class of input functions, W. In Section IV we 

consider two specific forms for W. The first, which is suggested by 

the multiperipheral model, leads to a non-linear bootstrap equation 

for the elastic scattering amplitude. The solution to this equation 

corresponds to scattering from a black disc with a radius that grows 
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logarithmically with energy. This form for the elastic amplitude 

2-5 has been arrived at recently in several different models. The 

second simple form for w which we consider leads to a constant 

total cross-section, a non-shrinking diffraction peak for the 

elastic cross-section, and a multiplicity that increases logarith- 

mically with energy. For both choices of W we give cross-sections 

for particle production in inclusive and exclusive experiments. 

In Section v we briefly discuss a generalization of the model based 

on the parton picture. Fragmentation effects, which are neglected 

in the earlier discussion, are included here. This model is also 

unitary and solvable. Section VI concludes with a brief resum;! of 

our results. 
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II. DEFINITION OF THE MODEL . 

Let us start by defining the kinematics. A typical production 

diagram is shown in Figure 1. The particles whose momenta are 

labeled by pa and pb will be referred to as nucleons although we 

shall neglect spin and internal quantum numbers. The produced 

particles whose momenta are labeled by qi will be referred to as 

pions. We wor'k in the center of mass and take the z axis along 

the direction of the incoming particles. A general four-vector, 

q, will be written in terms of the transverse momentum, CJ, which 

is a two-dimensional vector in the x-y plane; and the longitudinal 

rapidity, y, defined by 

Y = -+ 0-Q (qo+qz) / (9,-qz) 1 - 

In particular 

'a = m(cosh y,; 0,0, sinh ya) 

'b = m(cosh yb; 0,0, sinh y,) , 

where m is the nucleon mass. At high energies 

= @a+pb)2 3 m2 e 
(Ya-ybI 

S I m2 ey . 

(1) 

(2) 

(3) 

It will usually be convenient to write our amplitudes as 

functions of the rapidity and impact parameters. The impact 

parameters are just the two-dimensional coordinates conjugate to 
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the transverse momenta. For example, we write the elastic scattering 

amplitude in the form 

. 

M[Y,+(_pA-J?b) 1 = Jd'Be 
i8 (pN; -Nph)) 'E 

M (WJ) 

i&'p;-l?',) 'B 
f Zis/d'Be 

i&(Y,B) 
- [l-e2S -1 . 

(4) 

The next step is to write down an explicit expression for the 

production amplitude shown in figure 1. As in the multiperipheral 

model, we assume that particles are produced from chains; however, 

unlike the multiperipheral model, we shall include diagrams with 

more than one chain. The reason for including the multi-chain 

diagrams is as follows. One starts by writing the amplitude for 

production from a single chain in terms of a product of two-body 

amplitudes. If the two-body amplitude has a !arge s behavior of 

the form sa then so will the amplitude for production from a single 

chain. However, by investigating simple Feynman diagram models one 

sees that the amplitude for production from n chains will then have 

the asymptotic form s 
l+n(a-1) . Since we are interested in 

diffraction scattering where awl, the multi-chain diagrams would 

appear to be important. 

Our model for multi-chain exchange is based on an analogy with 

the relativistic eikonal model. 5,6 In the eikonal model one 

ordinarily considers theelastic scattering of two high energy par- 

ticles. One finds that if the incident particles exchange objects 

such as vector mesons or QED towers, multiple exchanges are un- 
7 

correlated in impact parameter space. We shall make the same 
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assumption for our chains. The interested reader will easily 

construct some Feynman diagram models for which this assumption 

holds, and others for which it does not. It is well known that 

the eikonal model is only valid for classes of Feynman diagrams 

for which it is possible to neglect the fragmentation of the 

incident particles. As a result, our model of production 

amplitudes is expected to be applicable. only to the pionization 

region. Since our "nucleons" are point-like particles which do 

not fragment, the reader may prefer to think of them as partons. 

We shall discuss ways of introducing fragmentation into the model 

in Section V. 

