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ABSTRACT 

The analysis of light cone singularities is used to connect the y.P, or 

range, dependence of the current correlation function with the Q2 dependence 

of the inelastic electroproduction structure functions. We study for what 

regions of the Q2, v plane and for what y-P dependence the leading light-cone 

singularity dominates contributions from less singular terms with the same 

y-P dependence. When the leading singularity can be shown to dominate for a 

particular region of Q2 and v , we study whether this implies scaling for vW2 

in that kinematic region. It is shown that a division of the current-correlation 

function into short and long range contributions is fundamentally ambiguous 

and not related to scaling at low Q2. Short range terms which are shown to be 

light-cone dominated for all Q2 so long as v m 03, are found but are shown not 

to scale at low Q2 and to be indistinguishable from corrections to long range 

terms which produce the leading Regge behavior. We show that leading Regge 

terms may receive contributions far away from the light cone for small virtual 

photon mass, but that light-cone dominance and scaling are recovered when 

the photon mass is taken very large. 
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1. INTRODUCTION 

The current correlation function which describes inelastic electroproduc- 

tion depends both on the invariant coordinate space separation, y2, between 

the absorption and emission of the virtual photon and on the invariant y l P 

which measures the time delay between absorption and emission in the rest 

frame of the target nucleon. The latter has come to be known as the range 

dependence’ of the interaction. 

The y2 dependence of the current correlation function has been the sub- 

ject of much recent work. 2 In particular, it was observed that in the deep 

inelastic limit the region y2 z 0 yields the dominant contribution to the 

structure functions W1(Q2, V) and vW2(Q2 , v ). This allows a simple para- 

meterization of the experimentally observed scaling in terms of the strength 

of the leading light-cone singularity and also simplifies the application of 

models to highly inelastic electroproduction. 

Our objet t is to study the range, or y* P, dependence of the current cor- 

relation function and, in particular, to explore whether the observed onset of 

scaling at low virtual photon mass (Q2) can be related to the range dependence 

of the current correlation function. The y 0 P dependence of the leading light- 

cone singularity has been extracted from the scaling data by Pestieau, Roy 

and Terazawa. 3 More recently suri and Yennie4 have studied the role of 

range when Q2 is not assumed to be infinite. The difference between our 

results and theirs are discussed at the end of Section V. 

We use the light-cone singularity algebra, especially as developed by 

Frishman, 5 to connect the y. P dependence of the current correlation function 

with the Q2 dependence of the inelastic structure functions. Since the light- 

cone need not dominate at low Q2 we apply Frishman’s techniques not only to 
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the leading y2 singularity but to lower order singularities as well. In order to 

apply light-cone techniques we must assume that the current correlation func- 

tion factors into separate functions of y2 and yo P (aside from the derivative 

operators required by Lorentz and gauge invariance). This is not in conflict 

with any general principle and is consistent with the assumptions made by 

suri and Yennie. 4 In a later section we show that many of our results do not 

depend critically on this assumption. 

Assuming factorization we proceed as follows. For a given y* P dependence 

of the current correlation function we calculate the contribution to vW2(Q2, v) 

from successively lower order light-cone singularities in y2. As is well 

known2 a leading singularity proportional to 8 (y2) produces the observed scal- 

ing behavior in the Bjorken limit. We study in what regions of the Q2, v plane 

and for what y* P dependence the leading singularity dominates contributions 
I 

from less singular terms. When the leading singularity can be shown to domi- 

nate for a particular region of Q2 and v , we study whether this in fact implies 

scaling for vW2 in that kinematic region. 

