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ABSTRACT 

We consider the nature of correlations in inclusive hadronic reactions. 

Assuming the existence of hadronic scaling, we study the constraints imposed 

by energy-momentum conservation, and deduce that they seem not to lead to 

correlations of long range in rapidity. We show that short-range correlations 

must obey various restrictions in order to guarantee consistency with conser- 

vation laws . Following Le Bellac and Wilson, we investigate the nature of 

correlations when diffractive processes are present, and show that these 

processes lead to long-range correlations. In Mueller’s Regge analysis of 

inclusive reactions these would correspond to failures of the Pomeranchuk 

singularity to factorize. Lower bounds are established for the average corre- 

lation between two particles of similar type when there is nonshrinking diffraction. 

The existence of correlations between particles of different types cannot be 

established unless specific additional assumptions are made. The implications 

of our results for experiment are discussed. 
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1. Introduction 

One of the most interesting questions in the field of many-particle hadronic 

interactions is the nature of the correlations among produced particles. It is 

still an open question whether particle production processes are basically 

weakly correlated phenomena or whether strong correlations are present. The 

matter is complicated by the fact that conservation laws impose certain kine- 

matical correlations which cannot always be trivially separated from correla- 

tions of a more dynamical nature. 

A very natural way to study correlations has emerged in the last few years 

through the study of inclusive reactions. It is possible to define a hierarchy of 

correlation functions for inclusive processes such that these functions together 

with the single particle number functions determine the theory completely 1) . 

We examine here various simple features that these correlation functions must 

possess due to kinematical and dynamical reasons. For the most part we shall 

concentrate on two-particle correlation functions since they are the ones which 

are most amenable to experimental investigation. We shall study these cor- 

relation functions at high energy where it is expected that inclusive processes 

exhibit scaling properties 2) . Thus we assume asymptotically constant total 

cross sections, as well as the existence of limiting fragmentation and pioniza- 

tion, so that multiplicities increase logarithmically with energy. These 

assumptions, together with some definitions, are discussed in section 2. 

The kinematical constraints imposed on two-particle correlation functions 

by energy momentum conservation have been much discussed recently 3). We 

reexamine these constraints in section 3 and find, as might be expected, that 

when both particles are going fast in the same direction in the centre-of-mass 

(c. m.) frame nonzero correlations must exist because of conservation laws. 
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On the other hand, when one particle is show and the other is fast, or when 

both particles are fast but moving in opposite directions we find no kinematical 

constraints for the correlation functions and they may therefore vanish. 

We examine in detail in section 4 the nature of two-particle correlations in 

weakly correlated models - models for which the two-particle correlation 

functions vanish for sufficiently large separation in the rapidities of the two 

particles in question. We find that it is physically necessary for these corre- 

lation functions to obey one of the following three conditions if the multiplicities 

of hadronic reactions are not to increase more than logarithmically with 

increasing energy: 

(1) The correlation functions must change sign as the rapidity of one of 

the particles approaches its kinematical limit. 

(2) The correlation length 4 < 1. 

(3) Thecorrelationfunctions must change sign as a function of the trans- 

verse components of momenta, in such a way that, when integrated over trans- 

verse momenta, they obey conditions (1) or (2). The Regge approach to 

inclusive reactions, pioneered by Mueller 4) ) chooses in general condition (1). 

This gives rise to various sum rules relating Regge couplings which are 

displayed in Appendix A. 

In section 5 we examine the nature of the correlation functions when there 

is a nonvanishing contribution to the total cross section at infinite energy which 

comes from diffractive processes. We consider two converses of a result of 

Le Bellac5), who showed that if the average n-particle correlation functions, 

< Cn>, increased only logarithmically with energy then the cross sections for 

producing n particles fall faster than any power of (Ins) -l. We show that if 

the elastic cross section vanishes at infinite energy as (Ins) -1 then it is 
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necessary either that all < C2n 2n- 1 >, n > 1, increase with energy as < C2,> - (Ins) 

or that some < Cn> increases faster than (Ins) n-l . If exclusive diffractive cross 

sections are nonvanishing, we find that the lowest average correlation function, 
n 

<C2>, must increase as (Ins)‘. In this case <C2> is bounded by the square of 

the average multiplicity: 

<c 12 
oelastic 2 

2 ototal < n’ ’ (1) 

A more stringent bound on < C2> can be obtained, which includes other diffrac- 

tive cross sections on the right-hand side of the relation (2). We have no proof 

that higher average n-particle correlation functions increase with energy as 

(Ins)“, but this seems quite likely. 

We study in detail the case of nonvanishing diffraction and we show that 

it implies the existence of long-range two-particle correlations among particles 

of the same species when they are well separated in rapidity, both from each 

other and from the incoming particles. Because experimentally o elastic/o total 

is at least l/5 at accelerator energies, this correlation will also be at least 

l/5 of the square of the average multiplicity if diffraction cross sections do not 

vanish. The presence of these long-range correlations implies a certain 

amount of nonfactorizability of the Pomeranchuk singularity, which, however, 

may not necessarily show up in total cross section or single particle distribu- 

tion measurements. If the Pomeranchuk singularity has I=0 and is even under 

charge conjugation then particles will have long-range correlations with all 

other particles in the same isomultiplet and their antiparticles. For example 

there would be correlations between different pions and between different kaons, 

but the correlation functions among members of different isomultiplets need 

not have a long-range component. 
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We discuss in section 6 the feasibility of detecting these long-range corre- 

lations at the ISR and make some comments on theoretical models in the light 

of our results. 

We shall be 

which we denote 

2. Definitions and Scaling Properties 

mainly interested in one- and two-particle inclusive reactions 

generically as a+b -c+X and a+b -c1+c2+X. We shall adopt 

as a convenient notation the particle type as a subscript for its momentum 

(e. g . , pa is the momentum of a) . The differential cross section for the process 

a+b - c+X will be written as 

EC 

dcr& 
- = $,tal(s) N~(pa,pb;Pc) ’ 
d3pc 

so that 

/ 
d3pc 

EC 
N”ab (P,, g, Jp,) = < nc’ab 

(2) 

(3) 

is the average multiplicity of particle c in the ab process. 