The wavy lines in figure 1 correspond to direct exchanges 

between the nucleons. In the eikonal model each exchange con- 

tributes a factor of &(Y,s) to the amplitude. b(Y,B) is the 

two-dimensional Fourier transform of the amplitude for single 

exchange. The i/2s intk exponential function in Eq. (4) is the 

usual eikonal factor for the propagation of the two nucleons 

between exchanges. Unlike the elastic amplitude, the production 

amplitudes have diagrams in which there are no direct exchanges 

between the nucleons. As a result, the total contributions of 

direct exchanges to the production amplitudes is just a multipli- 

cative factor of the two-body S-matrix 

+g G(Y,_B) 
S(Y,_B) = e . (5) 
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We now turn to the amplitude for the exchange of a single 

chain. Let us start by considering the case in which all sub- 

energies along the chain are large. In the multiperipheral model 

one ordinarily takes into account only interactions between 

nearest neighbors on the chain. The amplitude can then be written 

in terms of a product of two-body amplitudes. In the present model 

interactions between non-nearest neighbors can not be neglected. 

The eikonal model suggests that the interaction between each pair 

of non-nearest neighbors will give rise to a factor of the 

corresponding two body S-matrix. The S-matrices of course depend 

on the difference of rapidities between the interacting particles 

and on their separation in impact parameter space. In Section IV 

we shall see that for all values of the impact parameter for which 

there is appreciable scattering, the two body S-matrix goes to zero 

faster than any power of s as s becomes large. As a result of this 

very strong final state absorption, when all sub-energies are large, 

all chains are strongly suppressed except those from which only one 
. 

particle is produced. Therefore, we shall include in our model only 

the simple chain shown in figure 2. For simplicity we ignore those 

chains from which several particles emerge with small relative 

energies. we plan to return to the interesting class of models 

generated by such chains at a later time. 

Our model is now completely determined by specifying the ampli- 

tude for exchange of the single chain shown in figure 2. we denote 
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this amplitude by W(Y,_B;y,_b), where Y and B have been defined in 

Eqs. (3) and (4). The rapidity of the produced particle is y and 

b is the two-dimensional coordinate conjugate to its transverse 

momentum. If we denote the transverse distances between the pro- 

duced pion and nucleons a and b by El and E2 respectively, then 

N = !?l + 3 B 

(6) 

The multiperipheral model suggests that we write W as a product of 

two-body amplitudes 

W(Y,E;y,l$ = gM(ya-y&-~)M(Y-yb~@+l$ 

or in'momentum space 

ig-b 
w(Y,$(&-&);y,$ = j'd2bd2Be - e 

i+-(EH-El;)*g 

‘W (Y,s:y+) 

(74 

(7b) 

= SM(Ya-Y~~~-&_s)M(y-yb,~~-~~) . 

However, for much of our discussion it will not be necessary to 

specify the functional form of W. 

There is one restriction which we place on W for the sake of 
. 

consistency. In the eikonal model,exchanges between the incident 

nucleons are uncorrelated in impact parameter space only if the 

nucleons retain a large fraction of their incident momenta. This 

can be guaranteed by requiring W to vanish unless y lies in the 
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range 

(‘-‘)Yb * Y s w-dYa 63) 
. 

where c is an arbitrarily small number. In order for the model 

to be internally consistent most of the production should take place 

in the pionization region, so our results should be essentially 

independent of E. This will indeed turn out to be the case. 

We are now in a position to write down an arbitrary S-matrix 

element in our model. We denote by Mnm the amplitude to go from 

an initial state with m pions and two nucleons to a final state 

with n pions and two nucleons. The diagram corresponding to Mno 

is shown in figure 3a. It should be emphasized that the diagrams 

we are drawing each correspond to a sum of Feynman graphs. The 

sum being over all possible ways of attaching the legs of the 

exchanged objects to the nucleon lines. In impact parameter space 

we have 

Mno (L~:Y~,$. . -y,h,) 

= S (Y, B)(i/2s)n- ’ ~ w(Y,_B;Yj’bj) . 

j=l 

The factors ofi/2s arise from the propagation of the nucleons 

between exchanges of the chains. The corresponding factors 

associated with the direct exchanges are contained in the factor 

S(Y,E) as explained before. The momentum space amplitude can be 

obtained by taking two-dimensional Fourier transforms. 
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Mno(YI$(P_;-Pb): Y+,J ---Ynqn) 

= (i/2s)n-1 j+d2B e 
i$(~~-~~).B 

- s(y,g) 

- ~' w(Yr_B;Yj,qj) , 

j=l 

with 

W(Y,B;yj,gj) E jd2bj e 
i_gj-b. 