Our primary conclusion is that a division of the current correlation func- 

tion into long and short range contributions is fundamentally ambiguous and not 

related to scaling at low Q2 and for these reasons not very useful in confronting 

the data. We find that it is possible for a piece of the current correlation 

function to decrease so rapidly in ye P that its contribution to electroproduction 
2 is light-cone dominated for all Q so long as v e 00. These are essentially the 

short range terms found by suri and Yennie. 4 

Only terms in vW2 which decrease faster than l/v2 in the Regge region 

fall into this category. In contrast to suri and Yennie we find that such short 

range terms do not scale for small Q2; rather their character changes 
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completely in passing from the region of high energy photoproduction to the 

Bjorken region. Moreover, these short range terms cannot be distinguished, 

even in principle, from corrections to the long range terms which produce the 

leading Regge behavior. We show that leading Regge pieces in v W2 may 

receive contributions far away from the light-cone in the Regge limit, i. e. , 

for finite photon mass, but that light-cone dominance (and scaling) is recovered 

when the photon’s mass is taken very large. Finally, we find that there is 

some reason to think that a term in v W2 proportional to l/v in the Regge limit 

is light-cone dominated for all Q2. This would explain the observation of suri 

and Yennie that such a term can be extracted from the data with the same co- 

efficient in both the Bjorken and photoproduction limits. 

In Section II we review the necessary kinematics. In Sections III and IV 

we parameterize the y2 and y. P dependence of v W2, and in Section V combine 

the techniques developed in III and IV to obtain our results and discuss the rela- 

tion of our conclusions to the work of suri and Yennie. A reader who wishes 

to avoid the mathematics may skip Sections III and IV provided he is willing to 

accept Eq. III. 3 and Table I which summarize those sections. Finally, in 

Section VI we discuss the generality of our results in light of the original ansatz 

of factorization. 
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II. KINEMATICS 

The usual structure functions for inelastic electroproduction are defined 

by the Fourier transform of the current correlation function. 6 

W 
47r2Ep 

EP 
PV M J d4y eiq’ y < PtJp(y), Jv W]b 

(II. 1) 

= -g& - ~w+c?-, V)-+- -$cp 7 $%$(Pv- $%v)“z(92, V) 
A similar decomposition may be made in coordinate space: 

4r2E,< PIIJp(y)> Jv(0)liP> = (gpvO -a&,) Cl(y2, ye P) 

+ tpppvo - P*a(Ppav + Pvap)+g~v(P*a)2)~2tY29 Y’P) 

The coordinate and momentum space structure functions are related by: 

ltW2(Q2, v ) = Q2Mv + J d4y elq’ Y C2(Y2 > Y’ P) (II* 2) 

MW,(Q2, v) = - Q2 
/ 

d4y eiq- Y C1tY2Y Y-P) 

s 

tn. 3) 
-I- M2v2 d4y ,@* Y C2(Y2 3 Y’ P) 

The functions Ci(y2, y. P) are odd in y. P and must vanish for y2< 0. Bjorken 

scaling obtains if the functions Ci(y2, y* P) are smooth away from the light- 

cone and behave like 

Cl(Y2> Y* w a S(Y2) EtY’ P) G(Y* P) 

C2(.Y2, Y*P) a 0 (y2) E Or* P) WY. P) 



-6- 

to leading order near the light-cone.’ Notice that G and F are even under 

y. P <--) - y* P. With WpV defined as above the combinations MW1 and vW2 

scale : 

Q2 
Lim nml(QZ, v) = F1(X) 
) v+a 

x=Q2/2Mv 

Q2 
Lim vW2(Q2 , v) = F2W 
,v-u, 
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III. CONTRIBUTION TO v W2(Q2, v ) FROM VARIOUS 

LIGHT-CONE SINGULARITIES 

We calculate the contribution to v W2(Q2, v ) from a term in C2 qy2 y* P) , 

of the form: 

,@)(y2 y. p) = : 
2 ’ ,I tP2Y2Jn fJ tY2) E or,) FtY- PI (III. 1) 

using generalized function theory. The factor p 2n (n) is necessary to keep C2 

dimensionless . More singular terms are ruled out by the observed scaling of 

v W2 in the Bjorken limit. Only integer values of n are considered. Extension 

to fractional values of n is straightforward but unnecessary for our analysis 

(0) since we wish only to determine when C2 dominates lower order terms and 

not exhaustively parameterize possible behavior. 

