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In dual resonance models there exist in general a class of gauge conditionsi 

which reflect invariance properties of the underlying dynamics. It is generally 

held that these conditions lead to the elimination, or decoupling, of ghost states 

from the physical amplitudes. Recently2 it has been pointed out that they can 

also be derived from a geometrical principle reminiscent of that in general 

relativity. The main point of this argument is that the dynamics of the dual 

resonance model, if represented in terms of a two-dimensional elastic medium 

(a Yrworld sheet”) embedded in space-time, should not depend on the internal 

parameterization of the medium. When scalar external fields act on the periphery 

of the boundary, this leads to the Virasoro condition that the external particles 

must be tachyons with 01’m2 = -1, where CY ’ is the slope of the trajectories. 

Though disappointing, it is not a surprising result since an incoming momentum 

qP will excite internal harmonic oscillator modes in the direction q 
I-1’ 

which are 

ghost modes for timelike q 

In the present note we would like to present a simple discussion of these 

points in terms of a classical picture. Some generalizations will also be 

attempted. 

We start from the free Lagrangian density3 

L = ; aaxPa”x 
P’ ao! = a/aCa! , 

[a =(iO,C1, =(7& (1) 

Often we will also use the notation a x’/a r = ic P, a xP/at = x fu. Consider 

first a Euclidean metric for both x ’ and to. The metric tensor of the internal 

S-space is given by 

g,p(t) = a,xpap xp 
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(2) 



whereas the tensor surface element dcr vu +‘lvd2< of the 2-space as embedded 

in the external 4-space is given by 

apv= a(2, Z)/a( Co, fl) 

We can then write Eq. (1) as 

L= l a= z- go! $ (goo.+ !Q 

(3) 

(4) 

Next we take another Lagrangian L1 which is a natural candidate for being 

independent of internal parameterization , namely the surface area element 

L’ = (YU 
VV 

q/2 = l/2 g 7 
(5) 

g = detg@Q = googll - (go1j2 

Let us now demand that the solutions to Eq. (1) make L numerically equal to 

L’ so that they will have a geometrical, parameter-independent meaning. This 

is an essential restriction because L itself is invariant only under conformal 

transformations which are a subgroup of general coordinate transformations. 

Equating Eqs. (4) and (5) we obtain 

from which follows 

; (PO0 - Q) = 801 = 0 

(6) 

or 

for all Co. 

T =0 
QP 
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(7) 



Here the T 
CrP 

are the energy-momentum tensor 

T 00 = -Tll = ; (PO0 - P,,), To1 = T10 = gol, 

aaT@ =o 

Equation (7) is the Virasoro gauge condition for the free system, and are 

compatible with the equation of motion 

a Q! aa!xp =0 

(8) 

(9) 

due to the continuity Eq. (8). 

Conversely, it can readily be seen that a solution to Eqs. (9) and (7) is a 

solution to the Euler equation for L’. Thus such a solution represents a 

minimal surface, 2 and the action integral becomes equal to the surface area. 

We will next consider a finite surface S, at whose boundary acts a distri- 

bution of external forces k 
P’ 

We can choose the coordinates <” so that the 

boundary corresponds to c = 0. Equation (7) then should be supplemented 

with the boundary condition 

xp’ = kP (,$=O) (10) 

This driving force may be derived from an interaction Lagrangrian 

L int = -V(x (0, S(5), 

(11) 

kP = - 
av/axC1 

Equation (11) will have a coordinate-independent meaning if we have in addition 

goo 
‘c1. =x x =l, 

lil (4= 0) (12) 

since then we can multiply Lint by K. without changing its value. 
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On the other hand, Eq. (7) must remain valid everywhere in the interior 

of S. As we approach the boundary, consistency of Eqs. (7) and (10) then 

demands 

k2 =gll =goo =l ; 

l2-5 I-L =gol =o (!f= 0) (13) 

or 

av(x)/aT =o 

along the boundary. Thus the external forces must be “quantized” and per- 

pendicular to the boundary, which must lie on an equipotential surface. The 

meaning of these conditions becomes clear if we compare the system to a film 

of soap water. The action integral corresponds to the potential energy of the 

film, which has unit strength per unit area. The surface tension is therefore 

unity per unit length. In order to maintain equilibrium, the external forces 

applied to the boundary must obviously match the surface tension. This is 

the content of Eq. (13). 

In going over to a Hamiltonian formalism and eventually to quantization it 

would be appropriate to change the internal metric by the formal substitution 

6 -+i6. At the same time we recover the external Minkowskian metric (+---). 

Equation (7) now reads4 

T ap = 0; Too=-Tll =$ (go0 + gll) = $ ($ kC” f x; x’ q, 

. 
To1 = go1 = xc1 x’ I-L 

whereas Eq. (13) is replaced by 

kkhg = 
!J 11 -go0 =-1 

(14) 



Eq. (12) being unchanged. The last point reflects the physical assumption that 

7 is the proper time for the boundary world line which is timelike. Equation 

(15)means that the forces must be orthogonal to the four-velocity ax P/aT , 

hence kP is spacelike. 