-' w(y,B;Yj,~j) - 

. 

(10) 

If parity and time reversal are good symmetries then the 

S-matrix must be symmetric. As a result, we must associate a 

factor of W with the destruction of each incident pion. The 

diagram associated with the connected amplitude Mnm is shown 

in figure 3b. In impact parameter space we have 

= s (Y,_B) (i/2s) n+m-l ii w (Y,_B; y; #“;I 
j=l 

(11) 

(12) 

- ii W(Y,l$Yk’~k) - 
k=l 

In momentum space the obvious generalization of Eq. (10) holds. 

The elastic amplitude Moo E M, is given by Eq. .(4). In addition 

to the'connected amplitudes defined by Eqs. (4), (10) and (12) there 

are also disconnected ones. However, since all interactions in our 

model involve the participation of both nucleons, only pions can be 

- ll- 



disconnected. As a result, the general disconnected amplitude is 

just Mnm multiplied by momentum conservation delta functions for 

the non-interacting pions. 
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III- UNITARITY 

Having written down the most general S-matrix element in our 

model, we shall now show that S is unitary. we write the differen- 

tial phase space volume element for n identical pions and two 

nucleons as 

dGn = -$ ; 
d2qi dyi d2p; dy; d2pb dyb 

- i=l (2n)2 4a (2a12 
2 4lT (277) 47r 

l $ (2n)4 04(P-p;-Pb - ~ qi)-. 
i=l 

After making the change of variables 

(13) 

we can perform the yA,yb, and 2' integrations by making use of the 

momentum conservation delta function. we then have 

n d2qi dyi 
dir,=&&- n d2p 

i=l (27r)2 4n - - (2n)2 - 
(15) 

Notice that the restriction imposed on the yi by Eq. (8) allows us 

to drop the variables qiz and Ei = qio from the argument of the 

delta -functions provided n C-C (s/m2)C. For all forms of the function 
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. 

W that we have invessigate, the average multiplicity grows only 

like a power of &ns so this approximation is valid. As a result, 

the yi may be taken to be independent, and Eq. (8) remains the 

only restriction on their range of integration. 

Let us start by considering the elastic amplitude. It is 

convenient to work in B space so we write 

ImM(Y,$ E J d2p el”’ Im(y p) 

(37) 2 
I 

= -&.l~(y,B)l~ + mC IMno(Y,B;ylR~l, ---Y,tj&) 12ctpn. 
n=l 

where 

*n =?! X& i-l ii d2bi dyi/4n . 

Making use of Eq. (10) we see that 

with 

M(Y,B)12 + S i -+ 
n=l n- 

1 S (Y, B) 1 2 

M(Y,B)12 + Sl-s(YrB) i2[eC-11 

(17) 

C(YrB)n 

(16) 

(18) 

(19) 

Since we are interested in diffraction scattering we expect 

the elastic-amplitude to be pure imaginary. It is therefore con- 

venient.to write 

2+ b(Y,z) = - A(Y,g) (20) 

. 
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so that 

M(Y,_B) = 2is[l-emA] . (21) 
. 

Notice that A is actually a function of B2 rather than B from rota- 

tional invariance. Substituting Eq. (20) into both sides of 

Eq. (18) and assuming that A is real gives 

2s[l-emA] = s[l-e-A]2 + s em2A[eC-l] . (22) 

Thus, the elastic amplitude satisfies the multiparticle unitarity 

condition exactly provided 

A(Y,_B)= - +C(Y,B)= 32;s2 drd2bdy Iw (Y,E;y,b) 1 2 . (23) 

This verifies our earlier assertion that all amplitudes in the 

model are completely determined once the function w is given. 
8 

Let us now turn to the unitarity equation for the production 

amplitude Mno. Here the unitarity sum has contributions from 

disconnected graphs, and one must count them carefully. 

