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I 

ABSTRACT 

A recently developed approach to scattering by regular 

structures is applied to an investigation of diffracted evan- 

escent waves. The scattered field is expressed exactly, in 

the near or far field, by a sum of 'plane lattice wave'modes. 

Attention is directed at the diffraction conditions obeyed by 

these modes when the scatterer is a finitely thick three 

dimensional non-orthogonal (triclinic) lattice of individual 

scattering centers. 
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I. Introduction 

Recent work has shown clearly that the angular spectrum of 

plane waves and especially the evanescent modes of the angular 

spectrum can play a helpful role in the study of a wide range of 

electrodynamic phenomena 
1 . Within the past several years, the angu- 

lar spectrum has been brought to play in new approaches to 

Cerenkovian effects' 
3 

and inverse scattering , for example. In 

addition, it has figured in a study of source-free fields4, a 

formulation of a diffraction theory of holography5, and the quanti- 

zation of an electromagnetic wavefield in an infinite space half- 

filled with dielectric6. 

It is important to realize that there are really two aspects 

to the use of the evanescent modes of a radiation field. In the 

first place, 
may be 

there R no unique set of evanescent modes associated 

with a given field. This is due simply to the fact that evanescent 

modes are characterized by exponential decay in one direction and 

plane-wave propagation in the transverse directions, and the direc- 

tion in which the exponential decay occurs may be undetermined. 

Thus one must approach with great caution the task of assigning 

physical significance to an evanescent wave. This lack of unique 

or clear physical meaning need not detract, of course, from the 

power of mathematical mode expansions which include evanescent modes. 

On the other hand, there are physical problems for which a 

given direction is already singled out. It may happen that this 
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quasi-one-dimensionality suggests the introduction of a mode expan- 

sion involving evanescent modes in a particular way. Individual 

evanescent modes, in such situations, may have a very direct 

physical interpretation. For example, the wave field outside of 

a totally internally reflecting dielectric decays away from the 

dielectric surface. Lalor and Wolf7 have treated the problem of 

reflection and refraction at such an interface by the use of the 

physically suggested mode decomposition of the transmitted field; 

and Carniglia and Mande16 have found triads of evanescent and non- 

evanescent modes at a dielectric interface to be essential for their 

treatment of a field quantization problem. 

In much of the previous work mentioned above, the principal 

interest has been in the"collective" interaction of a material, 

usually amorphous (isotropic and spatially homogeneous), with an 

electromagnetic wave. There are, however, large classes of prob- 

lems in which the microscopic view is more natural. Among such 

problems we can include electromagnetic scattering at such short 

wave lengths (X-rays and gamma rays) that the individual particles 

in the scatterer act independently, or scattering by media with 

some regularity or structure such as crystals. In addition, the 

microscopic viewpoint seems more natural for problems in which 

particles (electrons or neutrons, for example) comprise the incident 

wave and in which a particle-particle interaction potential causes 

the scattering. 
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Our interest is in this second group of problems. In this 

paper we extend some earlier work8 by one of us (JHE) on the 

quantum mechanical scattering by perfect lattices. In particular, 

we study the waves scattered by a general triclinic (three-dimen- 

sional non-orthogonal) arrangement of identical individual 

scatterers. We give up the notions of cross section and asymptotic 

scattering amplitude in order to focus on the distinctions between 

evanescent and non-evanescent (homogeneous) waves transmitted 

by the scatterer. 

The remainder of the paper is organized as follows. The 

next section restates the mathematical formalism, especially the 

Weyl angular spectral decomposition' for spherical waves, that 

will be used throughout the paper, Scattering by a plane ortho- 

gonal lattice in two dimensions is treated briefly in order to 

introduce our notation and summation method. A principal result 

is the derivation of what we have called a "plane lattice wave" 

decomposition of the scattered field into discrete modes. 

Section III then applies the results of Section II to show that a 

certain familiar critical angle arises naturally in our treatment 

of scattering. 

