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Abstract 

To exemplify the special role played by the light-cone (y2=O) 

in highly inelastic electroproduction, we study the contribution to 

electroproduction of singularities on other hyperboloids, y2 = a2 > 0. 

A light-cone singularity is shown to dominate by at least the power 

V 
3/4 over an equivalent singularity on the hyperboloid y2 =a2 in the 

Bjorken limit. Moreover, the leading contribution from a singu- 

larity at y2 = a2 is shown not to scale as a power of v multiplying 

a function of x = Q2/2Mv , but instead to oscillate with the (asymp- 

totically infinite) frequency &?Mv (1 - x) in the Bjorken limit. 
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Light-cone dominance and the analysis of light-cone singularities have pro- 

vided a useful framework for the study of inelastic electroproduction in the 

Bjorken limit (Q2, v - CC, x = Q2/2Mv fixed). 1 Derivations of light-cone 

dominance usually include the assumption that the matrix element whose Fourier 

transform yields the observed inelastic structure function, W TV , has no singu- 

larities except on the light-cone. Our object is to study this assumption and, in 

particular, whether singularities elsewhere in coordinate space produce addi- 

tional (perhaps scaling) contributions to the structure functions in the Bjorken 

limit. 2 

To explore the effects of singularities not on the light-cone we compare con- 

tributions to the inelastic structure function from a given singularity on the light- 

cone (y2 = 0) and from an identical singularity on a mass-like hyperboloid, y2 = a2. 

If the singularity is on the light-cone, it is well known that the resulting structure 

function scales in the Bjorken limit with a power of v determined by the strength 

of the singularity. If the same singularity is on the hyperboloid y2 2 = a , we find 

that it contributes a term to the structure function which vanishes at least as fast 

as v3’4 relative to the light-cone singularity. In addit ion, the asymptotically 

leading term does not reduce in the Bjorken limit to a power of v multiplying a 

function of x, but rather oscillates with a frequency of the order of da2Mv . While 

this result does not prove that scaling could not arise from behavior that has 

nothing to do with the light-cone, it illustrates clearly how the light-cone is 

singled out relative to other hyperboloids in the Bjorken limit. 

For simplicity, we consider scalar currents. Extension to the realistic 

case (for inelastic electroproduction) of vector currents is straightforward and 

will be discussed at the end of the paper. The structure function is the imaginary 

part of the forward scattering amplitude for a scalar current of spacelike mass 
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q2 5 -Q2 c 0, and laboratory energy v , off of a target nucleon: 

V(Q2, v) = I- 
I 

d4yeiq’Y 

We define the current correlation function: 

C (y2, Y l W = <P$J(Y), JV’$P> 

and note that C vanishes for y2 c 0 and is odd in y. P. 

Suppose C (y2, y s p) had a 6-function light-cone singularity of the form: 

where F (y . P) is even in ye P. As is well known, ’ such a singularity contrib- 

utes to V (Q2, v ) a leading term of the following form in the Bjorken limit: 

47r2 LimbjV(Q2, v) = 2 f(x) (3) 

where f(x) is the Fourier transform of F (y . P). The requirement that V vanish 

below threshold (2 Mv < Q2) demands that f(x) vanish for 1x1 > 1. 

Let us now compare with Eq. (3) the contribution to V (Q2, v ) from a 6- 

function singularity on the hyperboloid y2 = a2. We choose to make the com- 

parison for a s-function singularity because it is the light-cone singularity which 

arises if the currents are built up of free fields, as seems to be the case in electro- 

production. 3 
Extension to both weaker and stronger singularities is straightforward 

and is discussed at the end of the paper. Suppose, then, that C (y2, y . P) has the 

following form: 
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where causality restricts a2 to be positive (or zero as already discussed). Writing 

F (y . P) in terms of its Fourier transform: 

F(y. P) = drueioY*Pf(ol) 

we find for V(Q2, v ): 

va (Q2, v ) = (27Q3 
i 

da!f(a)A(q f ozp, a2) 

-03 

where 

A(R,a2) E -!- 
(W3 ” 

d4keikeR q(k2 - a2) E (kg) 

is the usual causal propagator function. A(R, a2) may also be written as4: 

1 A(R,a2) = z a2 
E (RO) - 2 0 (R2k (RO) 

a R2 J- I 

(4) 

If a = 0, the second term in Eq. (5) vanishes and the integral of Eq. (4) may be 

performed to obtain the result given in Eq. (3). 