We write, similarly, for the process a+b - c1+c2+X 

dot lC2 
c1c2 E E ab 

‘1 ‘2 d3p d3p 
= c$;al(s) Nab (Pa, P,-jp, ‘P,z) 9 (4) 

1 
c1 c2 

and we have 

J d3p d3p 
(5 c2 - - N~~c2(pa,~;pc,~c2) = <nc1nc2 - E E 6 

c1c2nc1> 
ab ’ (5) 

c1 c2 

For ease in writing we will drop the ab subscripts whenever they are 

unnecessary. 
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c1c2 We will define a two-particle correlation function Cab as 

cc1c2 
ab tP,~pb;P, 

c1c2 

1 
9 PC21 = N.-& tpaypb;pc PC ) - 

1’ 2 

c1 c2 
- Nab(~a+,;pc ) Nab(pa*pb;pc ) * (6) 

1 2 

We will return in section 5 to alternative definitions of correlation functions. 

It is clear that if we had totally uncorrelated production of cl and c2 that 

cc1c2 
ab =O. This cannot be the case because overall energy momentum conser- 

vation imposes the constraints3) 

+ N;b(Pa, P,& $ = (Pa+ pk)’ , 
C 

C 

c/ 

d3P 
c2 

E 
c2 c2 

Nc1c2 c1 
ab (pa’ pb”cl’ ‘c2) $ 2 

= Na~tPa~~~Pcl~tP,+~-Pcl~~ 

(7) 

which yield in particular 

-cI 
d3p 

c2 cc1c2 c1 
E ab 

c2 
(Pal pb;P, 9 pc2) $, = N&tPay i+-,;P,1) $ ’ (9) 

1 1 
c2 

Y2 Thus eq. (9) informs us that at least some of the correlation functions Cab 

are nonvanishing for purely kinematical reasons. We should remark that there 

are further constraints than those written above that follow from energy 

momentum conservation 3) . These constraints involve, however, number 

functions for more than two particles. 
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We will be using in what follows, as a convenient kinematical variable, the 

particle’s rapidity. It is defined in terms of the particle’s momentum by 

P, = (mc coshyc, P, , P, , 
1 

mc shhyc) , 
X Y 1 

(10) 

where m =Jmm is the transverse mass. 
5 C cx Cy 

For large initial energies 

the rapidities of the produced particles in the c. m. system have kinematical 

regions that extend to *Y with Y - $, Ins. Another useful variable is Feynman’s 2) 

2P 
51 - 

xc 6’ 
(11) 

where p is the parallel momentum of particle c in the c. m. system. For 
clI 

large energies the kinematical limits on x are -1 F x 5 1. 

From recent studies of inclusive reactions by a variety of approaches 6) 

c1c2 
has emerged the expectation that flab, Nab and higher number functions 

- should exhibit scaling properties at high energy. By scaling we mean here that 

at high energy in the c . m. system as s - 00 : 

Nc1c2 c1c2 
ab (P,d’j,;p, 3 Pcz) - Nab (xc1’xc2yf;cll~r;c21)2~ ’ 

1 
(13) 

We should note that in expression (13) the point X~ --71_ =0 is somewhat special: 

in 

of 

V2 “1 G2 
that case it is simpler to express Nab in terms of rapidities. The property 

scaling is defined to be, for x =x =o, 
5 c2 

lim N~~c2tY,~ ,Y ,r ,F 
Y-CO 

k-~~~c2~~cl-~c2~~l19~2~ . (14) 
5 c2 c11 c21 

Some limited confirmation of scaling of the single-particle number functions 

has been obtained recently at the ISR7’ 8). We shall assume in what follows 

that all these scaling properties obtain. 
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A simple consequence of the scaling behaviour of inclusive reactions is the 

expectation that multiplicities grow logarithmically with energy 

< nC> ab -Ins . 

Strictly speaking, the above does not follow only from scaling. It requires also that 

NIb(xc=O, ‘iJc ) be nonvanishing at least for some values of F 
cl cl 

, and that the 

number function be cut off in the transverse momentum. For pions, which 

constitute the bulk of produced particles, both these properties have experi- 

mental backing 7) . We shall assume in this paper that this logarithmic growth 

obtains. 

3. Energy Momentum Constraints 

Here we would like to examine the constraints imposed on the two-particle 

correlation functions by four-momentum conservation. Much of the discussion 

that follows is based on the paper of Brown 3) and represents a modest exten- 

sion of his work. 

We begin by examining the constraint (9) for the energy component. Then 

we have 

E N c1 =- 
5 zl- 

d3p 
CClC2 

c2 c2 
. (15) 

c1 Since N is a positive function it follows that the integral on the RHS of (15) 

must be negative. Thus energy momentum conservation tells us that the 

correlation functions C c1c2 cannot be positive definite. This is a reasonably 

intuitive result since it says that the inclusive distribution function for two 

particles cannot always exceed the product of the two one-particle distribution 

functions, something we expect especially when the two particles observed have 

large parallel momentum. 
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We can be more specific about the nature of the correlations demanded by 

energy momentum conservation by examining also the longitudinal constraint in 

eq. (9). We will assume we are in the scaling regime and work in the c. m. 

system. Then we can write in the limit as s --) CQ , 

(IX 
c1 l&x )N 

5 5 
(x cl,$cl; = -x j-d2pc tic Cef2~xcl~xc2~~cll~“,2~ x 

c2 21 2 

X 
lxc2' *x c2 c ) ix I 

. 

c2 
(16) 

