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ABSTRACT

We consider the nature of correlations in inclusive hadronic reactions.
Assuming the existence of hadronic scaling, we study the constraints imposed
by enérgy~momentum conservation, and deduce that they seem not to lead to
correlations of long range in rapidity. We show that short-range correlations
must obey various restrictions in order to guarantee consistency with conser-
vation laws. Following Le Bellac and Wilson, we investigate the nature of
correlations when diffractive processes are present, and show that these
processes lead to long-range correlations. In Mueller's Regge analysis of
inclusive reactions these would correspond to failures of the Pomeranchuk
singularity to factorize. Lower bounds are established for the average corre-
lation between two particles of similar type when there is nonshrinking diffraction.
The existence of correlations between particles of different types cannot be
established unless specific additional assumptions are made. The jmplications

of our results for experiment are discussed.



1. Introduction

One of the most interesting questions in the field of many-particle hadronic
interactions is the nature of the correlations among produced particles. If is
still an open question whether particle production processes are basically
weakly correlated phenomena or whether strong correlations are present. The
matter is complicated by the fact that conservation laws impose certain kine-
matical correlations which cannot always be trivially separated from correla-
tions of a more dynamical nature.

A very natural way to study correlations has emerged in the last few years
through the study of inclusive reactions. It is possible to define a hierarchy of
correlation functions for inclusive processes such that these functions together
with the single particle number functions determine the theory completelyl) .
We examine here various simple features that these correlation functions must
possess due to kinematical and dynamical reasons. For the most part we shall
concentrate on two-particle correlation functions since they are the ones which
are most amenable to experimental investigation. We shall study these cor-
relation functions at high energy where it is expected that inclusive processes
exhibit scaling propertiesz) . Thus we assume asymptotically constant total
cross sections, as well as the existence of limiting fragmentation and pioniza-
tion, so that multiplicities increase logarithmically with energy. These
assumptions, together with some definitions, are discussed in section 2.

The kinematical constraints imposed on two-particle correlation functions
by energy momentum conservation have been much discussed recent1y3). We
reexamine these constraints in section 3 and find, as might be expected, that

when both particles are going fast in the same direction in the centre-of-mass

(c.m.) frame nonzero correlations must exist because of conservation laws.
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On the other hand, when one particle is show and the other is fast, or when
both particles are fast but moving in opposite directions we find no kinematical
constraints for the correlation functions and they may therefore vanish.

We examine in detail in section 4 the nature of two-particle correlations in
weakly correlated models — models for which the two-particle correlation
functions vanish for sufficiently large separation in the rapidities of the two
particles in question. We find that it is physically necessary for these corre-
lation functions to obey one of the following threé conditions if the multiplicities
of hadronic reactions are not to increase more than logarithmically with
increasing energy:

(1) The correlation functidns must change sign as the rapidity of one of
the particles approaches its kinematical limit.

(2) The correlation length & < 1.

(3) Thecorrelation functions must change sign as a function of the trans-
verse components of momenta, in such a way that, when integrated over trans-
verse momenta, they obey conditions (1) or (2). The Regge approach to
inclusive reactions, pioneered by Mueller4), chooses in general condition (1).
This gives rise to various sum rules relating Regge couplings which are
displayed in Appendix A.

In section 5 we examine the nature of the correlation functions when there
is a nonvanishing contribution to the total cross section at infinite energy which
comes from diffractive processes. We consider two converses of a result of
Le Bellacs), who showed that if the average n-particle correlation functions,
< Cn>’ increased only logarithmically with energy then the cross sections for
producing n particles fall faster than any power of (lns)—l. We show that if

the elastic cross section vanishes at infinite energy as (lns)—1 then it is
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necessary either that all < CZn>’ n> 1, increase with energy as < C2n> ~ (lns)zn_1

)n—l If exclusive diffractive cross

or that some < Cn> increases faster than (Ins
sections are nonvanishing, we find that the lowest average correlation function,
< Cz>, must increase as (1ns)2. In this case <Cz> is bounded by the square of
the average multiplicity:

elastic 2

<Cy> 2 <n> . (1

27 = 7 _total

A more stringent bound on <C o> can be obtained, which includes other diffrac-
tive cross sections on the right-hand side of the relation (1). We have no proof
that higher average n-particle correlation functions increase with energy as
(lns)n, but this seems quite likely.

We study in detail the case of nonvanishing diffraction and we show that
it implies the existence of long-range two-particle correlations among particles
of the same species when they are well separated in rapidity, both from each
other and from the incoming particles. Because experimentally (Telastic/o_total
is at least 1/5 at accelerator energies, this correlation will also be at least
1/5 of the square of the average multiplicity if diffraction cross sections do not
vanish. The presence of these long-range correlations implies a certain
amount of nonfactorizability of the Pomeranchuk singularity, which, however,
may not necessarily show up in total cross section or single particle distribu-
tion measurements. If the Pomeranchuk singularity has I=0 and is even under
charge conjugation then particles will have long-range correlations with all
other particles in the same isomultiplet and their antiparticles. For example
there would be correlations between different pions and between different kaons,

but the correlation functions among members of different isomultiplets need

not have a long-range component.



We discuss in section 6 the feasibility of detecting these long-range corre-
lations at the ISR and make some comments on theoretical models in the light

of our results.

2. Definitions and Scaling Properties
We shall be mainly interested in one- and two-particle inclusive reactions
which we denote generically as a+b —c¢+X and atb —~cy 2+X We shall adopt
as a convenient notation the particle type as a subscript for its momentum
(e.g., P, is the momentum of a). The differential cross section for the process

a+b — ¢+X will be written as

do®

ab _ 1: tal
B, 3 Oe) NPy DpiBy) 2)
P
c
so that
a’ P,
E_ ab P PpiPy) = <n> (3)

is the average multiplicity of particle c¢ in the ab process.