We denote the full m to n amplitude including disconnected 

graphs by Mnm. The contribution to Enrn in which k of the pions 

are disconnected is 

c MnBk m-k(Y,~:yj t$ I - ..y; ,$ ;y. 
'k+l 

*cl. , k+l k-t1 m m -'k+l" 
"Yj %' 

n 'n 
) 

- (q! q! Ic ll... lk Jl... 
(25) 

In Eq. (25) il...im take on the values 1,2,... m and jl,...jn the 
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values 1,2,.. .n. The sum is over all distinct partitions of l,...m 

into two groups of size k and m-k and of l,...n into two groups of 

size k and n-k. Clearly there are a total of n! 
k! (n-k)! 

terms. Is,--- qk> is a state of k identical pions. Our 

tion is 

. m: . 
k! (m-k)! 

normaliza- 

= c 2 (27r) 36 (y’ 
gtil- -ik) =1 

-Y,) 6 (Nqj 2-52) 

. . . 2(2d36(y: -Yk)&($ 
lk k-&’ ’ 

where c indicates that 
P(il--ik) 

permutations of 1,2,.--k. 

The unitarity equation for 

il..ik are to be summed over all 

the amplitude Mno is 

aa 
ImMno = C ldQN MnN* 

N=o 
M NO 

03 [n,Nl ._ 
= z ' Jed'N-k Mn,N-k* MN0 ( N=o k=O L;,', n-' . . 

(26) 

(27) 

Here [n,N] means the lesser of n and N. In the last step of Eq.(27) 

we have made use of the fact that the sum of Hq. (2.5) gives rise to 

1 I 
. 

k! (:-k)! - k! (:I,)! terms in Eq. (27) which are numerically equal. 

It is again most convenient to work in impact parameter space. 

Denoting by ImM:o the contribution to ImMno coming from the 

intermediate state containing N pions we find for N#O 
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I~~o(Y,B;yl,~l,...) = (2)" w(l).. .w(n)e -2A 

[n,N] CN-k 
-s c 

k=O (N-k)! 
(-jk k&k), . 

+& 'M n,N 2i no ' 

and for N=O 

mPo = (2," W(l).. .W(n)se -2A ' - & Mz, . 

Here we have written 

w(i) ~ W(Y,_B;yi'Nbi) - 

As a result, 

Imno = &[Mno - M;ol 

in, Nl 
+ ($)"W(l).. .W(n)e -2A s[E z 

CN-k 
Hk n! + 11 

N=o k=O (N-k)! k! (n-k)! 

.n 
= lmMno+(Z) W(l)...W(n)e-2A 

= ImM 
no ' 

since : (-)k n! 
k=O k! (n-k)! = ' * 

(28) 

(29) 

(30) 

(k 

Using precisely the same method one finds after slightly more 

algebra, that the general connected amplitude Mnm also satisfies 
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unitarity identically. SO, our S-matrix is exactly unitary. 

The model is definitely non-trivial in the sense that there 

is a finite contribution to 1m1.1~ from intermediate states 

with arbitrary numbers of pions. There is to be sure a 

rather amazing cancellation between contributions from inter- 

mediate states with different numbers of pions. This is 

illustrated by the fact that in Eq. (30) the coefficient of 

each power of c vanishes. However, one knows that in any model 

which satisfies unitarity exactly there must be strong correla- 
9 

tions between states containing different numbers of particles. 

We have written out the verification of unitarity in 

detail in order to emphasize the strong correlation between 

states with different numbers of particles. However, the 

discussion of unitarity and of other properties of the model 

can be made more concise by writing the S-matrix in operator 

form. This formulation also provides a natural way to generalize 

the model to allow more pions to be emitted from each chain. 

The operator S-matrix will be written in the explicitly 

unitary form 

S =e i (x++X) # (32) 
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where 

x = & jPd'bdy w(Y,g;yJ~) a (ylj3) (33) 

. 

and x + has a replaced by a+. 8s always, W is real. The operator 

a+(y,_b) creates a pion with impact parameter ,b and rapidity y, 

while a(y,b) destroys such a pion. The commutation relation in our 
I 

normalization is 

[a (yJ$ I a+&’ ,y)] = 4n6(y-y')62(b-b') . (34) NN 

Matrix elements of the scattering operator, M, defined by 

M = 2is(l-S) , (35) 

are to be taken between states labeled by the pion coordinates and 

normalized according to 

Iyl,,bl, - - -ynbn) = a+(yl,il) - - -at(ynnbn) IO) - (36) 

