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ABSTRACT 

A method for deriving rigorous upper bounds on asymptotic values of total 

cross sections is discussed. The size of the bound is determined by low energy 

data. A functional form for the total cross section at high energies is assumed 

and bounds on the parameters introduced are obtained. The method is applied to 

7r - 7~ scattering, and numerical estimates, using experimental data, are given 

for different parametrizations. For an asymptotically constant (TV, we- find 

a,(“) 5 40 mb. Better data would improve the accuracy of this bound and could 

lower it significantly. 

(Submitted to The Physical Review) 

* Supported by the U. S. Atomic Energy Commission. 
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One problem often faced in physics is to estimate, or at least to limit, an 

experimental quantity in regions where it has not been measured. In this note 

the Froissart-Gribov representation and a knowledge of finite energy scattering 

will be used to limit the value of the total cross section at asymptotic energies, 

assuming a functional form for B T in this region. 

Suppose that the experimental situation is as follows: the total cross 

section is known for x, the square of the center-of-mass momentum, between 

zero and c. Further, a partial wave analysis of elastic scattering has been per- 

formed for OS x 5 b 5 c, so that a finite number of partial wave elastic cross 

sections are known. For values of x above c, the functional form of aT will be 

assumed. For example, one could take the cross section to be given by 

a,(x) = a,(“) + UT(C) - a,cqfi; x 5 c ( I 

as suggested by Regge theory, and derive an upper bound on a,(“). 
1 

The Froissart-Gribov formula for the D-wave scattering length, d, for 

spinless particles of unit mass (isospin will be neglected for the moment) is 

where 

(2) 

K(x) = 3071-(1+x) 5/2x1/2 -1 1 
W = 1+2/x, 

and d is defined by 
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d = lim &i is2(x) 
pope 

sind2(x) . 

The aQIs are the partial wave amplitudes for the absorptive part in the crossed 

channel. 

The constraints will be written in the form 

2 T = x (2Q + l)aQ(x) = xo,(x)/8n 
Q 

(3) 

(4) 

forx> b, and 

for 0 4 x < b, where I fQ I 2 is (except for kinematic factors) the partial wave 

elastic cross sections for those values of Q which are experimentally known, and 

zero otherwise. The inequality follows from unitarity since b may be above 

inelastic thresholds. 

. 

The maximization problem is written in the form 

b 
2 = -d+ f dxK(x) c (2Q + l)vQ(x) 

1 
fQ 

1 2 

0 Q 1 

-f dxK(x) a(x) 
b 

x (2Q + l)aQ 
Q 1 (5) 

+ s 
0 

dxK(x) c (2Q + l)hp(x) aQ-aQ2 , 
Q [ 1 

where d is given by IN. (2>, vQ(x) and hQ(x) are Lagrange inequality multipliers 

and a(x) is a Lagrange equality multiplier. 
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The solution for the aQts which minimizes d is easily found by standard 

methods2 : 

aQ = I fQ12 (0 I x< b), 

and for x above b, 

aQ(x) = 1; I< L 

aQ(x) = 0 ; Q>L 

where L is the integer which satisfies 

(2L + 1) a,(x) = (XT-L2) , (6) 

with aL between zero and one. This set of aQ1s when substituted into Eq. (2) 

will yield a lower bound for d. The existence of a solution demands that a(x) be 

positive definite; the lower bound for d is then an increasing functional of aT 

and hence will provide an upper bound for aT if d is known. 

In order to evaluate this bound, it is convenient to define particular values 

of x by the integer M, 

xMuT(xM)/8n = M! . 

Then for x > b, and xL < x < x~+~, one finds 

L 

c 
XU T (2Q + l)aQPQ(w) = 8n + I2 

Q n=l (=T - n2) (an(w) - Pnel (w)) - 

(7) 

The contribution to d from values of x between 0 and b is easily written in terms 

of the I fQ12. The contribution for values of x between b and ~0 is conveniently 
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written in terms of the integer J, where xJ < b < x~+~. This contribution is 

In evaluating this expression, it is convenient to use the expansion 

Pn(w) - PnWl(w) = 2n/x + . . . 

which is valid if b >> 1 and the sum over n converges rapidly enough. 