If x 
c1 

> 0 we have the two equations 

c1 N (x 
c1 

95 )=- 
c11 L/- d2P dx 

c21 c2 
CClC2(x ,x ,F ,‘; ) 

c2 xc2’o c1 c2 c11 c21 ’ 

(17) 

d2p dx Cc1c2 
c21 c2 

(x 9x ,F 5 ) 
c1 c2 c11 c21 

* (18) 

Thus we learn that we need a negative integrated correlation for x > 0, x > 0 
c1 c2 

but need no integrated correlation for x 
c1 

> 0, x 
c2 

< 0. Similarly we find that 

for x 
c1 

=0 we have that the integrated correlation must vanish for all x 
c2' 

Finallyifx < Oandx 
c1 c2 

< 0 we find again a negative integrated correlation, 

but no such correlation need arise when x < 0 but x > 0. When both x 
c1 

and 
c2 c1 

x 
c2 

are zero we cannot say anything from eq. (16). The pattern of integrated 

correlations demanded by energy momentum conservation in the scaling regime 

is shown in fig. 1. Its correspondence to an intuitive picture of the structure 

of correlations from energy momentum is manifest. 
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When Ix +x c1c2 

c1 c2 
I > 1 the two-particle number function N vanishes be- 

cause it is outside its kinematically allowed region. Thus we have 

CClC2 (x 3x 
c1 

c1 c2 
5 ,F ) = -N 

c11 c21 
(x 

5 
,j? c2 ) N 

c11 
(x 

c2 
,F; ), 

c21 
Ix +x I>1 . (19) 

c1 c2 

In particular when x - &l the above holds for all x 
c1 c2 

>< 0. In this case the 

constraints in (16) are satisfied trivially because of eq. (7). 

4. Constraints on Weakly Correlated Models 

Although it is not possible for the correlation functions C c1c2 to vanish 

identically it is fruitful to consider models in which these correlation functions 

are in some sense small. If this were indeed the case then it would be suffi- 

cient to determine the single-particle number functions c1 N c2 and N to obtain 

a good picture of what ‘lc2 was N . 

A useful concept, introduced by Wilson 9) , is to suppose that the correla- 

tion function C c1c2 vanishes for sufficiently large separation between the 

rapidities of c, and c,, and to parameterize this by introducing a correlation 
I L 

length t12 so that 

cc1c2 
--exp 

IY -Y I 
cl c2 

I 12 
, Iy -Y I large . 

c1 c2 
(20) 

Such a behaviour of the correlation function is characteristic of multiperipheral 

models 6, 10) , dual models , and the Feynman gas model 9) , and follows in general 

from an analysis of inclusive processes along the lines of Mueller 4) , provided 

the Pomeranchuk singularity is factorizable 11) . We shall refer to (20) as 

the weak correlation condition and call models for which (20) obtains weakly 

correlated models. 
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A decrease in the correlation function as indicated in 

assumed limitation in the transverse momentum, implies 

correlation 

(cc1c2 

/ 

d3p d3p 
>= 4 4 p , 

c1 c2 

increases at most logarithmically with energy, 

<Cc1c2) 5 Ins . 

(20), along with an 

that the average 

(21) 

(22) 

Relation (22) is a general property of weakly correlated models. 

We remark that the behaviour of weakly correlated models for large 

rapidity separation indicated in (20) cannot hold when one of the rapidities is 

near the kinematical boundary y, - *Y without some additional restrictions. 
i 

That this is the case can be seen by considering the following sum rule, 

trivially derivable from eq. (9) : 

- / 
<n’>= -$--x 1 

m- 
c1 

c 2 

d3p d3p 
c1 c2 

-T----E--- 
cl c2 

(Pcl* PC ) c 
c1c2 

* (23) 
2 

Since (p . p 
c1 c2 

) is just a function of the relative rapidity, y -y 
c1 c2’ 

(P,~*P, ) =mC mc cosh(yc -Y, ) -SC .Fc , (24) 
2 11 21 1 2 11 21 

we can, using (20)) perform the integrand over (y + y 
c1 c2 

) to obtain a contribu- 

tion proportional to Ins on the RHS of eq. (23). If the multiplicity is not to 

grow more than logarithmically with energy then the integral over the relative 

rapidity y -y must just give a constant factor. This will not be the case 
c1 c2 
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unless one of the following three conditions are satisfied: 

(1) The correlation function changes sign for large values of (y -y 
c1 c2 

) , so 

that (20) ceases to be valid near the kinematic limits. 

(2) The correlation length (12 < 1, in which case the integral over y -y 
c1 c2 

in (23) is clearly constant. 

(3) There are cancellations in the integrals over transverse momenta in 

(23)) so that the correlation functions integrated over transverse momenta 

obeys either (1) or (2). 

Conditions (2) and (3) are not met generally in models. So in general the 

way to avoid contradictory behaviour is that condition (1) must be satisfied. 

In the usual Regge picture 11) , with a factorizable Pomeranchuk singularity, 

one has e12 z 2 and there is no dependence on (F * r ). 
c11 c21 

(The behaviour 

discussed here is the leading behaviour. There are nonleading terms which 
. . 

are proportional to i5+ * wzl (Ref. 11). In fact these terms must be there 
c1l 

if one is to satisfy the transverse momentum constraints in eq. (9) as 

emphasized by L. S. Brown 3).) N o contradiction arises since in this model 

(20) is only valid when y 
c1 

mdY are both not near &Y. There are additional 
c2 

contributions to (20) when y , y are near &Y and a cancellation occurs be- 
c1 c2 

tween these terms and the terms coming from the behaviour indicated in (20), 

when one performs the integral indicated in (23). The net result is that <nC> 

as calculated from (23) indeed only grows like lns. What we learn then is that, 

in weakly correlated models, the two-particle correlation functions must 

change sign as we let one of the rapidities approach the kinematical limit. 
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In a particular model it is possible to make use of the constraints implied 

by (20), or more generally by (9), to relate various parameters of the model. 