Our analysis is valid for all values of Q2 and v. For large n and for 

F(y. P) which do not fall sufficiently fast as y. P-CD some of the integrals 

which follow may be formally divergent. The finite results we obtain must be 

interpreted as the result of multiplying Eq. (III. 1) by a convergence factor such 
2 

as e- eY and passing to the E + 0 limit. 

We assume that the Fourier transform of F(ye P) exists : 7 

J 
co 

F(y* P) = dcr eioy* ’ f(o) 
-CD 

The contribution of Cp) to v W2(Q2 , v ) is given by (see Eq. II. 2): 

(III. 2) 

vWr)(Q2, v) = Qzli Lador f(a!) j d4y ei(q’(YP)‘Y(~2y2)n0(y2)e(yo) 
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The spatial integral may be performed following Frishman:5 

ik.y 2n (y ) 6(y2)c(yO) = n2i2(2n+4) l?(n+l) e(kO) 
n+l 

W2) 

where k2 = a! 21$ + 2aMv - Q2 and E (kg) = E (V + aM). (n) Using this, ti W2 

may be rewritten: 

vWr)(Q2, v) = + Q2Mv (-2,~~)~ r(n+ 1) 

a 

(III. 3) 

where o!* are the roots of k2 = 0: 

(III. 4) 

in the limit v --\“a~, 01, reduce to x and 
- . 

- g respectively: 

a+ =x (l- E)+ o(y) 

,-=+(,+$I$+ o(s) 

The factor e(ko) dictates that Eq. (III. 3) be evaluated with a minus sign at o!- 

as indicated by a+ . In the Bjorken limit Eq. (III. 3) reduces to the familiar 
a! 

2v 
light-cone result5 except for the root at ok- z - F 0 Usually one argues from 

the spectral restrictions on Eq. (II. 1) (Wpv(Q2, v) = 0 for 2Mv < Q2) that 

f(a) = 0 unless -15~51, makingf(ac-)=O. Simple models for F(y. P) may not 

satisfy this restriction. The various choices of f(o) which enter our analysis are 

not identically zero for lo!1 > 1 but always vanish fast enough as lo!\ -+ ~0 so 
8 

that the root at a! may be ignored. 
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Equation (ILL 3) allows us to study the contribution of a specific light-cone 

singularity with a specific ye P dependence in various regions of the Q2, v plane. 

In order to apply it we must study the behavior of f(a!) for various choices of 
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IV. THE FORM OF f(o) 

Since we are particulatly interested in the Regge region (v--t m, x - 0) 

where CY+ and CY- tend to zero and negative infinity respectively we study f(a!) 

in these limits. We assume that F(y* P) has the following properties : 

I. F(y* P) has no singularities. 

II. F(y* P) vanishes as a power of 1 
Y’ p 

or faster as y. P-co. 

Assumption I is standard in light-cone analyses and is borne out in simple 

models. 9 Assumption II is made for calculational convenience and because 

all of the observed properties of v W2 in the Regge and Bjorken limits are 

accounted for with such forms. Modifications which arise when more compli- 

cated y. P dependence is allowed are discussed in Section VI. 

f(o) is defined by the inverse of Eq. (III. 2): 