We write, similarly, for the process ath — c1+cz+X

c.C
d‘raé ? total, . .°1%2
E E —m=—p5—=0 (s) N (P P3P, ,p) , (4)
¢y Cy d3p d3p ab ab b c,
€1 G

and we have

1 Cz €1% %1% %1% %
E, E, Nop  (ParPpiPg p ) n'n -5 n ab - ()
1 2

For ease in writing we will drop the ab subscripts whenever they are

unnecessary.



c,C

We will define a two-particle correlation function Caé 2 as
c.C c,c
1°2 . _n 12 , _
Cab (pa’pb’pc P ) Nab (pa’pb’pc ,Pe )
1 2 1’ 72
¢y ¢,
~ Nab(pa,pb;pcl) Nab(pa,pb;pcz) . (6)

We will return in section 5 to alternative definitions of correlation functions.

It is clear that if we had totally uncorrelated production of cq and Cy that
c,c :

Caé 2=0. This cannot be the case because overall energy momentum conser-

)

vation imposes the constraints3

E : dgpc c [
'/‘-E;_ Nab(pa’ pb’pC) pl.ct = (pa+pb) ] (7)
c
d3pC2 €1%9 1
E : ) = . - K
E Nab (pa,pb,pc »Pe )pﬁ Nab(pa’pb’pc )(pa+pb Pe > . (8
o c2 1 2 2 1 1
-T2

which yield in particular

d3p
c, C.C c
2 172 . _n 1 .

| TR gy, 2B, )P =N lw m e ) (9)

c 1 72 "2 1 71

c 2
2
©1%

Thus eq. (9) informs us that at least some of the correlation functions Cab

are nonvanishing for purely kinematical reasons. We should remark that there
are further constraints than those written above that follow from energy
momentum conservationS). These constraints involve, however, number

functions for more than two particles.



We will be using in what follows, as a convenient kinematical variable, the

particle's rapidity. It is defined in terms of the particle's momentum by

pc=(mcl coshyc, P, » p,» m, smhyc) , (10)
X y 1

where m, =V §+ p(z3 + pi is the transverse mass. For large initial energies
L X

the rapidities of the produced particles in the c.m. system have kinematical

2)

regions that extend to +Y with Y ~ 3 Ins. Another useful variable is Feynman's

X = , (11)

where P, is the parallel momentum of particle ¢ in the c.m. system. TFor
i

large energies the kinematical limits on x are -1<x<1.

6)

From recent studies of inclusive reactions by a variety of approaches

c,C
has emerged the expectation that sz, Na%) 2 and higher number functions
should exhibit scaling properties at high energy. ' By scaling we mean here that

at high energy in the c.m. system as s—:

C . . C -

Nab(pa’ pb’pc) Nab(xc’ pcl) ! (12)
c,c c.C
172 172 — —

N (P s sP. P ) N (X »X P P ) . (13)
ab a pb ¢y ey ab ey’ ey’ ey ey

We should note that in expression (13) the point X, =Xc =0 is somewhat special:
c,C 1 2
in that case it is simpler to express Nab in terms of rapidities. The property

of scaling is defined to be, for X, =X, = 0,

1 2

c.C c,C
lim N (Y,y. ,y. ,p. »,p. )—N (y, -y.,p, »p, ) . (19
Y e 20 IR ab Yeq Tegiiey ey,

Some limited confirmation of scaling of the single-particle number functions

7,8) . We shall assume in what follows

has been obtained recently at the ISR
that all these scaling properties obtain.
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A simple consequence of the scaling behaviour of inclusive reactions is the

expectation that multiplicities grow logarithmically with energy
<n%. ~1ns
ab

Strictly speaking, the above does not follow only from scaling. Itrequiresalso that
N° (x =0, Iy ) be nonvanishing at least for some values of p. , and that the

ab‘ ¢ c, c,
number function be cut off in the transverse momentum. For pions, which
constitute the bulk of produced particles, both these properties have experi-

)

mental backing7 . We shall assume in this paper that this logarithmic growth

obtains.

3. Energy Momentum Constraints
Here we would like to examine the constraints imposed on the two-particle
correlation functions by four-momentum conservation. Much of the discussion
that follows is based on the paper of Browns) and represents a modest exten-
sion of his work.

We begin by examining the constraint (9) for the energy component. Then

we have
C c,C
1_ 3 1°2
E, N ——z:fdpc c , (15)
1 cy 2
(]

Since N 1 is a positive function it follows that the integral on the RHS of (15)
must be negative. Thus energy momentum conservation tells us that the
correlation functions Cc ° cannot be positive definite. This is a reasonably
intuitive result since it says that the inclusive distribution function for two
particles cannot always exceed the product of the two one-particle distribution

functions, something we expect especially when the two particles observed have

large parallel momentum.