For the Regge model most of the constraints implied by (9) follow already 

from (7). These types of constraints have been analyzed recently by Tye and 

Venezianol’) . The constraints that follow only from (9) involve functions in 

which both cl and c2 are in the same fragmentation region. The relations that 

ensue do not appear to be directly amenable to experimental investigation. 

They are discussed in detail in Appendix A. 

It is amusing to point out that experimentally <n”>/<nKr is not too dis- 

similar from the mass ratio rni/rnt so that it appears that 

=I c2 

(25) 

is roughly independent of whether cl is a pion or a kaon. We do not have a 

satisfactory explanation for this observation, but remark that the factor 

(p . p 
c1 c2 

) weights the integral in (25) toward higher invariant masses of the 

pair of particles in question. Thus it appears reasonable to suppose that some 

of the strongly SU(3) breaking effects that arise for small invariant masses 

such as from the presence of low mass resonances are damped out by the 

weighting in (25). 

5. The Role of Diffractive Processes 

Some recent work of Le Bellac 5) has questioned the validity of weakly 

correlated models. A characteristic of weakly correlated models is that the 

average of the n-particle correlation function < Cn> , which is defined and 

discussed in Appendix B, grows only logarithmically with energy 

<cn>-lns . (26) 
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What Le Bellac showed is that the behaviour (26) is incompatible with the 

presence of exclusive diffractive processes. This realization is contained in 

the work of Wilson 9) , although in a less general form. 

We shall here discuss two converses of Le Bellac’s result. We consider, 

with Le Bellac, the obviously positive quantity 

i(n”- 1 O” c <nC>)2> = - c utotal n=O tn - <nC>2) one . (27) 

Here one is the partial cross section for producing precisely n particles of 

type c. By “type c” we could mean particles of a given set of quantum numbers 

(e.g., r’, or we could mean, for example, all charged particles, or all par- 

ticles. In this last case, unC is the usual n-particle production cross section. 

In general it is a partially inclusive cross section. We can write the left-hand 

side of (27) as 

<(nC - inc,)2> = inc(nc-l)> + <nc> c 2 -<n > 

=<nc> +<C cc > . (28) 

The RHS of (27) can be bounded by the term which contains the elastic contri- 

bution so that at large energies we may write the inequality 

elastic 
<c cc > + <nC> 2 c2u <n > ototal l 

(29) 

If o- elastic 
/Q- 

total - constant as s -00 we see that we obtain a contradiction 

with weakly correlated models. For if < nc> - Ins we must have also that 

<c cc > rv (lns)2 . (30) 

Ifu elastic total 
b - l/ins as s --) m (shrinking Pomeranchuk singularity) then 

there are no inconsistencies at this level, but a consideration of higher corre- 

5) lation functions again restores the inconsistency . These matters are 
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considered in detail in Appendix B where we show that if o elastic /ototal -l/ins 

as s -.w then, provided no individual < Cn> grows faster than (Ins) n-l , all 

“2n > must grow like 

<C2n’ - (Ins) 2n-1 (n> 1) . (31) 

In Appendix B we also discuss the higher correlation functions in the case 

o- elastic,ototal - constant and find no constraints on their behaviour beyond 

that of eq. (30). 

We would like now to consider in depth the implications of having 

u 
elastic,ototal - constant as s -00 . We are motivated to do so partly by the 

recent ISR data 13,14 on pp elastic scattering which seem to indicate a non- 

shrinking diffraction peak; and partly by the fact that in this case it is possible 

to discuss differences, at the level of the two-particle correlation functions, 

from weakly correlated models. We do not need,of course, to restrict 

ourselves to the case where only oelastic survives as s -Q) . We can more 

generally consider that we have 
N 

C 

uDIFF S lim 
N--m 

lim C one # 0 . 
s-Q, n=O 

(32) 

We note that oLIFF defined in (32) may depend on particle c; however, for any 

C 
c, o- > lim elastic 

DIFF - s--toooab ’ It is possible to have criIFF >O even if particle 

c is never produced diffractively. It is clear that analogously to eq. (29) 

asymptotically for large s 

N 
lim C U,,(S) 

CC cc > f<nC> _ , <nc,2 s -00 n=O 
crtotal ’ (33) 
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Equation (33) holds for all values of N so we have the asymptotic bound 

<ccc _ 
c 2 > > <n > GIFF 

ototal * (34) 

Experimentally diffractive contributions (e.g., from elastic scattering) are 

at least l/5 of total cross sections at accelerator energies. Thus if the 

Pomeranchuk is flat, eq. (34) suggests that there may well be long-range 

two-particle correlations at very high energies of the order of l/5 the square 

of the single-particle multiplicity. 

Equation (34) implies that the average of the two-particle inclusive dis- 

tribution at high energy is always greater than the joint average of the 

respective single-particle distributions: 

inc(nc-l)> 2 <n c 2 (1+2;;:) . > (35) 

We remark that (35) holds for all types of particles so that if it is experi- 

mentally more convenient one can sum over various types of particles 

(e.g., charged particles). Equation (35) is, however, an asymptotic state- 

ment and may not be verifiable even at ISR energies. At subasymptotic energies 

we have the inequality 

<nc(nc-l)> > c2 1-L+ ( GFF <n > 
<nc> ) Jotal ’ (36) 

and we see that, unless <nc> is large, there may be significant variations 

from (35). 

The net import of LeBellac’s work is that the correlation functions cannot 

be as simple in structure as the ones given by weakly correlated models. If 

there is nonshrinking diffraction the two-particle correlation functions must 
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I 

have, besides a short-range piece, also a piece whose nature must be one of 

a long-range correlation. This latter piece is responsible for the (lns)2 growth 

in these correlation functions. This separation of correlations into short- 

range correlations, which are a result of factorizable Regge mechanisms, and 

long-range correlations, which are a result of diffraction, has been extensively 

discussed by Wilson 9) in the context of multiperipheral models. We would like 

to examine it here in the light of Mueller’s analysis 4) . 