In Section IV we apply the concepts illustrated in Section 11 

for single-layer rectangular lattices to an arbitrary triclinic 

multi-layer lattice. In particular, the notion of "plane lattice 

waves" is valid in this larger context. Section V is concerned 
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with evanescent plane lattice waves, of which there are infinitely 

many J for arbitrary lattice angles and direction of incident 

radiation. We find that all integer points outside a certain 

ellipse define evanescent plane lattice modes. We discuss briefly 

in Section VI scattering from a three-dimensional lattice each 

unit cell of which contains two scattering centers of different 

type* Finally, after a short concluding section which summarizes 

our results, in two Appendices we comment on the validity of the 

Born approximation as used throughout the paper, and on the form 

of the second order terms in the Born scattering series. One 

sees easily, for example, how first order evanescent waves can 

be scattered into second order non-evanescent waves. 
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II. Weyl Expansion and Evanescent Waves in Two Dimensions 

In order to introduce our treatment of scattering by three- 

dimensional, finitely thick, lattices of extended scatterers, 

we review here our earlier treatment 
8 of two-dimensional 

lattices. 

As the simplest case we consider a two-dimensional 

(2N + 1) x (2N + 1) orthogonal lattice of identical scattering 

units - atoms, molecules or other microscopic scatterers - 

lying in the x-y plane of our coordinate system. The scattering 

units interact with the incident wave or particle - neutron, 

electron, etc. - through the single particle potential 

which for convenience we may imagine to have a 

finite range. 

We assume a scalar incident wave field, with the incident 

wave vector k lying in the positive z-direction, as shown in 

Figure 1. In the first Born approximation (applicable, roughly 

speaking, when multiple scattering is negligible (see App.A)), 

the amplitude of the scattered wave is 

We have suppressed the time dependence exp 

and have written (fi2/2m)U(r") for the total scattering 
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potential at point r' - due to all the scattering centers in 

the lattice. That is, 

where e(~,q) = sa+r$, As in Figure 1, 2 and h are the primitive 

vectors of the lattice, parallel to the x and y axes. The 

symmetry of the sum over integers c and -7 in (2.2) indicates 

that the origin of coordinates has been put at the central 

lattice site. 

It should be noted that, except for the special form of 

our potential given in (2.2), our discussion so far does not 

depart at all from the usual Born Approximation approach to 

scattering. In optical problems 10 one simply has, in place 

of N&y), some constant times the dielectric susceptibility 

x (r’) l 
However, the special form of our potential is important 

and may be exploited significantly in the limit of a lattice 

with very large N. 

We may mention in advance one point of view of our 

problem, adopted from optics, that might be helpful. Since 

our potential, in the limit of large N, will be periodic 

with double period a and b it will have a double Fourier 
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series representation. Each term in the series for the 

potential will be a sinusoidal function of x' and y' and 

will thus affect the scattering as a two-dimensional sinus- 

oidal diffraction grating would. The final scattered wave 

could therefore be viewed as the superposition with complex 

coefficients of waves scattered by a discrete collection 

of sine gratings. 

We must keep in mind, however, that-there is no limit 

to the fineness of detail (no smallest structure) in the 

individual single-particle potential U,(r'). Thus the dis- 

crete collection of imagined sine gratings would, in general, 

be infinite in number. We will not pursue this point of 

view further. 

After introducing s = r_' - f (~,y] into Eqs. (2.1) and 

(2.2) J and using the temporarily assumed ortho?onality of & 

and f ( 5 I ';! 1, one gets 
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The presence of the spherical wave factor in the integrand 

indicates, of course, that each scattering center acts as a 

point source for scattered radiation. We will find it convenient 

throughout our investigation to use Weyl's angular spectral 

decomposition of such a factor. Usually one now writes the Weyl 

decomposition as a double integral:' 

(2.4) e 
i klR_J 

= J 
ikfEi/ S' a PR ) SJ h 

where the vector P is defined by its Cartesian components 

(2.5) 

with the restriction 

Both p and q are real and run through all possible real values, 

and m is defined as m= w JT--z with the sign chosen 

so that, for z > 0, m is either positive real (when p2+ q2L1) 

or positive imaginary (when p 2 + q2> 1). Here, by z, of course, 

we are denoting the corresponding component of fl. For z <O 

the opposite sign convention is to be chosen in each case. 