We can be more specific about the nature of the correlations demanded by
energy momentum conservation by examining also the longitudinal constraint in
eq. (9). We will assume we are in the scaling regime and work in the c.m.

system. Then we can write in the limit as s — e,

C c,C
(Ix. l+x )N Yx_ ,B ) =- fdp ax ¢ '%x ,x ;. B )X
¢t °% 1 1L ;2 Ca1 ©C2 €1 %2 ©1 Co
I, ld:{xc
2 2
N\ =T ) - (16)
)
i X, > 0 we have the two equations
1
C c,C
N “(x, »p, ) =- Z/ d'p, dx, €~ "(x, ,x, P, P, ) ,
1 11 c2 xC >0 21 72 1 2 11 21
2 (17)
Cc.C
. 2 1%2 —
0=-" f dp dx C (X, X ,p P, ) . (18)
‘E;x <0 C21 ©2 €1 ©C3 71 "Cgy
Co

Thus we learn that we need a negative integrated correlation for XC1> 0, Xc2 >0
but need no integrated correlation for x(31 > 0, xCz < 0. Similarly we find that
for X, 1=0 we have that the integrated correlation must vanish for all xc2
Finally if X, < 0 and xCz < 0 we find again a negative integrated correlation,

but no such correlation need arise when xcl< 0 but x02> 0. When both xcl and
xCz are zero we cannot say anything from eq. (16). The pattern of integrated
correlations demanded by energy momentum conservation in the scaling regime

is shown in fig. 1. Its correspondence to an intuitive picture of the structure

of correlations from energy momentum is manifest.



c,c
When lxc +xc | > 1 the two-particle number function N 172 vanishes be-
1 2
cause it is outside its kinematically allowed region. Thus we have

©1% - - °1,. = P2 =
C (x ,x ,p. ,p )=-N"(x_,p. )N ,p_), Ix_ +x I>1. (19
€1 % °n Cg ¢y Cu Co Co) €1 ©C2

In particular when X, — +1 the above holds for all X, 2 0. In this case the
1 2
constraints in (16) are satisfied trivially because of eq. (7).

4. Constraints on Weakly Correlated Models
c,c

172

Although it is not possible for the correlation functions C to vanish

identically it is fruitful to consider models in which these correlation functions

are in some sense small. If this were indeed the case then it would be suffi-
cient to determine the single—particle number functions NC and NCz to obtain
a good picture of what N0102 was.

A useful concept, introduced by Wilsong)

€12

, is to suppose that the correla-

tion function C vanishes for sufficiently large separation between the

rapidities of ¢y and Cos

length 512 so that

and to parameterize this by introducing a correlation

¢.c, IYcl'Yczl
C ~ exp T | ¥, Ve | large . (20)
12 1 2

Such a behaviour of the correlation function is characteristic of multiperipheral
modelsG) , dual modelslo), and the Feynman gas modelg) , and follows in general
from an analysis of inclusive processes along the lines of Mueller4), provided
the Pomeranchuk singularity is factorizablell) . We shall refer to (20) as

the weak correlation condition and call models for which (20) obtains weakly

correlated models.
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A decrease in the correlation function as indicated in (20), along with an

assumed limitation in the transverse momentum, implies that the average

correlation
c,c d3pc dspc c,c
172 1 2 172
<c >=[ 5 = C , (21)
€1 %2
increases at most logarithmically with energy,
c,C
<cl?y<ms . (22)

Relation (22) is a general property of weakly correlated models.

We remark that the behaviour of weakly correlated models for large
rapidity separation indicated in (20) cannot hold when one of the rapidities is
near the kinematical boundary Y. ~ Y without some additional restrictions.
That this is the case can be seen 1by considering the following sum rule,

trivially derivable from eq. (9):

3 3
d pc1 d pc2 cCy
. . 1
(nty= 2| w5 ®, -, 0C . (23)
m c c c 1 2
c 2 1 2
1
Since (p_ - p_ ) is just a function of the relative rapidity, y -y_,
c, “c c c
1 2 1 2
(p, *p,)=m_  m  cosh(y -y )~-b D, ., (24)
€1 % €11 Cau 1 %2 C1u Ca

we can, using (20), perform the integrand over (yc +yC ) to obtain a contribu-
1 2

tion proportional to Ins on the RHS of eq. (23). If the multiplicity is not to

grow more than logarithmically with energy then the integral over the relative

rapidity yc —yC must just give a constant factor. This will not be the case
1 72

- 11 -



unless one of the following three conditions are satisfied:

(1) The correlation function changes sign for large values of (ycl—ycz) » SO
that (20) ceases to be valid near the kinematic limits.

(2) The correlation length 512 < 1, in which case the integral over ycl—ycz
in (23) is clearly constant.

(3) There are cancellations in the integrals over transverse momenta in
(23), so that the correlation functions integrated over transverse momenta
obeys either (1) or (2). |

Conditions (2) and (3) are not met generally in models. So in general the
way to avoid contradictory behaviour is that condition (1) must be satisfied.

11)

In the usual Regge picture ™, with a factorizable Pomeranchuk singularity,

one has 512 =~ 2 and there is no dependence on (E;ll- F 2l). (The behaviour
discussed here is the leading behaviour. There are nonleading terms which

’ are proportional to 5;11- 1_);21 (Ref. 11). In fact these terms must be there

if one is to satisfy the transverse momentum constraints in eq. (9) as
emphasized by L. S. Browng) .) No contradiction arises since in this model
(20) is only valid when yCl and y(32 are both not near Y. There are additional
contributions to (20) when ycl, ycz are near =Y and a cancellation occurs be-
tween these terms and the terms coming from the behaviour indicated in (20),
when one performs the integral indicated in (23). The net result is that <n®
as calculated from (23) indeed only grows like Ins. What we learn then is that,

in weakly correlated models, the two-particle correlation functions must

change sign as we let one of the rapidities approach the kinematical limit.
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In a particular model it is possible to make use of the constraints implied
by (20), or more generally by (9), to relate various parameters of the model.
For the Regge model most of the constraints implied by (9) follow already
from (7). These types of constraints have been analyzed recently by Tye and
12)

Veneziano The constraints that follow only from (9) involve functions in

which both cq and c,y are in the same fragmentation region. The relations that
ensue do not appear to be directly amenable to experimental investigation.
They are discussed in detail in Appendix A.