The use of Mueller’s technique to relate inclusive distributions to discon- 

tinuities of forward multiparticle amplitudes yields average n-particle corre- 

lation functions which grow like Ins if the Pomeranchuk singularity is factor- 

izable. We show in Appendix B that if diffractive cross sections fall like 

l/h-, as would occur if o;t3 +O and diffraction peaks shrink, then 

< Cn> - (lns)n-l is a possibility. This behaviour is expected in the Mueller 

analysis because of the presence of nonfactorizing Pomeron cut corrections to 

scaling falling like l/ins . Thus it may well be that the result of LeBellac and 

its converse reflect the incorporation of unitarity in the form of Regge cuts 

into the analysis of multiparticle reactions via the generalized optical theorem. 

As we showed earlier, long-range correlations are not required by energy- 

momentum conservation. 

If diffractive cross sections are constant, corresponding to oP =O, then 

the concomitant growth of < C2> - (lns)2 implies that the Pomeranchuk 

singularity cannot exactly factorize. This lack of factorization manifests itself 

in the existence of long-range correlations for the central region in the rapidity 

space of the two particles in question. In diagramatic language this long-range 

correlation ensues because the diagram of fig. 2 does not factorize. We should 

note that in Mueller-type models one would expect from this absence of 
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factorization at Pomeranchuk vertices that the higher average correlations 

< Cn> - (Ins)“. Although the evidence is by no means overwhelming, there 

appears to be experimental support for the factorization properties of exclu- 

sive diffractive cross sections 15) and of total cross sections and single-particle 

16) distribution functions , It is possible to envisage models in which in fact 

one preserves factorization for total cross sections and single-particle dis- 

tribution functions but fails to obtain this property for two-particle correlation 

functions. For example, it may be that multi-Pomeron contributions, which 

presumably do not factorize, are consistently more important in Mueller-Regge 

analysis than they are in Regge analysis. 

The conclusions that we have drawn about two-particle correlation functions 

from the converse of Le Bellac’s result apply in the first place only to correla- 

tions among particles of the same type. That no such restrictions can follow 

for correlations among different kinds of particles without additional assump- 

tions can be seen by considering the following example. Suppose there were 

two kinds of particles and that the partial cross section for producing n particles 

of type 1 and m particles of type 2 factorized: 

cr n,m = tan1 + Pn) taml+ Pm) * (37) 

Here Pn and Pm are Poisson-like distributions for particles one and two. The 

above model has nonvanishing diffraction but it is clear that 

< nt1)n(2)> = <n(l)> <nt2)> , (38) 

so that 

<C12> = 0 . (39) 

We can, however, use physical arguments to deduce constraints among 

correlation functions of particles of different species. Charge conservation 
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gives the constraint 3) 

QclNcl(pc: = - c I d3P 
c2 

y--- Q 
c2 c1c2 

C 
c2 c2 

(Pcl>Pcz) 9 (40) 

so that if Q c1 =-+l wehave 

c1 <n >=-c QclQc2<C c1c2 
3 

c2 

= - < p > - & QClQC2 <Cc1c2 > - (41) 

2 1 

If we have a nonvanishing diffractive cross section so that <C clcl > - (lns)2 

then we see that the above requires that at least one of the unequal species 

correlation functions grows like (Ins) 2. In particular if we consider that T 

mesons are much more likely to be produced than K mesons so that presumably 

<err> >> <c TK>. We can deduce that 

< ,Ar- > = <c?+“+> . (42) 
Further predictions follow if we are willing to commit ourselves some more on 

the nature of the Pomeranchuk singularity. As remarked above, the long- 

range correlations come from the nonfactorizable diagram in fig. 2, and if the 

Pomeranchuk singularity has I=0 and is even under charge conjugation we can 

deduce that 

K.K. 
(c l J>= <CK+K+>, 

(43) 

(44) 
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where i and j go over all charges and strangenesses. No relations among T-K 

correlation functions ensue. More generally, we obtain equality among all 

correlation functions of particles of the same I-spin multiplet or among 

particles which can be related by charge conjugation. No relations exist for 

particles belonging to different multiplets without involving some higher 

symmetry, and those correlation functions could be, although it is unlikely, 

zero. 

It is possible to adopt a different type of normalization for the inclusive 

distributions which de-emphasizes the role of diffractive processes in the 

correlation functions. For example one could define a correlation function 

E duct 
‘1 ‘2 d3p d3p 

c1 c2 

ducE due 
cl d3p ‘2 d3p ’ 

c1 c2 I 

(45) 
Then 

<EC”> = <nc(nc-l)> - 
6 + -r,,,,) 

c2 
,total <n> , 

so that we would have 

< (nC c 2 -<n >) > = $IFF 
utotal 

< nC>2 + < nc> + <PC> 

z GFF 
,total <nc>2 , 

which yields no constraint at this level on <EC’> except 

(47) 

-cc <c >+<nC>10 . (48) 
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The definition (45) is, however, rather unnatural and does not help to elucidate 

the role of diffractive processes. A more natural definition would be to nor- 

total malize the inclusive distributions not with u but with utotal ’ - uDIFF 

(experimentally this should be at moderate energies approximately u inelastic 
1: 

EC 
,btal due = 

d3pc ( - uiIF~ PC 3 > 

cc 
EcEc do- = ,total 

( - “CDIFF P 3 ) 
cc 

d3pc d3pc 

(4% 

(50) 

and then consider the correlation functions 

cc c =pcc 
P 

- pcpc . (51) 

However, the average of (51) still grows as (lns)2 if there are nonvanishing 

diffraction processes. 