We have yet to enforce the vanishing of va (Q2, v ) below threshold. Using 

A(R,a2) = 0 for R2 < 0, it is easily seen that va vanishes at- and below threshold 

in the Bjorken limit only if f(a) vanishes for lo.!1 2 1. Thus the result, usually 

derived when a2 = 0, is actually independent of a2. We shall use the experimental 

observation that V(Q2, v ) vanishes g threshold and therefore require that f (o) 

vanish for IczI 2 1. In addition, we assume that f(a) and its derivatives are 

continuous for - 1 I o! 2 1 except perhaps at 01 = 0. 5 We shall point out what 
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pathologies may arise if f(o) or one of its derivatives is singular in the interval 

O<o!<l. 

To proceed, we divide the integral of Eq. (4) into two pieces corresponding 

to the singular and regular parts of Eq. (5). First consider the contribution of 

the singular part: 

vs(Q2 v ) = (2 a)2 a ’ d 01 f(a) 8t,R2) E (Ro) 

The roots of the s-function occur at R2 G (q+a P)~ = 0: 

aA = l/M (-v f *jv2+Q2) 

The root a! approaches -2v /M in the Bjorken limit and may be ignored since 

it falls outside the range of the a! integral. The root o+ approaches x in the 

Bjorken limit and is between zero and one for physical electroproduction. Some 

elementary algebra yields : 

“VI (Q2,v) = 
47r2 

2M2A 
f@+) 

where 21 z Q+ - Q! . In the Bjorken limit, this becomes exactly the a2-independent 

scaling result obtained in Eq. (3). 

Turning to the regular part: 

v;(Q2, v ) = - (27r)2 % da! 0 (R2) E (Ro) 
J a R2 J- 
-1 

The 8 -function restricts the integral to the regions a! 2 o+ and (I! I 01 . 
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Since 01- < - 1, we obtain: 

l-Q!+ 

TR(Q2 V)=-2r2a2 
I 

dof (&a+) 
Jl(aMJc)) 

a , aM $3 (a!+2A) 
0 

(7) 

By means of the following identity between Bessel functions: 

J1 (P) 1 - =- 
P a2M2(a+h) 

& Jo(P) 

where ,8 = aM dm) , Eq. (7) may be partially integrated: 

l-a, l-o, \ 

-R 2 va(Q 
2 

,v)=~T a 
2 f(a +a+) J,(P) 

a2M2(o+h) -I 
d Q! J,(P) & (8) 

0 0 

Since f(1) = 0, the surface term vanishes at the upper limit. At the lower limit, 

we obtain: 

2 a2f (a+) 

M2h 

43 
This term exactly cancels the scaling term, Va , of Eq. (6). 

It remains to be shown that the integral of Eq. (8) is lower order in the 

Bjorken limit. To continue, we repeatedly partially integrate Eq. (8) by means 

of another relation among Bessel functions: 

k 
p J,(P) = 2 2 

1 d pk+’ Jk+l (8 
a M (a+A) da! 
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and obtain 

2 n 
va(Q2,v) = 22s c M (a+h) k=l 

- 27r2a2(-l)n 2 21 f(Q + a+) (9) 
a M (a!+h) 

The surface terms at a! = 0 always vanish for k 2 1 because pkJJk(p) = 0 at a! = 0. 

Note that we do not assume that f’( 1) = 0 and therefore k = 1 already gives a non-van- 

ishing contribution in Eq. (9). We emphasize that the possibility of performing 

all these partial integrations rests heavily on the assumption that f (01) and its 

derivatives are smooth on the interval 01+ I 01 I 1. (It is now evident why 

singularities are allowed at 01 = 0, since that point never falls within the range 

of integration. ) 

So far, Eq. (9) is exact. We now turn to the Bjorken limit and bound the 

contributions of each term. Note that a2 is to be held fixed as v and Q2 are 

taken to infinity. Otherwise (as we shall see below) quite a different result is 

obtained. As v -+ M A approaches v /M so that the largest term for any k is 

that in which all the derivatives act on the function f, rather than on 
1 

a2M2(ol + h) 
. 