In evaluating matrix elements of M it is convenient to write S in 

normal ordered form: , 

+ -A(Y,B) 
S =e ix e - ,ix # (37) 

where A is again given by Eq. (23). The connected part of the 

m - n amplitude is easily seen to be 

M =e nm 
-A (Y, B) (i/2s) n+m-1 i W(j) ii W(k) (38) 

which is identical to 

and (23). The impact 

easily read off. One 

scattering amplitudes 

defined in terms of a 

j=l k=l 

Eq. (12) provided S(Y,_B) is given by Eqs. (5) 

parameter space analogue of Eq. (25) is also 

now sees without any calculation that the 

all satisfy unitarity since the S-matrix is 

unitary operator. 
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IV. PROPERTIES OF THE MODEL 

Our model is obviously too crude to withstand a close compar- 

'ison with experiment: nevertheless, it is amusing to extract some 

of its simpler properties. As we have stressed, unitarity is 

satisfied for any choice of W; however, to obtain specific results, 

one must commit himself to a definite form for this function. In 

this section we shall consider two very simple forms for W. One 

leads to a bootstrap equation for the elastic amplitude: the other 

to a model which is in agreement with present trends in the high 

energy data. 

Let us start by considering the bootstrap problem. Guided by 

the multiperiphera.1 model we write w as a product of two-body 

amplitudes as in Eq. (7). For simplicity we take the vertex 

function, g, to be a constant. Combining Eqs. (7), (21) and (23) 

we obtain a non-linear bootstrap equation for the elastic amplitude: 

l+ G& M(Y,B) = eWA 

2 
= exp 

22 J 
rd2bdylM(BY-y ;&B-b) I2 NN 

2 
l jM($Y+y;+B+b)I . NN 

I 

(39) 

In the center of mass one has y, = - yb = $= Y. At high energies 

an approximate solution to the bootstrap equation can be obtained 

by iteration. Using the input 

#_B) = 2im2eY0 (ROY-B), (40) Min (Y 

where B = I$ then A is given by 
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24 
A(Y,_B) = y ;d2bdye [Ro(hy-y) - j$g-?~j] 

-8[Ro($Y+y)-I&~+bI] . 

= g2m4 
~?TR~ ;d'bld2b2~2(B-bl-Ix2) [ROY-bl-b21 MN 

-6[RoY-bl-b21 

2 3/2 = C(R~~Y~-ES ) Q(RoY-B) , _ (41) 

10 
with c = g2m4/24Ro. Then, as s - 03, 

M out(Y,z) = Min(Y,B)[l-e-A] (42) 

As s - 03, e -A goes to zero faster than any power of 
ll 

l/s unless B M ROY. Thus, the bootstrap is complete for all values 

of B except those lying in a ring of radius ROY whose width is of 

order c -2'3 (%Y)-l The area of this ring is independent of energy in 

the asymptotic region. It is therefore a negligible fraction of 

2 the total interaction area which is r(RoY) . Let us imagine 

performing another iteration of Eq. (39) using the amplitude of 

Eq. (42) as input. Notice that A will again vanish for B > ROY. 

For B < ROY the fractional change in A will clearly be at most of 

order l/Y2 except in the troublesome "grey ring." Thus, for most 

applications, Eqs. (41) and (42) can be regarded as a satisfactory 

solution of the boostrap problem. 12 
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The amplitude of equation (42) corresponds to scattering from 

a black disc with a narrow grey edge. In the asymptotic region 

the rad,ius of the disc grows like &ns. This type of behavior for 

the elastic amplitude has been arrived at recently in several 

different models. 2-5 The results that can be read off directly 

from the form of the elastic amplitude are well known. For the 

total and elastic cross-sections one has 

atot = 20,& = 277 (%Y) 2 t (43) 

so the Froissart bound is saturated. Writing M in terms of the 

invariant momentum transfer, t, we have 

M(Y, t) = 2nis(RoY)2 - 
Jl (ROY n) 1 

+RoYa j 
# (44) 

which corresponds to a leading &-plane singularity of the form 

-3/2 
[(&-l)2-Ro2t] . Logarithmic growth of total cross-sections 

is by no means ruled out by present data. However, Eq. (44) 

indicated that the width of the diffraction peak of the elastic 

cross-section shrinks like (l/4ns)2. This is in even greater 

disagreement with the most recent p-p data than the simple Regge 

pole model. Of course one can avoid this difficulty by taking 

R. to be small. 13 

we now turn to the single particle inclusive distributions. 