/ 

w 

ficY) = $ d(y* P)cos(ory. P) F(y+ P) 
0 

w* 1) 

and is an even function of o. We categorize the various terms in F(y. P) 

according to their behavior as ye P +a. First consider a term in F(y* P), 

denoted Fa)(y. P), which falls faster than any power. f”(a) may be expanded 

in a power series in o2 for o = 0: 
a, 

f”(a) = 
c ‘2ko 

2k 

k=O 
P* 2) 

where 

C2k = 1 (-l)k -- 
T (2k)! s 

mX2k 
WW 

0 

For large a!, we obtain an expansion of f”(a) by partial integration of 

Eq. (IV. 1): m 
Lim f’O(o) = 

c 
(-l,k a-2k $7 w(2k -‘)(q 

cV-+~ k=l 
w* 3) 
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If Fm(yo P) is regular at ye P = 0 all of its odd derivatives, F m(i)(O), must 

vanish and f(a!) goes to zero faster than any power as a! - 0~. If not, then 

f “l(o) vanishes at least as fast as 1. 
cY2 

Now consider F(y* P) which vanishes as 
(Y* pi” 

as y* P-a. As we shall 

see in the next section only b L 1 need be considered. This behavior cannot be 

extended back to y. P = 0 without contradicting Assumption I above. This 

problem has complicated the manipulation of such terms in the past. 4,10 An 

advantage of our approach is the relatively straight forward way such terms can 

be accommodated. We define Fb(y. P) with a damping function so that the 

singularity at ye P = 0 is removed: 

Fb(y. P) = Nb 
Db@ > Y’ p, 

(Y’ p,b 
PJ. 4) 

where Nb is an overall normalization and Db( 6, ya P) must satisfy: 

r 

Lim 
y* P-O 

Db( 6, y* P) a (y. Pi” 

Lim 
y’ P-al 

DIJ 6, ye P) = 1 f O(emY’ “’ ) 

The parameter 6 measures the values of y* P over which the damping is 

effective. Note that any function which vanishes as a power of ye P at infinity 

may be written as a series of terms like Eq. (IV.4) plus a term which vanishes 

faster than any power at infinity. 



- 12 - 

We choose a particular form for Db( 6, ye P) which allows us to perform 

the Fourier transform of Eq. (IV. 1): 

Y* p 
D,(8, Y-p) = b 

/ 
d( [b--l e--t/a 

0 

‘bab y(b, y-P/6) 

where r(a ,x) is the incomplete gamma function. Y (b, ye P/6 ) satisfies 

Eq.‘s (IV. 5) (for example D,(a, y. P) = 2S2(l - e -Y* P/6 _ s ,-Y’ p/s )) 
6 

Performing the integral of Eq. (IV. 1): 

f$!) = 
N,bsb l/6 xbdx 

7r s 
2 

0 x2+0! 
w. 6) 

= Nbbsb I@, 6) 

The integral Ib( 6, a) may be expanded about a! = 0 (for the moment we exclude 

b =1,3,5... since for these cases Ib may be evaluated using elementary 

techniques ) yielding : 

fb(o) = Nbbsb 

I 

c (-1)k o!2k $,m2k(o, 6) + Cb bib-’ 
k=O 

Ij(O, 6) may be read off Eq. (IV. 6): 

This expanison is derived in the Appendix where it is shown that: 

b C = (-1) -$ B l+b-2m 

( 
l+b-2m 2 ,I- 2 * 

B(x, y) is the Riemann beta function and m is the smallest integer such that 

b - 2mcl. 
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The essential point is that fb( ) . 2 Q! is a power series in a! plus a term pro- 

portional to Icx!~-‘. For large (1! the behavior of fb(cr) may be read off Eq. (IV. 6): 

03 
Lim fb(o) = 

c 
-2k 

b ‘D2ka! -00 k=l 

where 

Ak = 
Nbb(-l)k-l 

n(2k - 1 + b)62k-1 

For b=1,3,5.. . the integral of Eq. (III. 10) may be performed by elemen- 

tary means. For b=l one obtains 

b=l Nlf 
f(a) = 2n log 

l/S2 + a2 
cl2 

which for small CY can be written as a sum over even powers of a! plus a 

logarithm. As a- +m f b=‘(o) vanishes as CY-~. For b = 3,5,. . . fb(o) is 

simply a power series in a2 for small Q! and vanishesas a! -2 as,cu- Oi). 