It is amusing to point out that experimentally <n7r>/ <nK> is not too dis-

similar from the mass ratio mlzi/m?r so that it appears that

3

3
¢ p"1 ‘ Pey €1%2
> = 5 (®, "p,)C (25)
c c 1 2
cz 1

2

is roughly independent of whether ¢y is a pion or a kaon. We do not have a
éatisfactory explanation for this observation, but remark that the factor

(pcl- pcz) weights the integral in (25) toward higher invariant masses of the
pair of particles in question. Thus it appears reasonable to suppose that some
of the strongly SU(3) breaking effects that arise for small invariant masses
such as from the presence of low mass resonances are damped out by the
weighting in (25).

5. The Role of Diffractive Processes

Some recent work of Le BellacS)

has questioned the validity of weakly
correlated models. A characteristic of weakly correlated models is that the
average of the n-particle correlation function < Cn> , Which is defined and

discussed in Appendix B, grows only logarithmically with energy

<C > ~1Ins . (26)

- 13 -



What Le Bellac showed is that the behaviour (26) is incompatible with the
presence of exclusive diffractive processes. This realization is contained in
the work of Wilsong) , although in a less general form.

We shall here discuss two converses of Le Bellac's result. We consider,

with Le Bellac, the obviously positive quantity

C

o0
C_\2_ _ 1 2: c c_2
<@ - <n>)> = O_total Zy (n”-<n’> )O-nc . (27)

Here e is the partial cross section for produéing precisely n particles of
type c. By "type c¢'" we could mean particles of a given set of quantum numbers
(e.g., 7r+) or we could mean, for example, all charged particles, or all par-
ticles. In this last case, e is the usual n-particle production cross section.
In general it is a partially inclusive cross section. We can write the left-hand

side of (27) as

c, C ' c c 2
<n (n"=1)> +<n’> - <n >

2
<(nc— <nc>) >

i

<’ +<c%s . (28)

The RHS of (27) can be bounded by the term which contains the elastic contri-

bution so that at large energies we may write the inequality

c 2 o_elaLstlc:

<c%> + <n% 2 <n (29)

total
o

If o_elastlc/o_total — constant as s —o we see that we obtain a contradiction

with weakly correlated models. For if < n®> ~ Ins we must have also that

<% o (g)? . (30)

It 0'Eﬂ{’lStm/O'total — 1/Ins as s — e (shrinking Pomeranchuk singularity) then

there are no inconsistencies at this level, but a consideration of higher corre-

lation functions again restores the inconsistencyS) . These matters are

- 14 -



elastic , total
/o -

considered in detail in Appendix B where we show that if o 1/1Ins

as s —» then, provided no individual <Cn> grows faster than (lns)n-l, all

<C on> must grow like

<Cy > ~ (Ins) 221 m>1) . (31)

In Appendix B we also discuss the higher correlation functions in the case
Uelastic/o_total — constant and find no constraints on their behaviour beyond
that of eq. (30).

We would like now to consgider in depth the implications of having
a-elaStic/o-tOtal—> constant as s —«. We are motivated to do so partly by the
recent ISR datals’ 14 on pp elastic scattering which seem to indicate a non-
shrinking diffraction peak; and partly by the fact that in this case it is possible

to discuss differences, at the level of the two-particle correlation functions,

from weakly correlated models. We do not need,of course, to restrict

ourselves to the case where only o_elastlc survives as s —~». We can more
generally consider that we have
. N
o = lim lm ) o #0 . (32)
DIFF ¢ . g—w n=g 0C
We note that O‘C]:)IFF defined in (32) may depend on particle ¢; however, for any
c > 15 elastic . . c . .
¢ ChIFF 2 11ms_’°° O-ab . It is possible to have O DIFF >0 even if particle

¢ is never produced diffractively. It is clear that analogously to eq. (29)

asymptotically for large s

N
Iim o (s
e +<n® > <nc>2 ) g::o nc() N
<C> 2 total (33)

-15 -



Equation (33) holds for all values of N so we have the asymptotic bound

C

o
<Ccc> > <nc>2 DIFF
- o_total

(34)

Experimentally diffractive contributions (e.g., from elastic scattering) are
at least 1/5 of total cross sections at accelerator energies. Thus if the
Pomeranchuk is flat, eq. (34) suggests that there may well be long-range
two-particle correlations at very high energies of the order of 1/5 the square
of the single-particle multiplicity.

Equation (34) implies that the average of the two-particle inclusive dis-
tribution at high energy is always greater than the joint average of the
respective single-particle distributions:

c
o
c, C c 2 DIFF
- > _—r——
<n (n -Y> 2 <n > <1 + O_total> . (35)

We remark that (35) holds for all types of particles so that if it is experi-
mentally more convenient one can sum over various types of particles

(e.g., charged particles). Equation (35) is, however, an asymptotic state-
ment and may not be verifiable even at ISR energies. At subasymptotic energies

we have the inequality

c
o
<nc(nc—1)>2<nc>2<— L + DIFF> s (36)

< nc S o_total

and we see that, unless <n%> is large, there may be significant variations
from (35).

The net import of Le Bellac's work is that the correlation functions cannot
be as simple in structure as the ones given by weakly correlated models. If

there is nonshrinking diffraction the two-particle correlation functions must

- 16 -



have, besides a short-range piece, also a piece whose nature must be one of

a long-range correlation. This latter piece is responsible for the (lns)2 growth
in these correlation functions. This separation of correlations into short-
range correlations, which are a result of factorizable Regge mechanisms, and
long-range correlations, which are a result of diffraction, has been extensively
discussed by Wilsong) in the context of multiperipheral models. We would like
to examine it here in the light of Mueller's analysis4) .