The distribution function, p, is given by 

- 22 - 



p(y;y,q) f du = l 3 1 d2p 
d3s/Eq 2 (2lT) 

4s2 J' 
(277) 2 

. “G $- 1 (OlM~Y&q41~ - --Y&J,) I2 
n=O - 

n dyid2qi 
- rr! 3 - i=l 2(277) 

(45) 

Writing 
iq-b 

a(y,q) = i d2be N N a (ylE) I 

we have 

p(y;y,q) = 1 3 J' d2p "L 2, (01s a+(y,q) In) 
2 tar) (28)2 n=O n- 

n dyid2qi 
-bda(w$S+lO) J, 2t2n13 

1 = 

2 (277) 

f’ d2p (()I [a+(y,g) + +g W(Y,E;Yt(J)l 
3 J 

t-1 2 

-SS+Pbw) - & w(~,p;y,qJ io) 

1 = 
8s2(2n) 

3 ;.d2BIW(Y,_B:Yrc$ 12- 

(46) 

(47) 

This result, should be contrasted with the exclusive cross-section 

for the production of a single pion. 

d2 
Pex(Y:YGl) = 1 3 j' ---& I(0 

2 (37) 

1 = 
2(27r)3 

ISlY4) I2 

I P+(y4+ -& w(Y,~iY.~~lsjoii2 N * 
1 = "d2BIW(Y,_B;yrq) 12e-2A(y'z) - 

8~~(277)~ J 
(48) 
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Eqs. (47) and (48) of course hold for any choice of w. Adopting 

the bootstrap solution defined by Eqs. (41) and (42) we see that 

in the exclusive experiment virtually all of the pions are 
. 

produced peripherally, since the absorption factor, e -2A , vanishes 

faster than any power'of l/s except in the "grey ring." On the 

other hand the inclusive cross-section is free of the absorption 

factor because of the summation over the unobserved particles. 

Here the pions are produced uniformly from the entire area of the 

interaction disc, B * ROY. 

The inclusive cross-section takes on a particularly simple 

form if one integrates over the transverse momentum of the 

detected pion. Then 

da 1 
dy = lGns2 

~'d2Bd2bjW(Y,B;y,l$/2 
' 

2 
= ng2(mRo)4(+Y2-y2) . (49) 

Clearly the distribution is peaked at y=O; the width and height of 

the peak increase with energy like Y and Y4 respectively. This 

should be contrasted with the flat distribution in rapidity which 

arises if the Pomeron is a Simple Regge pole. The average 

multiplicity can be read off from Eq. (49). 

1 ;=----- 
kY 
J da dy = 5 c (ROY) 3 

Otot +y dy (50) 

The unintegrated inclusive cross-section is a bit more 

complicated. We have 
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24 
P(y:Y,q) = e [Ro2($ Y2-y2)] 

4 
(51) 

2 

-ld2p 
Jl[Ro(*Y-Y) I+Z,aI] Jl[Roi+Y+y) I&I] 

. 1 
$R,($Y-y) I@I hRo(hY+y) I+_si ] - 

For small q (of order q 2 $ /ROY), one can make 

that 

Jl(x)/+x r exp[-kx2] 02x23 

to write 
-1 24. 

[Ro2(+Y2-y2)14 

P w:Y,q) pm 2R02(+Y2+y2) 

[Ro2(+Y2-Y2)] 
2 

- exp 
2R02(+Y2+y2) 

Clearly p is very sharply peaked about q = 0. 

use of the fact 

(52) 

(53) 

Finally, we consider the exclusive cross-section for the 

production of n pions. 

'n = $ Sd2BI(OISIyl,~l,--*yn,~n)12 iil$ d2bi . 

= $.ld2Be -2A(Y,_B) [ 1 ~dyd2bjW(Y,_B:yJ$ I21 
n 

167rs2 

= -.$ Jd2Be -2A(Y'E) [2A(Y,_B)] 
n 

= s d2B a,(B). (54) ' 
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For fixed n, on(B) is peaked at a radius BM given by 

2 
BM 

2 n 2/3 
= (RoY)2 [l - (5;) ] - (55) 

so, for small n virtually all of the pions are produced 

peripherally. However, as n increases more and more pions are 

produced in the central region. For n > 5 n there is no 

maximum of O,(B) inside the interaction disc. The partial cross- 

sections are negligible for values of n this large. For ne-!j n we have 

R 2Y2 

un = $- 
0 22 23/2 dB2e-2~(R0 Y -B ) [2c(R 2Y2 B2)3'2 n . 3 - 0 1 

0. 