The various forms for f(ol) are summarized in Table I. 

It is important to determine the relative size of the coefficients d2k which 

occur in the expansion of f(a!) about Q! = 0. Referring to Eq. (IV. 7) we see 

d2k +2 that d a: a2 for Fb(y= P) given by Eq. (IV.4). Similarly for Fm(y. P), 
2k 

d2k+2 

d2k 
= a2 where 6 is a measure of the value of y* P beyond which FCD(y. P) is 

small (e. g. , Fa(y* P) = e -Y l p/s ). In the next section we see that 6 plays a 

role in determining the extent to which various choices of F( y* P) are light- 

cone dominated. Terms in F(y* P) which are to be strictly light-cone dominated 

for all Q2 must not only fall faster than ($p)3 . as y. P-+a, but also are required 

to have 6 small. 
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V. RESULTS 

Our initial assumption that C2(y2, y. P) factors, together with Eq. (III. 3) 

and Table I allow us to choose a particular F(y. P) and study in what kinematic 

regions its contribution to v W2(Q2, v ) is light-cone dominated. It is useful 

to keep in mind the following simple picture of how light-cone dominance might 

arise at low Q2. If F(y. P) falls rapidly for ya P> 6 for a small number 6, 

then major contributions to Eq. (II. 2) should come from y. 16/M, or using 

locality, OLy2< S2/M2. This limit on y2 is independent of Q2. Such a situation 

is illustrated in Figure 1. The remainder of this section places this simple 

picture on a firmer footing. 

First consider the Bjorken limit for finite x (O<xjl). For O<olLl the 

function f(a), studied in the previous section, and all its derivatives are 

finite. Therefore the leading term in v W2 @)(Q2, v ) in Eq. (III. 3) is of order 

(l/M? In- The contribution oflthe root at a! is always negligible.- 

r(n + 1) 
dn+l 

- f(a) 
dc?+’ 

+ o M n+l 
0 -7 

02=-x 

The leading light-cone singularity (n=O) dominates as expected. 

If x is allowed to approach zero complications arise. Derivatives of f(o) 

(cf Table I, Rows 1 and 2) may become singular near a!=0 enhancing the contri- 

butions of lower order singularities. To study the region x z 0 we consider 

the Regge limit, v-w Q2 fixed, but distinguish between the low mass limit 

(R) where Q2% &P2,11 and the deep Regge limit (D) where Q2 >> 2,~~. It is 

sufficient to study only the first few singularities given by Eq. (III. 3), 
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specifically n=O, 1,2 : 

vww = -- 1 Q2Mv 
2 2 IDI 

flo _ M’f(a) (y+ 
D 

I D2 o!- 
(V. la) 

3 

vw(1) = flt(a! _ 3M2f’(al + 3M4f(a!) a+ 
2 

(v. lbJ 

D2 D3 1 D4 o!- 

VW{21 = 
2 

$&!&p4) 
6M2f”(@) + 15M4f”(a) _ 15M$(cll 01+ D4 

D5 I- CY 
where D = @M2 + Mv. 

a. Lim F(y. p) C- *p 
Y’P- * 

In this case Eq. ( V.la) reduces to : 

(V. lc) 

\ 

cl X+ cl+ logi) + o(x2, 9 

The l/x singularity in f1 b=l( 1 x removes the overall factor of x so that 

(0) VW2 b =1 goes to a constant as v * 00. It is well known that l/y-P behavior 

in F(y.P) produces Pomeron-like behavior in vW2. 173 Had we permitted 

falloff proportional to l/(y~P)~ for b < 1 , vW2 would diverge like l/x l-b 

as x-+ 0. 12 (0) Notice that correc Cons to vW2 b _ 1 vanish at least as fast as 

log v/v2 in the R and D limits. 
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The contributions of lower order light-cone singularities for b=l may be 

determined from Eq. (V. lb and c): 