One may now evaluate expression (8) by inserting for b < x < c the experi- 

mentally known oT(x), and for x > c, the assumed analytic form for aT(x). The 

resulting inequality may then be written 

c. 
d- &K(x) 5 d (2Q + 1) aQPQ(w) 1 [contribution of (8) for x > cl . (9) 

0 Q 

Expression (9) thus provides a bound on the parameters used to characterize 

a,(x) for x > c. 

This bound can be improved by including a constraint to fix the value of the 

elastic cross section, eel. The solution is straightforward but algebrically in- 

volved. If eel= aT, then the above bound on aT is not changed, of course. 

However, if eel(x) 5 igT(x) for x > c, then the upper bound on o,(x) in this 

asymptotic region will be about 50% smaller than that given by Eq. (9). 

The extension of our problem to particles with isospin is straightforward. 

In the case of ‘i~-r scattering, the isospin zero D-wave scattering length, do, 

can be written in terms of a linear combination of isospin amplitudes of the form 
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PopQ1, where PoI= (2/3, 2, 10/3). The form of the cross section constraints 

remains the same with 

Z; (x) = xu; (x)/8n , 

and the sums over Q are now over even or odd values depending on the isospin 

value. 

To estimate the size of our bound for 7r-r scattering, it is convenient to 

work in units where rn: = 1. We choose b = c = 24 and include the 600, 620, 611, 

and 6: partial wave phase shifts for x below 24 (s = 100). Inclusion of additional 

partial waves in this region can only improve the bound. The expressions 

sin26 I I 2Q+l 
Q = ‘Q tx) where used to fit phase shifts near threshold. Above threshold 

curves for sin2aQ1 were broken into several regions, and a straight line fit was 

used in each region. 3 With this procedure, and estimating the errors, we find 

that 

2 0 10 2 1 10 O 5 a0 + F a0 + 6Pl(w)al + YJ P2(w)a2 5 0.0045 . 

The value of do is estimated to be around 0.0030 by extrapolating a Breit-Wigner 

fit to the f. resonance. 4 Therefore, a conservative estimate for the left hand 

side of expression (9) is N(0.0005) where N is a number on the order of 1. 

We can use this result to treat several problems. First, we evaluate the 

right hand side of expression (9) by assuming that for x 1 24 U$ (x) = 2s BQn - , 
sO 

independent of I. By evaluating this expression at x = c we can write so in terms 

of B. We then use our inequality (9) to derive an upper bound on the coefficient, B. 

It has been shown5 that the convergence of the d-wave scattering length implies 

B 5 7r. Rough estimates indicate that with N N 2 and (So - 20 mb, B 5 5 . 
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While this does not appear to be a great improvement over previous bounds on B, 

improved low energy data and more careful approximation techniques could con- 

siderably decrease this value, and may be used to indicate the energies at which 

there is hope of experimentally detecting a QnZs growth in the cross section. 

Multiplying the coefficient of Qn2s by only $ means that one must square the 

energy for this term to achieve its previous value. 

Next we wish to treat the problem outlined in footnote (1). To facilitate 

evaluation of the right hand side of expression (9), we first make the reasonable 

assumption that o;(m) is independent of I, and second, as previously suggested, 

we assume that U; (x) is constant for x > 24 and not necessarily continuous there. 

This second assumption is made primarily to simplify the calculation, and our 

numerical results do not depend strongly on it. From the inequality (9), we then 

find that oT(m) 5 7.2 when N = 2, and a,(“) 5 4 when N = 1. This latter value 

is an upper bound of about 80 .mb for the total cross section. 

If the elastic cross section is included as a constraint in the original varia- 

tional problem, and if ael(x) 2 +a,(~) for x > 24, then the upper limit on uT(m) 

is about 40 mb for N = 1. From factorization, one expects oT(m) M 15-20 mb, 

and it is intriguing that our bound approaches this value so closely. 

A more accurate determination of the value of our bound requires a better 

treatment of both the asymptotic region, x > c, and better data to improve the 

left hand side of expression (9). However, the complexity induced by more 

realistic assumptions on the large x behavior of a,(x) does not seem warranted 

until the low energy region is better known. Accurate data over a large x 

region can considerably improve the bound on a,(“) and thus may provide a 

stringent test of factorization as well as other theoretical ideas. 
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