=-2- 2 - (2c) -93 
n! 3 r(n + 2/3). 

One is certainly not forced to adopt the bootstrap model. 

Interestingly enough, there is a very simple choice for w which 

leads to a model that is in substantial agreement with present 

trends in the high energy data. We write 
. 

w (Y,lJ :Yly = -T.le [9Ro-I&B-bI]F)[~Ro-I~,B+bl] . 

Then 

5J2 A(L$ = s Y f (B) e (Ro-B) , 

where 

f(B) = $[R 2 cos-'(B/R) 2* 
0 

- B(R~~-B ) ] . 

(56) 

(57) 

(58) 

(59) ’ 

Notice that for B ,< R 
0’ 

f(B) is monotonically decreasing, and that 
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lim f(B) = * R. 2 3/2 -~(R~~-B ) . As a result, emA goes to zero for 
B"R 
large Y everywhere inside the disc B S Ro, except for a ring of 

radius R and width of order Y -2/3 . 
0 

Since the area of this grey 

ring goes to zero for large Y, the two body amplitude becomes 

M (Y+) 3 2ise(%-B) , (60) 

which corresponds to scattering from a black disc with a constant 

radius. The total and elastic cross-sections are now given by 

Otot = 2Uea = 277R02 . (61) 

Clearly at very high energies the width of the diffraction peak for 

elastic scattering is independent of energy. 

The single particle inclusive distribution function p(Y;y,2) 

can be read off from Eq. (47). There are two interesting features 

to notice. First, p is independent of Y and y. As a result, there 
. 

is a central plateau in the rapidity plot, i.e. da is a constant 
dy 

except at the edges. The average multiplicity increases like 

Y= &n(s/m2). To be explicit 

n gRo 2 
=IY- . 

I 1 (62) 

Second, p is sharply peaked in the transverse momentum about q = 0. 

In the present case, the width of the peak is independent of energy. 

The exclusive cross-sections, un, are again given by Eq. (55). 
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For n << n, the pions are produced peripherally, i.e. at a radius 

F=: B Ro,anduniY -2/3 . For n M E the pions are produced in the 

central region of the disc 0 zz B < Ro. In this case un = c/Y, with 

c independent of n. It is the contribution from this range of n 

that gives rise to the constant total cross-section. Finally for 

n >> E, the on decreases exponentially with Y. 

It has recently been suggested that a study of relative 

transverse momentum variables can yield information on the trans- 

verse spatial structure of reactions and hence of the production 

mechanism. 14 In this model, the distribution in the relative 

transverse momentum between the nucleons is easily seen to be 

da 1 ip- (B-B') -A(Y,J$-A(Y,_B') 
-2 = G(Y,B,B') . NN 
dP (277) 

2 j'd2Bd2B'e - - - e 

(63) 

The p2 distribution is directly seen to explore absorption and its 

effect on the spatial structure of the total imput parameter B. 

For the exclusive reaction in which only one extra pion is produced, 

one finds that G = Gl, where 

Gl(Y,B,B') = 16;s2 Sd2bdyw(Y.B;y,~)W(Y,Bl;y,b) (64) 

and 

Gl(Y,B,B) = 2A(Y,B) - (65) 

For the inclusive reaction, in which all final states are detected 

except elastic scattering, one finds 

Gl G=e -1. (66) 

It is easy to see that the integral over p2 yields the inelastic 

cross-section. 
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V. A PARTON MODEL OF FRAG-MENTATION 

.One of the most serious shortcomings of the previous model 

is that it does not include any effects associated with the 

fragmentation of the incident nucleons'. They are treated like 

point particles and it is assumed that they always retain a large 

fraction of their incident momenta. This is common feature of 

the eikonal model and it is obviously a very undesirable one. 