(2) = 
VW2 b=l 

The increasing powers of t in lower order singularities are compensated by 

the inverse powers of x in successive derivatives of f b=l x ( ). In the R limit 

all singularities contribute and the Pomeron is not light-cone 

dominated. In the D limit lower singularities are negligible and 

light-cone dominance is restored. As Q2-+ 0 the contribution of all singularities 

must add up in such a way that vW2 b=l vanishes like Q2, as required by gauge 

invariance. 

b. Lim F(y* P) a --&- 
tY*PP 

W 
y-p-, 

Terms with b<3 behave just like the Pomeron. Successive differentiation 

of Cb ix/b-I _ (cf Table I) yields inverse powers of x which compensate inverse 

powers of v and yield contribution to vW2 which go like 

v w&j a ($7 xbml + O(g 



-17- 

In the R limit all light-cone singularities contribute, while in the D limit light- 

cone dominance is recovered. 

Ifb>3, the power series in (y2 rather than the Ial b-l term determines 

the leading Regge behavior. To see this consider VW:;) : 

2kd2k x2k-1 + tb-l) cb-l 

A!dm c 2k 
V d2k x + cb-llxI 

k=O 

+ terms lower order in v 

= 2d2x f (b-l) c~-~.x~-~ 

When b>3 the terms proportional to do and d2 dominate as X-NO. trill vWZb 

behaves the same. c,loj b-1 may be ignored so Fb(y. P) for b>3 behaves as if 

it fell faster than any power as y* P- CO and is subsumed into the discussion 

of Fw(y. P) in the second section following. This result has also been obtained 

by suri and Yennie. 
4 

C. Lim F(ya P) 0: 
y* P+ul 

’ 2 
(Y’ 3 

In this case the leading singularity contributes: 
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Subsequent differentiation of fb=2(x) d oes not yield inverse powers of x, so 
xM that lower order light-cone singularities vanish at least as fast as 7 . 

No other F(ye P) (see esp. F b=l(y. P)) contributes like b to vW2. Within 

the framework of our assumptions a piece of vW2 which is proportional to $ 
2 

for large v is light-cone dominated and proportional to 5 in both the D and 

R regions (including Q2 = 0). suri and Yennie4 find a term in the data pro- 

Q2 portional to 7 with approximately the same coefficient at Q2 = 0 and in the 

scaling region (they find G = 106.5f13.5 pb GeV in real photoproduction and 

G = 117.5f7pb GeV in the scaling region, where oTOT(” y” P) =cToT(a) f + 

1 14,l and oToT 0: ;2 vW2 as x-0). ?J nfortunately , as discussed in Section VI, 

the presence of logarithms in F(y* P) would invalidate this result. 

d. F(y. P)--tO faster than any power 

As explained above F(y* P) ‘a ’ l ? 1 
w pi” 

with b>3 may also be 

included in this section. In this case Eq’s. (V. 1) reduce to: 

vwto) - 
2a - x p2x -do f-1 

x (2d2) 

VW(~) = 2 2m 

(V. 2a) 

(V. 2b) 

(V. 2c) 

M to leading order in x and 7 . and all lower order singularities are 

negligible as v 4 m. However v WpJ and v WE both appear to go as 3 

in the R region. d2k+2 62 In Section IV we noted that 7 a v 2 

If 6 is small v WE 
2k ’ 

in particular d2+= 6 do 

dominates in the R region: vWza, 0: x do f . (0) For 

large Q2, vW2* (0) also dominates, however - 2d2x2 is the leading term. If 6 is 
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not small then v Wp,) and v W,“m’ are comparable in the R region, while only 

VW;; 1 contributes in the D region. Terms falling faster than - 
(Y’ PI3 

with 6 

small are unambigrously short range (i. , light-cone dominated for all Q2). 