The use of Mueller's technique to relate inclusive distributions to discon-
tinuities of forward multiparticle amplitudes yields average n~particle corre-
lation functions which grow like Ins if the Pomeranchuk singularity is factor-
izable. We show in Appendix B that if diffractive cross sections fall like
1/Ins, as would occur if as? #0 and diffraction peaks shrink, then
< Cn> ~ (lns)n_1 is a possibility. This behaviour is expected in the Mueller
analysis because of the presence of nonfactorizing Pomeron cut corrections to
écaling falling like 1/Ins. Thus it may well be that the result of LeBellac and
its converse reflect the incorporation of unitarity in the form of Regge cuts
into the analysis of multiparticle reactions via the generalized optical theorem.
As we showed earlier, long-range correlations are not required by energy-
momentum conservation.

If diffractive cross sections are constant, corresponding to oz'P =0, then
the concomitant growth of <C 9>~ (lns)2 implies that the Pomeranchuk
singularity cannot exactly factorize. This lack of factorization manifests itself
in the existence of long-range correlations for the central region in the rapidity
space of the two particles in question. In diagramatic language this long-range
correlation ensues because the diagram of fig. 2 does not factorize. We should

note that in Mueller-type models one would expect from this absence of

- 17 -



factorization at Pomeranchuk vertices that the higher average correlations
< Cn> ~ (lns)n. Although the evidence is by no means overwhelming, there
appears to be experimental support for the factorization properties of exclu-

15)

sive diffractive cross sections and of total cross sections and single-particle
distribution functionslG) . It is possible to envisage models in which in fact

one preserves factorization for total cross sections and single-particle dis-
tribution functions but fails to obtain this property for two-particle correlation
functions. For example, it may be that multi—Pomeron contributions, which
presumably do not factorize, are consistently more important in Mueller-Regge
analysis than they are in Regge analysis.

The conclusions that we have drawn about two-particle correlation functions
from the converse of Le Bellac's result apply in the first place only to correla-
tions among particles of the same type. That no such restrictions can follow
for correlations among different kinds of particles without additional assump-~
tions can be seen by considering the following example. Suppose there were
two kinds of particles and that the partial cross section for producing n particles

of type 1 and m particles of type 2 factorized:

O-n,m - (6n1 * Pn) (8m1+ Pm) : (37)

Here Pn and Pm are Poisson-like distributions for particles one and two. The

above model has nonvanishing diffraction but it is clear that

<n(1)n(2)> = <n(1)> <n(2)> R (38)
so that

<cl% =0 . (39)

We can, however, use physical arguments to deduce constraints among

correlation functions of particles of different species. Charge conservation

- 18 -



gives the constraintg)

3
c, ¢ d'p, cy C4Cy
1,71 _ 2 1
QN e == s QC S, p,) s (40)
1 Cy Cy 1 "2
°1
so that if @ = +1 we have
c c.c
1 _ 1%
{n )= Z Q, Q {C >
c 1 72
2
c.c c,c
1
=-c -2 e q <c 12y, (41)
027401 172
€11 2
If we have a nonvanishing diffractive cross section so that {C > ~ (Ins)

then we see that the above requires that at least one of the unequal species
correlation functions grows like (lns)z. In particular if we consider that =
mesons are much more likely to be produced than K mesons so that presumably

< Cm> >> < CWK>. We can deduce that

-+

AT
C ~ C > . (42)

Further predictions follow if we are willing fo commit ourselves some more on
the nature of the Pomeranchuk singularity. As remarked above, the long-
range correlations come from the nonfactorizable diagram in fig. 2, and if the
Pomeranchuk singularity has I=0 and is even under charge conjugation we can
deduce that

+ +

..
Ketiy=¢Kc"T ), (43)

KK, 4
e Piy=¢cK ¥, (44)

- 19 -



where i and j go over all charges and strangenesses. No relations among 7-K
correlation functions ensue. More generally, we obtain equality among all
correlation functions of particles of the same I-spin multiplet or among
particles which can be related by charge conjugation. No relations exist for
particles belonging to different multiplets without involving some higher
symmetry, and those correlation functions could be, although it is unlikely,
Zero.

It is possible to adopt a different type of nofmalization for the inclusive
distributions which de~emphasizes the role of diffractive processes in the

correlation functions. For example one could define a correlation function

c
~ce __ 1 I— do° “DIFr\ 1 do® dg®
C = otal ' Be Fe, 3 5 " \!" ~Total /) Total Tc, 3 E.. 3
o 1 72 d'p_ d P, o o 1dp 2 dp
€1 % 1 2
(45)
Then
~cc c,.c o-(Iz)IF]E‘ c 2
<C ' >=<n (n-)>- {1+ ~total <n >, (46)
so that we would have
o
< (nC -< nc>)2> = —%ﬁl <nc>2 +<n’> + <C°% 47
o0
c
“DIFF ¢ 2
2 tal <> ,
otota
which yields no constraint at this level on <C%% except
<C%% +<n% >0 . (48)
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The definition (45) is, however, rather unnatural and does not help to elucidate

the role of diffractive processes. A more natural definition would be to nor-

malize the inclusive distributions not with O_total but with O_total - O-%IFF

(experimentally this should be at moderate energies approximately O_melastic):

c
do~ _/ total c c
E, P <‘T ~ 9 DIFF ) P (49)
p
c
ce .
do _/ _total c cc
E.E, 30 & < - ‘TDIFF> ’ (590)
R
and then consider the correlation functions
ce cc cc
C =p -pp . (51)

However, the average of (51) still grows as (lns)2 if there are nonvanishing
diffraction processes.