Yet another definition of correlation functions has been adopted by 

Wilson’). He divides from the start events into multiperipheral, i. e. , short- 

range, and diffractive, and weights each event by the ratio of 

uMULT = u 
total 

- uDIFF Or oDIFF depending on the type of event. This 

definition also leads to long-range correlations coming from the diffractive 

part and so it has the same disadvantages as the ones displayed in (49) and 

(50). It has the further difficulty that one must experimentally decide what 

events are diffractive or multiperipheral. 

Finally we should remark that perhaps the whole idea of redefining 

correlation functions so as to de-emphasize diffractive events may not be 

very practical because the only correlation functions which appear affected 

by diffractive events are the ones that deal with particles of similar type. 
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Further, definitions of modified correlation functions such as those of eqs. (45) 

and (50) are difficult to generalize naturally to correlations between different 

particles unless uLIFF is independent of c. In general, by redefining these 

correlation functions we may get rid of diffractive effects for correlations 

among particles of similar type, but perhaps introduce extraneous effects in 

the correlation functions of unlike particles. 

6. Experimental Implications and Theoretical Comments 

It is worthwhile discussing whether the long-range correlations that follow 

from constant diffractive cross sections are observable at the ISR. The cor- 

relations we have obtained, which come from the diagrams of fig. 2, would 

show up when the two detected particles were well separated in rapidity from 

each other and from the incoming particles. The total length in rapidity space 

available at the ISR is about 8, so the optimal conditions for observing the 

correlations we discuss would be when IY-y 1 z ly -y I % ly +YI M 3. Since 
c1 c1 c2 c2 

the correlations due to Regge exchanges have a range Ay - 2, it is not clear 

that the long-range correlations we have been discussing will be dominant in 

any kinematic region at the ISR. However some remarks can be made: the 

optimal conditions correspond to particles observed with p,, - & (l-2) GeV/c, 

and if little correlation were observed between particles with these momenta, 

that would be evidence against the picture of strong long-range correlations. 

If large correlations were found, they might be due to short-range effects, but 

by comparing correlation data at different energies and rapidity separations it 

might be possible to separate out any long-range component. Although we have 

no proof, we would expect any long-range correlations to persist into the region 

where the two detected particles are in different fragmentation regions. The 

existence of such effects would support the picture we have discussed. 
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We would like to comment on certain models of multiparticle production 

processes in the light of our results. Bjorken and Bander 17) have considered 

the function I(z;s) introduced by Mueller 18) and discussed in Appendix B. If 

all correlations are short-range then 

ln I(z,s) x J(z) + p(z) Ins , (52) 

because all the average correlation functions, < Cd, would individually have 

this structure. They then consider a thermodynamic limit where 

p(z) = lim -&nI(z,s) . 
s-a, Ins 

(53) 

Unfortunately the existence of diffraction processes makes this thermodynamic 

limit somewhat problematic. Indeed if the Pomeranchuk does have (Y;P =O, 

then eq. (52) would not be a useful approximation. 

Certain other authors1g-21) have proposed models in which the predomi- 

nant multiparticle production mechanisms are diffractive. The double diffrac- 

tion dissociation model 19) , at least in its original form, has no pionization 

and so does not possess the long-range correlations we discussed in section 5. 

Diffractive models with pionization must either have exclusive cross sections 

falling as some power of (l/ins) , or have positive long-range correlations of 

the order of the product of single particle distributions, or violate scaling as 

defined in section 2. The diffractive excitation model 20) chooses the last of 

these three alternatives: because its exclusive cross sections on- l/n2 as 

n-m, it has 

I d3p d3p 
c1 c2 NClC2 N 

I 

d3p d3p 

J-- s- c1 c2 
---z----z---- -E---E 

CC lC2 . (54) 
c1 c2 c1 c2 
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This inconsistency with scaling, as derived for example from Regge theory by 

Mueller” 18) , will be shared by the version of the diffractive excitation model 

called the Nova mode122), as it also has on - l/n2. The Nova model has in 

addition, because of its lack of two-fireball production processes at inter- 

mediate energies, strong negative correlations between particles in 

different fragmentation regions. (According to the Nova model, in most 

interactions the produced particles will either all be going forward or all back- 

ward in the c. m. frame.) We leave it to the reader to decide whether he or 

she finds palatable these strong long-range correlations or violations of scaling. 
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In this appendix we consider the constraints imposed by energy-momentum 

conservation on the correlation functions in the context of the Mueller analysis, 

where scaling distributions factorize as do the Regge corrections to scaling. 

For simplicity we consider the case where the leading Regge trajectory is 

nondegenerate. Tye and Veneziano 12) have obtained relations between Regge 

to fragmentation distributions from the sum rule residues and corrections 

Cjl~Cd2pcIN;txc~~cl) = cj” ~cd2pc~~;t~c>i$ 3 gp= c o 
(A. 2a) 

C -1 

and 
1 

kc d2pcL N;(xc , FccL) = c /’ dx d2pcLN;(xc >‘i;,> cJ-~ c . (A. 2b) 

c/ 

d”p 
-+“” (Pa9 Pb ;p,) PE = (Pa+IQP * (A. 1) 

C C 

In the limit of large s, and assuming scaling in the form 

Appendix A 

ototal (9 = g”p + g; s 
CYR-l 

, 

ctotal(s) Nc(pa, s;P,) = g&txct~c& + gRtiRtxc,~c~) ’ 
olR-l 

, 

where the quantities N~(x~,~~~) and Ni(xc,FcI) are defined graphically in 

fig. 3, eq. (A. 1) can be rewritten as 

c/ 
d2pcPc 

lXcl ( gp~p+qI& 

OrR-l 
> l ( Ixc 1 ‘PC,, xc)= ( i&+&s 

OrR-l 

1 
* (2,X 0) . 

C 

Comparing the coefficients of so and s 
CrR-l 

we obtain: 
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We now consider the energy-momentum sum rule relating the one-particle 

distribution to the two-particle correlation function: 

““c, Ncl(~a.~;~c ) = -c I 
d3p 
9 cc1c2(pa.pbipc~pc2) “ib, . 