If 6 is not small F(y* P) may extend far away from the light-cone despite its 

rapid falloff as ye P -+m. It is not surprising then that lower order singularities 

contribute to v W2 when 6 is not small. 

Short range pieces of F(p P) (falling faster than 1 -3 as ye P-OS with 
(Y- PI 

6 small) do not scale early. As shown above, their character changes completely 

in going from the R region to the D region. The utility of dividing F(y* P) into 

short and long range pieces is further diminished by the following observations. 

First, corrections to power behavior (F(y* P) m 1 
(Y* pi” 

for lLb<3) are of the 

same order as these short range pieces. This follows because fb(o) always 

contains a power series in 01 2 like the series which produced Eq.% (V. 2). 

Second, the short range terms vanish as L in the R region and as x2 in the 
V2 

D region making extraction from the data exceedingly difficult. 

The results of this section are summarized in Table II. We may now com- 

pare our conclusions with those of suri and Yennie. In the following we concur: 

1. The relation of Regge behavior in vW2 to power falloff of F(y.P) for 

leading Regge trajectories (a(0) > - 1) as summarized in Table II. 

2. The identification of short range terms in vW2 as those which decrease 
1 faster than - 

(Yew3 
as y-P - 03. Our criteria for short range terms (that 

they be light-cone dominated for all Q2) necessitates that 6 << 1 which 

suri and Yennie do not require. 

We differ with suri and Yennie regarding the properties of the short range 

contribution to vW2. As we have emphasized, short range contributions do not 
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scale at low Q2. This conclusion is implicit in Eq. (111.9) of reference 4; 

however, suri and Yennie neglect the non-scaling term. This is a dynamical 

assumption: it does not follow from the range dependence of the term alone. 

The basis of their dynamical argument is that 6 = MRp, where the radius 

of the proton is of the order 1/m8, making 6 N 6. If one further assumes 

that lower light cone singularities are dynamically suppressed (e. g. the 

constant, p2, in Eq. V.2b is small) then short range terms indeed scale at 

low Q2. 

Lastly we note that our conclusions regarding the l/(y~P)~ term (cf. 

Table I) can be obtained by the techniques of reference 4. 16 
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VI. GENERALIZATIONS 

In the preceding analysis it was assumed: 

1. that the y2 and y. P dependences of the functions Ci(y2, y* P) factor, and 

2. that the functions Ci(y2, ye P) vanish as inverse powers of ym P or 

faster as y-P + 00. 

Those of our results in the form of explicit examples of allowed behavior of 

vw2(Q2, v) are not invalidated by the lack of generality in Assumption 1. In 

this category fall the results that at low Q2, leading Regge contributions need 

not be light-cone dominated nor scale and short range terms used not scale. 

Whether or not short range pieces remain light-cone dominated in the R limit 

when factorization is not assumed depends on how they are defined as 

simultaneous functions of y2 and y* P, and is somewhat immaterial since light- 

cone dominance was only an intermediate step in relating ya P behavior to Q2 

dependence. 

The connection between power law falloff in y. P with 3>b>l and Regge 

behavior in vW2 proportional to v l-b breaks down when factorization is not 

assumed. 1 Suppose, for example, C2(y2, ye P) fell as - 
(Y’ p,b 

(3>bll) when 

y. P is large and y2 is small but fell faster than any power of ye P when y2 is 
b-l large. Such a model for C2 would generate a term proportional to x in the 

D limit, but of course the power low falloff in v would not be connected to a 

unique y. P dependence since C2(y2, y- P) has no unique y- P behavior. Just 

such a term might account for scaling a low Q2 since it falls so rapidly in yn P 

when y2 is not small that perhaps only y2x 0 contributes even at small Q 2 17 . 