Yet another definition of correlation functions has been adopted by

Wilsong) . He divides from the start events into multiperipheral, i.e., short-

range, and diffractive, and weights each event by the ratio of

_ __total
murr =9 pIFF °F DIFF

definition also leads to long-range correlations coming from the diffractive

-0 depending on the type of event. This
part and so it has the same disadvantages as the ones displayed in (49) and
(50). It has the further difficulty that one must experimentally decide what
events are diffractive or multiperipheral.

Finally we should remark that perhaps the whole idea of redefining
correlation functions so as to de-emphasize diffractive events may not be
very practical because the only correlation functions which appear affected

by diffractive events are the ones that deal with particles of similar type.
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Further, definitions of modified correlation functions such as those of eqs. (45)
and (50) are difficult to generalize naturally to correlations between different

is independent of ¢. In general, by redefining these

ticl less o
particles unless o yrom

correlation functions we may get rid of diffractive effects for correlations
among particles of similar type, but perhaps introduce extraneous effects in

the correlation functions of unlike particles.

6. Experimental Implications and Theoretical Comments

It is worthwhile discussing whether the long-range correlations that follow
from constant diffractive cross sections are observable at the ISR. The cor-
relations we have obtained, which come from the diagrams of fig. 2, would
show up when the two detected particles were well separated in rapidity from
each other and from the incoming particles. The total length in rapidity space
available at the ISR is about 8, so the optimal conditions for observing the
correlations we discuss would be when IY-ycll = lycl—yczl ~ ly02+Yl ~ 3. Since
the correlations due to Regge exchanges have a range Ay~ 2, it is not clear
that the long-range correlations we have been discussing will be dominant in
any kinematic region at the ISR. However some remarks can be made: the
optimal conditions correspond to particles observed with P, ~ +(1-2) GeV/e,
and if little correlation were observed between particles with these momenta,
that would be evidence against the picture of strong long-range correlations.
If large correlations were found, they might be due to short-range effects, but
by comparing correlation data at different energies and rapidity separations it
might be possible to separate out any long-range component. Although we have
no proof, we would expect any long-range correlations to persist into the region

where the two detected particles are in different fragmentation regions. The

existence of such effects would support the picture we have discussed.
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We would like to comment on certain models of multiparticle production
processes in the light of our results. Bjorken and Bander17) have considered
the function I(z;s) introduced by MuellerlB) and discussed in Appendix B. I

all correlations are short-range then

In I(z,s) = J(z) + p(z) Ins , (52)
because all the average correlation functions, < Cn>, would individually have
this structure. They then consider a thermodynamic limit where

. 1
p(z) = lim Ins In I(z, s) . (53)
S — o

Unfortunately the existence of diffraction processes makes this thermodynamic
limit somewhat problematic. Indeed if the Pomeranchuk does have a'P =0,
then eq. (52) would not be a useful approximation.

Certain other authorslg-zn have proposed models in which the predomi-
nant multiparticle production mechanisms are diffractive. The double diffrac-
tion dissociation modellg) , at least in its original form, has no pionization
and so does not possess the long-range correlations we discussed in section 5.
Diffractive models with pionization must either have exclusive cross sections
falling as some power of (1/1ns), or have positive long-range correlations of
the order of the product of single particle distributions, or violate scaling as
defined in section 2. The diffractive excitation modelzo) chooses the last of
these three alternatives: because its exclusive cross sections oL l/n2 as

n—o, it has

C
L Zc1?2 . 9
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This inconsistency with scaling, as derived for example from Regge theory by
Mueller4’ 18) , will be shared by the version of the diffractive excitation model
called the Nova modelzz), as it also has o~ 1/ n2. The Nova model has in
addition, because of its lack of two-fireball production processes at inter-
mediate energies, strong negative correlations between particles in
different fragmentation regions. (According to the Nova model, in most
interactions the produced particles will either all be going forward or all back-
ward in the c.m. frame.) We leave it to the reéder to decide whether he or

she finds palatable these strong long-range correlations or violations of scaling.

- 24 -



Appendix A

In this appendix we consider the constraints imposed by energy-momentum
conservation on the correlation functions in the context of the Mueller analysis,
where scaling distributions factorize as do the Regge corrections to scaling.
For simplicity we consider the case where the leading Regge trajectory is
nondegenerate. Tye and Venezianolz) have obtained relations between Regge

residues and corrections to fragmentation distributions from the sum rule

3
d P,
z: . Moo
C f Ec Nc(pa’pb’pc) Pe _(pa+pb)“ : (A.1)

In the limit of large s, and assuming scaling in the form

ozR—l

total -
(8) =g5 + gl s :

-1

ootal o e o) = NoUX . T N°© R
(s) N'(p_»pp;p,) = 8pNp(X,»P, ) * 8pNp(X, SINE ,

. c — c — . . .
where the quantities NP(Xc’ pc J_) and NR(Xc’ pcl) are defined graphically in

fig. 3, eq. (A.1) can be rewritten as

d P, dx o,-1 o,-1
R — 2,2 "R —
Z / lX l gPN%-*_gRN;S )'( lXC l’pCl’ Xc)z(gP+gRS ) * (2> 0, O)

0 ag~t
Comparing the coefficients of s~ and s we obtain:

1 0
gp ~ Xc:fo dx d'p  Np(X .P. ) —;[1 dx d"pNpo(x ,p ) »  (A.22)
and
=Z.[ldXd2 NRx, T, _Z/‘dedz NT(x D, A.2b
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We now consider the energy-momentum sum rule relating the one-particle

distribution to the two-particle correlation function:

o N o, B, 5P, )—- 2 4Py iP, P )p“ . (A.3)