1 
c2 c2 

(A-3) 

(Equivalently we could have considered eq. (8)) which relates the one- and 

two-particle distributions, and have obtained the same results.) It was 

observed in the main text that the sum rule (A. 3) was incompatible with the 

scaling limit unless Regge corrections to scaling observed certain consistency 

relations. To see this, consider the scaling limit where eq. (A. 3) becomes, 

in the pionization case (x 
c1 

= 0) 

dx d2p 
()=- 

cl 
c2 c21 

J 
lx I 

cc lC2 
(A-4) 

c2 c2 

According to Regge theory, we expect that for x # 0 the leading terms in 

cc1c2 
c2 

have the form 

clcl- c2 c2 
gpgRp (P, ,,‘NR txc .Fc2i) - Np (xc sF;‘~ k 

clcl 

2 2 21 RP 

YCl -c 
The quantity gRp (p ) is defined graphically in fig. 3. On substituting this 

cll 
expression into the energy-momentum conservation sum rule (A. 4) we find that 

its satisfaction is guaranteed by the relations (A. 2) between Regge and 

Pomeranchuk residues. 
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We now discuss the relations that can be obtained from eq. (A. 3) when one 

considers the limit x 
c1 

# 0: 

/ 

dx d2p 

(lx 45 clL.xc~Ncl(~a.~;~c~ = -c 
c21 

‘rx I 
(y2 

c1 
(P,,PbGP, ,P, ) . 

c2 
1 2 

c2 

-(lx l,F ,x ) 6 
c2 c21 c2 

In this case the leading terms of C 
c1c2 take the form: 

a tota1(s) c ‘lc2,= sDIR ,Fc ) + 
2 21 

2 
gR '1 

+2 Np (xc ,Fc 
c2 

1 
) Np (xc 

11 2 
,Fc )- 

gP 
21 

gR ‘1 --N (x ,$ c2 
)NP(xc ,i? 

gp R c1 c11 
)- 

2 c21 

c2 
F )NRtXc,Fc) , Cl1 2 21 

if sign xc1 f sign xc2 , 
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and 

(xc1) xc2 5 
c2 

c1l 
,F 

c1 
)gp-Nptxc ,Fc )N 

c21 
tx pi? ) 

1 11 p c2 c21 3 

c1c2 +s NR (xcl’ xc2 5 ,F )gR+ 
c11 c21 

2 
+gR ‘1 ?Np(xc ,F c2 

) Np(X, lFc 

gP 1 c11 
) - 

2 21 

gR ‘1 --N (x 
gp R 

,i+ 
c2 

)NPtxc ,i? 
c1 c11 

)- 
2 C2L 

gR ‘1 --N (X 
c2 

,F )NR(xc ,rc ) 
gp p c1 c1l 2 21 

if sign x = sign x . 
c1 c2 

c1c2 
NR, P(xclyxc2 5 

c1l 
,F ) are defined in fig. 3. On substituting these 

c21 cc 
expressions for cl2 into the sum rule (A. 5) the following 

c1c2 
expressions are obtained for Np R : , 

forx >O 
c1 

c1 (l-x )N cl F;t P,R(Xcl’ cleI ) = c s’ kc2 d2pc21N~;txc ~x~,~~~,;~~,I’ > 

c2 O 
1 

(A. 6a) 

forx < 0 
c1 

c1 
t1 +xcl) Np, RtXc 

(A. 6b) 
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These equations (A. 6) and the original relations (A. 2) are sufficient to ensure 

that the energy-momentum constraints (A. 5) are obeyed. They are consistency 

conditions that must be imposed on any Regge model of inclusive spectra, 

though how useful they are is open to question. Because eqs. (A. 2b) and (A. 6) 

refer to the coefficients of s 
CXR-l 

in asymptotic expressions for the inclusive 

distributions, they should remain valid even in the presence of long-range 

correlations. 
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Appendix B 

We define an m-particle inclusive number function for the process 

a+b-cl+c2+... +c,+X as 

doclC2’ * “rn 

E E . ..Ec ab = 
c1 c2 m d3p d3p . . . d3pc 

c1 c2 m 

c1c2. . . cm = crEal(s) Nab tPa9Pb;P,,P, 9. ‘P, ) . 
1 2 m 

(B- 1) 

We shall be interested in the case in which all ci are of the same type and for 

ease of notation we denote simply 

NClC2. l l Crn (pa,pb;pcl,pc2,. . .pcm) = N,(l, 2,. . .m) . ab (B-2) 

We define m-particle correlation functions as is done in the cluster expansion 

in statistical mechanics 22) via the sequence 

Nltl) = Cl(l) 3 

N2(L2) = C,(l) C42) + C2U, 2) , 

N3(L2,3) = cl(l) Cl(X) 5(3) + Cl(l) c2(2,3) + cl(x) c2(1,3) 

+ c&3) c,(1, 2) + c3(1,2, 3) , (B. 3) 

and in general by 

N,(l, 2,. . .m) = [cl( )...C,( I] cc,(,)...C,4 .‘. CmL”“‘) 

i 1 I i m Perm. -- 
I1 factors l2 factors fin factor 

(B-4 
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Here Pi is either zero or a positive integer and the set of integers {li}m satisfy 

the condition 

f? 
i=l 

i$=m . (B-5) 

The arguments in the Ci functions are to be filled by the m possible momenta 

in any order. The sum over permutations is a sum over all distinct ways of 

filling these arguments. We note that for any given factor product there are 

m! 

[ (l!) 
% Q2 (2!) . . .(m!)lm 1 Ql! Q2! . . .lm! 

(B-6) 

terms. 