Of course it is necessary to provide some dynamical motivation for such a 

choice of C2. This example illustrates the need for a dynamical rather than 

kinematic understanding of the early onset of scaling. 
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We have studied the consequences of relaxing Assumption 2. The most 

important modification is that the term proportional to ; in vW2(Q2, v ) need 

not scale for all Q2. This comes with the inclusion of logarithms of y. P in 

F(y* P). Recall that Fbz2(y. P) 0: 
D2b3, Y-P) 

tional to I a! I . 
tY* pjb 

generated a term in f(o) propor- 

When combined with a O-function singularity or the light-cone 

Q2 this contributed to vW2 a term proportional to -. Lower order light-cone 
V 

singularities do not modify this result even at low Q” because derivatives of 

fbz2(ol) vanish after the first. If a term of the form 

Fb=2 
Or-P) a 

DC+ ,Y* P) 

(Y’ PJ2 
log (Y. P) 

is allowed, f(o) receives a contribution of the form p=2 
taw) Oc Ial log I4 * 

Derivatives of this do not vanish but instead provide the successively stronger 

singularities for (71 z 0 necessary to enhance lower light-cone singularities . 

in the R limit. Modifying other power law behavior by including logarithms or 

powers of logarithms does not change the results of Table II. 

Finally we note that the inclusion of a simple oscillation in F(y. P), e.g. : 

F(y* P) a 
~os~y’p~b(6, y-p) 

(Y* p,b 

generates only an even power series in 01 for any bL1. Instead of a term pro- 

portional to jcyjb-l one obtains 

ICI - ylb-l + IO! +7qb-l 

Such terms behave like terms which fall faster than any power and, in parti- 

cular, are light-cone dominated in both the R and D limits so long as y 

(analogous to is chosen large. 
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APPENDIX 

Here we derive the expansion of I$@, 6) used in Section IV. 

l/8 

$,@, 6 ) = ; 
/ 

XbdX 
2 2 b>l (Al) 

0 x +a 
b#3,5,7... 

Since b> 1 , Ib(O, 6) is defined and equals 

then 

$-b 
‘b(‘, 8, = T(b--,) 

$$% 6) - I#, 6) = - $ s dX Xb-2 

0 (x2 + cr2) 

(A2 ) 

If bS3 this integral also exists at cr=O and equals -a2 Ib- 2(~, 6). Pursuing 

this we obtain an even power series in a2 until the Q! ---to limit of the remaining 

integral does not exist : 

o!2n 
‘da’ ‘) = lb(oy *) -a2 &.2(0, 6) + a4 Ibm4(o, 6) +. . , fT 

l/6 

/ 
dx ,b- 2n 

0 x2 +oi2 

where n is the smallest integer such that b-2ntl. Consider the remaining 

integral : 

Gb(a, 6) = @- a2n 
l/8 

/ 

dx xb- 2n 

x2 + a 2 
0 

and scale y =x/a! 

Gb(% 6) = (-lp 
d b-2n 

y2 f 1 

b-l a a 
= (-qn 2+- 

If-- 
dy yb- 2n dY Y 

b- 2n 

0 y2+1 y2 + 1 1 a6 
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The integral from zero to infinity is tabulated: 

J 
b-2n ady Y = 1 z B / 1 + b-2n 

y2 +1 \ 
2 , 1 _ ’ 

0 

and the second integral may be resealed back to the variable x: 

Gb(a, 6) = (-1) 

_ (-li” a2n J m dx xb-2n 

T 2 
d x2 +a 

We may now proceed to expand 

J 
a dx xb-2n 

2 2=- x +a 

and obtain finally: 

i 

the remaining integral 

2 

a 1 + b-2n 
2 I 

2 in powers of ac : 

lb+.$O’ 6) + a- 1b&,n-2(0’ 6) - * - ’ 

I@!, 6) = 2 (-l)k a2kIb-2k(0, 6) + 
k=O 

as quoted in Section IV. 
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Fig. 1 

The contour lines of a function F(y.P) which vanishes rapidly 

for y-P 2 6 are shown. Note that the y.P dependence ensures 

that the function is negligible unless y2 5 S2/M2. 