C’C

(Equivalently we could have considered eq. (8), which relates the one- and
two-particle distributions, and have obtained the same results.) It was
observed in the main text that the sum rule (A.3) was incompatible with the
scaling limit unless Regge corrections to scaling observed certain consistency
relations. To see this, consider the scaling limit where eq. (A.3) becomes,
in the pionization case (xc =0)

1

dXdp CC

Z/ (p pb,pc,pc) (Ix l,xcz)\/é . (A.49)

According to Regge theory, we expect that for X, #0 the leading terms in

clc2 2

C have the form

a_-1
c.cC R c c
172 . \/S! €1°1 — - N 2 %1 .

gp i Cy 21 2 11
CCy

The quantity grp (p ) is defined graphically in fig. 3. On substituting this

11

expression into the energy-momentum conservation sum rule (A.4) we find that
its satisfaction is guaranteed by the relations (A.2) between Regge and

Pomeranchuk residues.
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We now discuss the relations that can be obtained from eq. (A.3) when one

considers the limit X, #0:
1

c,C

dx dzp

— ¢1 Co Ca1 C1%2

(Ix L,p ,x )N “(p_, ;p)=—2 ——— C (PR3P P )

¢, They ey a’Pp cy . Ixczl a’Pb ¢’ e,
2

<(Ix, 1,p, .x_ ) . (A.5)
€2 a1 ©2

c,c
In this case the leading terms of C 12 take the form:

c.c a. -1 ] c
total 172 R 1 - 2
o (s) C ~ s NR (xc ,pc l) NR (x(3

D, )+
1 % ¢

2 T

2
g c c
R 1 — 2 —
+—5 No(x, ,p, ) Ng(x, ,p, )-
2 P ¢y Cyy P Cy' " Cy,

Ep
gp C c

1 — 2 —-
-—N_(x_ ,p )NS(x ,p )-
gp RUeyey Pleyey)

g, C c

R %1, - 2

S Batx ., N 2x ,
gp p ¢y Poy) R cy pc2l)

if sign x  # signx )
¢y ¢y
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and

total, . ©1%2 €1%2 - - T2 J——.
o (s)C ~ [Ny “(x, »x, sP, P, )8p~Np (X, »P, Np (x P, )
2 ‘1 ‘a1 1 Cu C2 a1

-1| ec,c
172 —
+8s R [NR (XC ’XC Y ,p )gR

1 % Su Ca
g2 c c
R 1 — 2 —
+—= N (x,,p ) N (x,. ,p ) -
2P ¢, cqy P Cy’ "Cy)
P
g, C c
R 1 2
-=N_(x ,p,6 )N (x, .p, )~
gp RUepcy Preyey
g, ¢C c
R 1 2
- gP NP (Xclsp ) NR (XCZ’ pcz-L)] ’
if signx = signx
°1 2
Rl I? (x ,xC ,5; ,5’0 ) are defined in fig. 3. On substituting these
2 1L 721 C1Cy '
expressions for C into the sum rule (A.5) the following
expressions are obtained for PII?
for x >0
°1
Cy c,C
1 2 — —
(1x)N S Zfdxdp (%o, Po Po,)
PR 1L e, 70 o1 PoR o €1y Caf

forx <0
c

C
(1+x )Ny p(X, »P )=§:f dx, d'p, (x X »P. »P, )
¢ BRUepeny Gl %2 P, R
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These equations (A. 6) and the original relations (A.2) are sufficient to ensure
that the energy-momentum constraints (A.5) are obeyed. They are consistency
conditions that must be imposed on any Regge model of inclusive spectra,
though how useful they are is open to question. Because eqs. (A.2b) and (A. 6)
refer to the coefficients of sa - in asymptotic expressions for the inclusive

distributions, they should remain valid even in the presence of long-range

correlations.
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Appendix B

We define an m-particle inclusive number function for the process

atbh — ¢, +c +...+cm+X as

172
C{CqH...C
do 172 m
E, E, E 3 =
1 72 m dp dp d'p
c c
1 2 m
o total €1%°"%m )
b ()N (paspb’pc,pcr-'pc ) . (B']-)
172 m

We shall be interested in the case in which all c, are of the same type and for

ease of notation we denote simply

C1Co-+-Cpy
Nab (pa,pb;pcl,pcz, . .pcm) = Nm(l, 2,...m) . (B.2)

We define m-particle correlation functions as is done in the cluster expansion

in statistical mechanicszz) via the sequence
N,() =Cy(D)
N,(1,2) = C;(1) Cq(2) +Cy(L,2)
N3(1,2,3) = Cl(l) Cl(Z) 01(3) + Cl(l) C2(2,3) + 01(2) 02(1,3)
+Cl(3) Cy(1,2) +C3(1,2,3) ) (B.3)

and in general by

N_(1,2,...m) = Z }: [cl()...cl( )ZI [cz(,)...cz(,)] i C_ ()

{ i} Perm. N, o’ N, enne”’ N e’
!Z factors ,Q factors zm factor
(B.4)
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Here ﬂi is either zero or a positive integer and the set of integers {ﬂi}m satisfy

the condition

m
Y. i, =m . (B.5)

The arguments in the Ci functions are to be filled by the m possible momenta
in any order. The sum over permutations is a sum over all distinct ways of
filling these arguments. We note that for any given factor product there are
2) '

. 2
precisely

m'

(B. 6)
1 i
[(1'.) Loy 2. (m!) m] YR

terms.