For any k we obtain in the Bjorken limit6: 

- vk =I gives the leading term asymptotically and vanishes like l/v 3/4 relative 
a 

to the contribution of an equivalent singularity on the light-cone (cf Eq. (3)). Finally, 
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note that the integral remaining after n - IMax f@)l 1 partial integration is of order n/z 

where Max f(n) . tn) 
V 

is the bound on f (a) on the interval o!+ 5 o! I 1. 

In bounding the terms in Eq. (9), we have ignored the oscillations of the Bessel 

function Jk ( aM d(l -a+)(1 -a!-) . 1 In the Bjorken limit, the argument reduces to 

a Mv (1 -x) . Therefore, the terms in Eq. (9) not only vanish rapidly as Q2, v+ CO 

but also oscillate with infinite frequency. This is reminiscent of the one dimensional 

case: If F(x) has a a-function singularity at x = 0, then its Fourier transform is 

F(0). If the a-function is at x = a, the Fourier transform is F(a)ema which oscillates 

with infinite frequency as o -+ CO. 

To summarize : va(Q2, II ) vanishes faster than V(Q2, v ) by at least a factor of 
1 - in the Bjorken limit. 
3/4 

If f’(a) and some number of its derivatives vanish at 
V 
01 = 1 (as is, in fact, the case in electroproduction), then v,(Q2, v ) vanishes even 

faster as v ,Q2 --t m. In addition, va(Q2, I, ) oscillates with infinite frequency in the 

Bjorken limit. 

We now return to discuss some problems raised in this analysis and to state 

some generalizations. First we ask what happens to Eq. (9) if we take the Bjorken 

limit but keep the product a2Mv fixed and less than 1. Since /3 is small in this limit, 

J,(p) may be replaced by (p/Z)k+ and the leading term proportional to each deriv- . 

ative of f(a) may be summed. The result is: 

2 m 
Lim va(Q2,v) = & c (x - qk Q$ + lower order terms 

Mz.J,Q~ --,a k=l 

a2Mv fixed c 1 
27r2 = TV f(x) + lower order terms 

which is exactly the Bjorken limit of Eq. (3). As expected, if the singularity 

is within l/Mv of the light-cone, it is indistinguishable from a light-cone 

singularity . 



-9- 

Second, we ask what happens if f(o) or its derivatives become singular some- 

where on the interval 01+ 5 01 5 1. Clearly the partial integrations leading to 

Eq. (9) are not allowed and va might not vanish as rapidly as we have asserted. A 

singularity in f(o) or some derivative at 01 = a0 would seem to contribute a term 

to va(Q2,v) proportional to Jk aM i 4 (o. -a+)(oO - a!-) . While it might be large 1 

in the scaling limit, such a highly oscillatory term offers little hope of reproducing 

the experimentally observed smooth scaling behavior of V(Q2, v ). Such behavior is 

consistent with our conclusion in any event: If equivalent singularities are located 

on the light-cone and at y2 =a2, the light-cone dominates; it is necessary to make 

the singularity at y2 = a2 stronger (s. , by letting f(a) be singular) in order to 

make its contribution comparable in the Bjorken limit. 

Third, we state the extensions of our results to the case of singularities other 

than s-functions. Singularities of the form: 

C(y2,y- P).= i6(@(y2-a2)e (y. P)F(y. P) 

or 

E(y2,y.P)=iB(y2-a2)e(y.P)F(y.P) 

contribute to va(Q3, 1, ) terms which vanish at least as fast as l/u 3/4 relative to 

the same singularity on the light -cone. 7 

Since the structure functions for electroproduction (WI (Q2, v ) and W2 (Q2, v )) 

are the Fourier transforms of s-function and 8 -function singularities on the 

light -cone, 3 these generalizations include the physically interesting cases. Lastly 

we note that weaker singularities ((s. , (y2 - a2) 0 (y2 - a2) E (y . P) F (y . P)) can 

be shown to be negligible in the Bjorken limit by more elementary means. 8 



-lO- 

To conclude: It would be of mathematical, and perhaps also of physical, 

interest to find forms for C2(y2, y . P) which generate structure functions which 

scale in the Bjorken limit and have nothing to do with the light-cone. We have 

shown that the most obvious candidates, singularities on hyperboloids, do not 

provide such examples, but rather that the light cone, y2 = 0, is a favored location 

relative to other hyperboloids, y2 = a2, in the Bjorken limit. 
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