One way to remedy this difficulty is to think of our nucleons 

as point-like partons. The physical nucleon, or any other 

hadron state, can then fragment into an arbitrary number of 

partons. Consider a general hadron state, A, with finite 

invariant mass m A' In general A contains more than one physical 

particle. We denote the probability amplitude for the state A 

to dissociate into N partons by $AN(xl,~l,.-.xN,~N), where x i 
is the rapidity of the nth parton, and pi is its perpendicular 

distance from the center of mass of the hadron system. We then 

write the amplitude for the reaction A+B + A'+B' in the form 

iA-B 
MAuBtyAB(Y,$ = j'd2Be -- c 

N 

N,M 
Ii dxid2r. 

M 

i=l 
l? dxjd2rl 

Ii j=l 7 , 

-2is[l - e 
-ANM(Y,_B;x~,~~;x;,~;) 

1 8 (67) 

with analogous expressions for amplitudes in which pions are 
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emitted or absorbed from chains. Here 

c A(xi-xl, B+r.-rl). 
i=l j=l -J - -1 -J 

. 

(68) 

A is again given by Eq. (23)‘ and B is the perpendicular distance 

between the centers of mass of the hadron systems. 

The S-matrix for this model will be unitary provided 1) the 

only interaction between left moving and right moving partons 

are exchanges of the type we have been discussing: and 2) the 

states $A N(x i,~i)~~lyi,bl,...yn,bn)@$BM(x;,r;) form a complete 

set. This result follows at once from the fact that one can 

still write the S-matrix as in Eq. (32) only x is now given 

*y ($--C)Y - (&-qY 

X = ;d2rd2r'd2b s dx 5 dy s dx' b+(x,z)b(x,_r) 

($-c) Y - ($-E)Y -QY 

.a(y,_b)b+(x',r')b(x',r')W(Y,B:x,r:x',r':y,b) 
N N (69) 

Here b+ and b are creation and annihilation operators for the 

partons. 

It is clear that if W has the form discussed in Section IV, 

the total cross-section and the elastic cross-section will both 

grow like Y2. On the other hand, the cross-section for diffrac- 

tive dissociation will at most be a constant in the asymptotic 

region since it comes only from the "grey.ring." It is difficult 
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to make any more quantitative statements without adopting a 

definite form for the parton wave functions. 
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VI. DISCUSSION . 

Clearly the most appealing features of our models are that 

they are solvable and lead to a unitary S-matrix. It appears 

to be possible to generalize the approach considerably to yield 

more sophisticated models which possess these properties. 

The fact that the model is solvable rests on two important 

features. First, the chains from which particles are produced are 

uncorrelated in impact parameter space. This is the property 

which makes it possible to perform the phase space integrals over 

the transverse momenta. Second, the nucleons or partons retain 

a large fraction of their incident momenta. As a result, the longi- 

tudinal momenta of the pions are not correlated by energy-momentum 

conservation, so we can do the phase space integrations over their 

rapidities. Both of these features come directly from the eikonal 

model. 

It is clearly unrealistic to treat the physical hadrons as 

point like particles which neither fragment nor lose an appreciable 

fraction of their incident momenta. The parton model introduced in 

Section v allows one to introduce fragmentation effects while re- 

taining exact unitarity. It should lead to an interesting class of 

models. 

The most straightforward generalization of the model is to allow 

more than one particle to be emitted or absorbed from each chain. 

The structure of the model becomes much more complicated, but there 

does not seem to be any essential difficulty in solving it. we 

shall discuss this subject and the parton model elsewhere. 
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1. This philosophy should be contrasted with that of the dual 

resonance model where one starts by imposing crossing 

2. 

3. 

4. 

5. 

6.. 

symmetry and hopes to introduce unitarity at a later stage. 

The present approach would seem more appropriate for a 

discussion of diffraction scattering. 
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In the argument leading to' Eqs. (9) and (12) we make use 

of the fact that at high energies e -A (Y,B_) is expected to 

be small for all values of B for which there is appreciable 

scattering. However, if Eqs. (9) and (12) are, taken as 

given, unitarity is satisfied whether e -A is small or not. 

9. In our unitarity calculations we have assumed that W is a 

real function. It is not difficult to check that the entire 

unitarity calculation goes through for complex W's provided 

we associate a factor of W with the creation of each pion and 

a factor of W* with the annihilation, or vice versa. However, 
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FIGURE CAPTIONS 

Figure 1: A general multi-chain production diagram. 

Figure 2: The single particle production diagram 

associated with the function W. 

Figure 3: 

(4 The production amplitude Mno. 

(b) The connected amplitude Mnm. 
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