The average of the m-particle number function for particles of type c is

m d?’pi . o .
1111 ———Ei Nm(pl’pZ""pm) =<n (n-1) ...(a -m+L)> . (B.7)

We define the average of the m-particle correlation function as

3
m d p;
iI=71 -—E—l— Cm(pl,pz, . .pm) = <Cm> . (B.9§)

In the text we denoted the average of the two-particle correlation function by

< Ccc> . It is clear that

<c®% = <C2> . (B.9)

We may use (B.4) to express the average of the m-particle number functions

in terms of the sum of averages of correlation functions. We have
c ¢ c m [<C>\] 1
<n’(n’-1) ...(n —m+1)>=m'.z I *-,-L 0 . (B.10)
{ﬁ.} =1 3 i’
ifm
In obtaining (B.10) we have made use of the counting argument (B. 6).
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23)

It is convenient to consider the generating function

I(z;s>=”t?tlﬂ’(' 2. Tpole) () (B.11)

(og S) n

Thus I(z-1;s) plays the role of the partition function in statistical mechanics.

Then
1 [/ < 2 n(n-1) \
Wz:8) =1+ 4ofal kL 200 T LuE Ter Tpe Tt
o n -n ’
N\
R m <nc(nc—1) (nc—m+1)z
=1+ Z / T . (B.12)
m.
m=1
Using (B.10) we can rewrite this equation as
ad m (<C> Qj
Ness) =1+ 9 2™ D, 1T (—#—) f—,— : (B.13)
m=1 {ﬂi}m =1 " N

The restriction (B.5) allows us to write the above as

L.
2 m [<C>z)\!
Kzss) = 10 D oj <—~JJ,——> ﬂ—l, : (B.14)
m=1 {ﬁi}m =1 j

The sums over m and {ﬂi}m just mean that the sum is over all finite sequences.

Let [!Zi]m be a sequence with the restriction

Then

N
b m [<C>z\!
o) =1+ 0, D I <——Jl——> e (B. 15)
e : ] .
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It then follows easily that

X <C,. 2
I(z;s) = exp \ Z ‘ . (B.16)

i=1

We shall now make use of the generating function I(z;s) to compute the
expectation value of < (nc—< nc>)K> in terms of the average correlation functions.
The method of obtaining this relation is due to Brown24) and we are indebted to

him for the elegant derivation that follows. Consider the generating function

AK c ¢ K
1 =Y, G <@-<n®)> (B.17)
K
then
< (0%=<n%%s = iﬁ f(A)‘ , (B. 18)
da A=0

we may express the generating function £(A) in terms of z;s)

1 JK_ 1
f(n) = g A total ZO‘ (n -<n >)
K

K 4
= Z El- [( a%—<nc>> I(z-l;s)l . (B.19)
K

Thus we can write

f(A) = exp {7\ <z a@. - <nc>>} I(z-1;s) (B. 20)
Z —
z=1
Aza%
The effect of the operator e on I(z-1;s) is easily seen to be
.4
e 92 ppo1ie) =1(eMz-1) . (B.21)
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Thus we have

~A<n > 2
fA) = e € 1e™-1;8) (B.22)
which gives on using (B. 14)
hind <C >
f(A) = exp (e -1- )\)<n >+ Z (e 1) . (B.23)
=2

We are particularly interested in the even moments < (nc—< nc>)2K>, since
for these moments we can establishbounds. It isnow a straightforward matterto
generate any of these moments using (B.18) and (B.23). We write down the

first few even moments
c __c.\2 c
<{n’-<n">) >=<n > +<C2> ,
<(nC—<nc>)4> =<n® + 7 <CZ> + 6 <03> + <C4> +

+3(<n’> +<Cyp) (<% +<Cp) (B. 24)
We can obtain in general the 2Kth moment by Faa di Bruno's relation%)

2K
2K _ d
> = o () ‘

Il

< (nC -< nC>)

2 Y (h(z)---h(2)> (6®....3)... K@
2

{2 } 3. ot ZK \,\~ W Sa—
112K 22 factors !23 factors !ZZK factor
(B. 25)
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Here d 2 is given by (B. 6) with m=2K and

2223. el
Gy d
h = = h(?\)’ , (B.26)
A A=0
where
2. <C >
h() = (€' -1-2) <n%> + E o -t . (B.27
£=2
Further the set {ﬁi}ZK obey the restriction
2K
E ig, =2K . (B.28)
i=2

As can be easily seen the h(l) are given in general by
i

. v-\
W= a<cs , (B.29)
=1 1

where the d]. are positive coefficients.

We are now in a position to prove the observations made in the text.

K

elas'tm/crtOtal»1/(1ns)0£, >0, as s—w». Then <(nc—< nc>)2 >

Supposethat o

is bounded asymptotically by

elastic
2K-o
ol "~ (Ins) . (B. 30)
o

It is clear that this bound can be satisfied if <C, > ~ (1ns)2K~a for, according

to (B.25), <(n®-< nc>)2K> contains a term proportional to < Cyp > ~ (lns)ZK—a .

If no <C,> increases faster than (lns)K-OH1

K
< C2K> ~ (lns)ZK_a' The necessity ensues because no other terms on the RHS

2K-wo

then it is necessary that, for all K>1,

of (B.25) except h(ZK) can grow as fast as (lns)
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If U%IFF/ (TtOtal is nonzero, then we have the asymptotic bound
&
<(n®=< nc>)2K> > «n-2K _DIFF (1ns)2K ' (B.31)
0_1;01:&11

This bound necessitates, for K=1, that <Cz> ~ (lns)z. This condition is also
sufficient to guarantee that <(nc—< nc>)2K> ~ (Ins) 2K, for the RHS of (B. 25)

contains the term (h(2)>K ~ (lnS)zK.
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Figure Captions
1) Patterns of integrated correlations due to energy-momentum conservation.
2) Mueller diagram that does not factorize when there is diffraction.

3) Graphical definitions of functions used in Appendix A.
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