Equation (15) is not identical with the Virasoro condition -q2 = l/a! ‘, which 

equals 2ti in our convention. For k is the force, or momentum per unit length, 

continuously distributed along the boundary. On the other hand, q is a discrete 

quantum mechanical impulse which is related to k only on the average. As a matter 

of fact, conditions like (7) and (12) become meaningless in quantum theory 

because of the infinite zero-point fluctuations of the operators. What has been 

done’to circumvent the difficulty is essentially to expand x P and T 
&P 

into 

Fourier components, and retain as subsidiary conditions only the positive fre- 

quency parts To0 (+) (n), n =l, 2, ... , of the energy momentum tensor which 

lower the internal excitation energy: 5 

(n) - Too(O)1 @ = 0, ToO(0)$ = 0 (16) 

where Too(O) is nothing but the total Hamiltonian with an infinite zero-point 

energy subtracted out. (The reason for taking the difference of T’s in Eq. (16) 

is to eliminate the interaction term from the constraint equations. ) The 

correspondence between classical and quantum mechanical constraints is 

therefore obscured, especially as it concerns Eq. (15). Nevertheless one can 

make the following observation. If a hadron in its ground state is viewed as a 

string of length Q forming a boundary at T = lis m , its total momentum pP will 

be related to the classical force kP across the boundary by 

or IPI = P lkt = L (17) 
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On the other hand the uncertainty principle suggests /pi P Ch, C = O(1) so 

that 

lPl2 - C2h (18) 

which agrees with the Virasoro condition if C = 1. 

The above considerations make us realize that it would be very difficult 

to modify the dual resonance model so as to turn the tadhyon into a bona fide 

particle. At the same time, however, it is not at all clear why the general 

covariance requirements should result in the elimination of ghosts. 

Finally we will discuss some generalizations. When the external inter- 

action is electromagnetic rather than scalar, the general covariance is auto- 

matic as is obvious from 6 

L int = e Ap( x(t)> k’” 6(t) (19) 

Therefore we do not need the condition (12). The force kp in Eq. (10) is now the 

Lorentz force 

kp =&i’pv ; 
V 

which in conjunction with T 
0 

= 0 leads to 

(20) 

(21) 

This implies a constraint on the strength of the electromagnetic field. 
. 

Suppose X’ is timelike. Then Eq. (21) means 

(ego)’ = 1 (22) 

where s 
. 

I-J 
0 is the electric field in the rest frame of x . Since 3: - + x 

and zo*go = ~1 are Lorentz invariant, one cannot satisfy Eq. (22) for any choice 
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‘P of x unless 

e2A 5 1, ly) I IZol(Zi - *)li2 =ea2(I 2 l/2 -e A) (23) 

Thus e2 h = 1 is a natural upper limit. In the practically interesting case of 

a!’ = 1Gev-2, this corresponds to a potential gradient of 1 GeV2/2fic = 2.4 

GeV/fermi. It is the same value that obtains for kP from Eq. (15). 
. 

We do not find an obvious constraint if x P is lightlike But the properties 

of a point charge moving with light velocity are hot so obvious either. 

The gauge conditions (16) remain unchanged in the presence of electro- 
. 

magnetic interactions except that the velocity x P and the canonical momentum 

n’ differ by an interaction term. Therefore all constraint equations will 

explicitly depend on the interaction, although their commutator algebra may 

not be altered. 

The above model is not really interesting because it does not lead to a 

correct dual theory for arbitrary photon mass. For a more satisfactory 

theory one must generalize the basic picture. 8 Nevertheless, let us explore 

the consequences of the curious condition (23). Assume that a hadron contains 

two charges e located at the two ends of the elastic “string” of length r. 

Equation (23) for each charge then reduces to 

e2/r2 5 1 GeV2/27i?ic 

or (24) 

e2/r F (e2/27rric) 1’2 Gev 

which gives a minimum size 
-15 r o =4.2 X10 cm. If there are magnetic charges 

g we can apply the same argument by interchanging E and B; r. should be 
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larger by a factor g/e = 137/2, or r. =2.9X10 -13 cm, approximately the 

electron classical radius .’ [Equation (22) does not distinguish between the 

different relative sings of the charges, but we have taken the same s ign 

(repulsion) for intuitive reasons. The string will be stretched by the electro- 

magnetic forces to a length Zr,.] 

One of us (Y.N.) would like to thank Professor S. Drell for the hospitality 

extended to him at the Stanford Linear Accelerator Center where this work 

was completed. 
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(go0 + 811 + 2g01NPoo + 811 - 2P01) = 0 

which means 

ax ,P ax P 
$ *=o gr- $ g-=0, 

+ + 

% = (7 f o/ fi 
Equation (14) amounts to demanding both of the above relations simul- 

taneously. This is dictated by the boundary condition we consider here. 

T o1 does not lead to new conditions. An alternative procedure (Ref. 2) 

is to take for normal modes periodic running waves going only in one 

direction (except for the center-of-mass mode). In this case the sign 

of frequency and that of wave number are uniquely related. Physically 

it corresponds to a rubber band picture rather than a rubber string. 

For an approximately dual theory see Ref. 3. 

Clavelli and Ramond [IL. Clavelli and P. Ramond, Phys. Rev. E, 3098 

(1971).-J show the consistency of the Virasoro conditions when the external 

particles are the zero mass vector states on the tachyon trajectory. This 
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case is different from the present one by the absence of an A 2 term in 

the Hamiltonian, or the presence of the same in the Lagrangian in com- 

parison with Eq. (19). The extra term, however, will be both coordinate 

independent and effectively zero if the boundary line is always lightlike. 

But then we get from Eqs. (10) and (14) k2 = gll = -go0 = 0 in agreement 

with these authors. 

The Drummond-Rebbi model (I. T. Drummond, CERN Preprint 

TH 1301(1971) revised version, C. Rebbi, Nuovo Cimento Letters 

2, 967 (1971).) may be adapted to the vector currents. But this 

model still has bad features. [Y. Nambu and J. Willemsen, to be 

published. ] 

If we take this point seriously, Q’ and the electron mass me are related 

by a1(mec2)’ = (2/7r) (e2/E c)3. l/&I is then predicted to be 1.027 GeV. 
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