The average of the m-particle number function for particles of type c is 

m d3p. 
I7 -+ Nm(p19 p2, . . . pm) = < nc(nc-1) . . . (nc-m+l)> . (B. 7) 
i=l i 

We define the average of the m-particle correlation function as 

s 

m d3pi 
n- 
i=l Ei 

Cm(pl, p2, . ’ . pm) = < cm> . (B. 8) 

In the text we denoted the average of the two-particle correlation function by 

<ccc> . It is clear that 

<ccc> G<C2> . (B. 9) 

We may use (B. 4) to express the average of the m-particle number functions 

in terms of the sum of averages of correlation functions. We have 

<nc(nc-1) . . . (nC-m+l)> = m! 6 gq$ * 
im 

(B. 10) 

In obtaining (B. 10) we have made use of the counting argument (B. 6). 
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It is convenient to consider the generating function 23) 

I(z;s) = -+- c Qs) tl+z)* * 
utota (S) n 

(B. 11) 

Thus I(z-1;s) plays the role of the partition function in statistical mechanics. 

Then 

1 
I(‘;‘) = ’ + atotal n Znunc t n (c 

c z”yLT +...\ . nc 

1+2 z m = <nc(nc-1) . . . (nC-m+l)> 
m! . 

m=l 

Using (B. 10) we can rewrite this equation as 

I(z;s) = 1 + 5 zm 
m=l (2 g%-j T+ l 

im 

The restriction (B.5) allows us to write the above as 

I(z;s) = 1 Jk z1 fi ;#q+ * 
im 

(B. 12) 

(B. 13) 

(B. 14) 

The sums over m and {Qiim J us mean that the sum is over all finite sequences. t 

Let [Qi], be a sequence with the restriction 

c 
i 

Qi=m . 

Then 

<C.>zj “j I(z;s) = 1 + mEl [g ;7” -+- $ * ( ) 
im j=l 3 

(B. 15) 
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It then follows easily that 

1 

co 
I(z;s) = exp c 

<Ci> z1 
*7 

i 
. 

i=l 1. 
(B. 16) 

We shall now make use of the generating function I(z;s) to compute the 

expectation value of < (nC-< nC>)K> in terms of the average correlation functions. 

The method of obtaining this relation is due to Brown 24) and we are indebted to 

him for the elegant derivation that follows. Consider the generating function 

K 
f(V = c Z$- < (nC -<nc>)K, , . 

K 

then 

< (nC-< nC>)K> = dK 
- f(h) 
dAK I A=0 ’ 

we may express the generating function f(A) in terms of I(z;s) 

f(A) = C j$ AK -&J F ~(n’-<n~>)~ 
K 

ZZ : -& AK ji,-$-<nc>)KI(z-I;s~J * 

z=l 

Thus we can write 

f(h)=exp{A(z& - <nc> 
11 

I(z-1;s) . 
I z=l 

d 

The effect of the operator e hzz on I(z-1;s) is easily seen to be 

d 
Azdz e I(z-1;s) = I(e’z-1) . 

(B. 18) 

(B. 19) 

(B. 20) 

(B. 21) 
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I 

Thus we have 

f(h) = e 
-A< nc> 

I(e’-1;s) , (B. 22) 

which gives on using (B. 14) 

i 

00 

f(h) = exp (eh-l-h) <nc> + c T (eh-l,P . 
Q=2 1 

(B. 23) 

We are particularly interested in the even moments < (nc-<n ’ 2K> since >) , 

for these moments we can establishbounds. It is now a straightforward matter to 

generate any of these moments using (B. 18) and (B. 23). We write down the 

first few even moments 

< (nC 
2 -<nC>) > = <nc> +<C > 2 , 

<(nc-<nc>)4> = <nc> + 7 <C2> + 6 <C3> + <C4> + 

+ 3 (<nC> + <C2>) (<nC> + <C2>) . (B. 24) 

We can obtain in general the 2Kth moment by Fa‘a di Bruno’s relation 25) 

c 2K <(n”-<n >) d2K 
> = --p fW 

I A=0 

ZZ c . 

I”ii2K 
- 

Q2 factors Q3 factors ‘2K factor 

(B. 25) 
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Here de Q is given by (B. 6) with m=2K and 
2 3” “2K 

,ti) = & h(h) 

dh’ 
3 

A=0 

where 

00 
h(A) = (eh-l-h) <nC> + 

c 
<cQ’ h Q 
---jp- (e -1) - 

Q=2 ’ 

Further the set {Qi12K obey the restriction 

2K 

c 
i Qi = 2K . 

i=2 

P- 26) 

(B. 27) 

(B. 28) 

As can be easily seen the h ti) are given in general by 

(B. 29) 

where the dj are positive coefficients. 

We are now in a position to prove the observations made in the text. 

Suppose that elastic,ototal- l,(Insjol, o COO, as s-co. Then < (nc-< n c 2K> >) 

is bounded asymptotically by 

c 2K> > < nc>2K (+ elastic 
i(nC-<n >) _ ototal - (lns)2K-a . (B. 30) 

It is clear that this bound can be satisfied if < C2K> - (Ins) 2K-a! for, according 
c 2K to (B. 25)) < (nC-< n >) > contains a term proportional to < CzK> - (Ins) 2K-o! . 

K-a+1 If no < CK> increases faster than (Ins) then it is necessary that, for all K>l, 

<C 2K > - (lns)2K-a’ The necessity ensues because no other terms on the RHS 

of (B.25) except h (2K) can grow as fast as (Ins) 2K-a! . 
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I 

If GIFF /o. 
total is nonzero, then we have the asymptotic bound 

c 2K <(nC-<n >) c 2K >L<n> SmF 
,total - (lns)2K . (B. 31) 

This bound necessitates, for K=l, that <C2> r~ (lns)2. This condition is also 

c 2K sufficient to guarantee that < (nc-< n >) > - (lns)2K, for the RHS of (B. 25) 

contains the term K - (lns)2K. 
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I 

Figure Captions 

1) Patterns of integrated correlations due to energy-momentum conservation. 

2) Mueller diagram that does not factorize when there is diffraction. 

3) Graphical definitions of functions used in Appendix A. 
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