After applying Weyl's formula to each spherical wave in the 

integrand of (2.3) and carrying out the sums one finds 
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where 

It is clear that, for large N, the diffraction functions FN 

become very sharply peaked and behave as delta functions. In 

fact one has the useful identity: 

where convergence is in the sense of distributions. Thus the p 

and q integrations in (2.7) may be exactly performed, and only 

these values of p and q contribute to the integration which 

satisfy 

where c1 and @ are arbitrary integers. Obviously, since a and b 

are in the x and y directions, respectively, and since k is in 

the z-direction, these equations can be rewritten as: 

We will use this more elaborate form since we shall show in Sec.IV 

that this generalization is, in fact, the only change in the 

restrictions on the vector p which will be required in the larger 

context of non-orthogonal lattices and non-normally oriented 
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incident waves. The vector c which satisfies these equations 

for specific integers o. and B will be denoted by Lp. In the 

present context of an orthogonal lattice and normally incident 

radiation we may write P -aB= k(pog9qogjmoB) where 

(2.10) 

Xb eing the wavelength of the incident radiation. Using this 

notation, we may finally write the scattered wave function of 

Eq. (2.1) very compactly: 

(2.11a) 

where 

This form makes evident the principal utility we find in 

the Weyl decomposition. It allows us to express the scattered 

radiation as a sum of elementary scattered waves, which we will 

call plane lattice waves, with amplitudes I-- aB 
and propagation 

vectors P -a@ * One important property which these plane lattice 

waves possess is already evident and may be mentioned. Since 

P& + q;, + m& = 1, it follows immediately that each plane 

lattice wave separately satisfies the homogeneous free space 

wave equation (02 
. 

+ k2) e%@'1^ = 0 for jzI > 0. In 

other words, the scattered radiation has been decomposed into 
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certain special free wave modes, modes which we will see are 

particularly suited to the geometry of the scatterer. 

It is interesting that the mode expansion given in (2.11a) 

depends on just two discrete parameters cr. and B. (This remains 

true for three dimensional scatterers). One may say that the 

two-discrete-parameter lattice-mode series in (2.11%) stands in 

the same relation to a three-discrete-parameter Fourier series 

as the two-continuous-parameter angular spectral integral (2.7) 

stands to the corresponding conventional three-continuous-parameter 

Fourier integral. 

Note also that if the scattered field itself is known on some 

plane 2 > 0, then the coefficients r 
a@ 

may be determined by a 

Fourier inversion, complicated slightly by the non-orthogonality 

of the a and b vectors: - - 

Here ra and rb are components of r along the 2 and b directions, - 

and the consequent non-orthogonal area element obeys dra drb= 

I(a_ x l&dxdy. Knowing the coefficients r 
M 

then allows, of 

course, the construction of the solution q(r) onany plane 

2 > 0, and the whole scattering problem is solved. Such an 

approach to a solution is more or less in the spirit of classical 

Kirchhoff diffraction theory, which attemp to construct the 
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entire diffracted field from a knowledge of the field itself 

either in apertures or on edges, and is, of course, distinct 
approach inwhichwe 

from our presentdttempt to describe the field from a knowledge 

of a scattering potential. The inverse or reconstruction problem, 

in which the potential is sought in terms of the scattered waves, 

has been discussed recently by Wolf 
10 

, using the angular spectrum 

of plane waves. 

It is important to emphasize that the-sum of plane lattice 

waves in (2.11) expresses the scattered field exactly for all 

points L in the half-space z> 0. The conventional scattering 

amplitude (i.e. the coefficient of e 
ikr /r in qS ) is now rather 

awkward to isolate. In other words, qY as expressed by (2.11) 

correctly describes the "induction" field near the lattice, as 

well as the asymptotic "radiation" field. 

The double sum solution in (2.11) is not in closed form, 

but it is very useful nevertheless. The scattered wave is a 

sum of plane lattice waves of two types corresponding to the 

two types contained in the Weyl decomposition (2.4): evanescent 

plane lattice waves (for which a and B are such that 

2 
P af3 +q2 > a@ 

1 and m 
aB 

is imaginary) which are exponentially 

damped, rather than oscillatory, with increasing ]zj ; and 

homogeneous plane lattice waves (for which mab is real), and 

whose dependence on all three coordinates is oscillatory. 
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For evanescent plane lattice waves the direction of travel 

(the direction perpendicular to the surfaces of constant phase) 

lies in the z = 0 lattice plane. There is no component of the 

propagation vector in the z-direction. One may verify that there 

is an evanescent wave propagating perpendicular to each lattice 

diagonal. The homogeneous waves travel into the z > 0 half-space. 

We may observe that since a real m a@ 
requires sufficiently small 

integers a and B, there are only a finite numberof such homo- 

geneous plane lattice waves. By the same token there are always 

infinitely many evanescent plane lattice waves in the scattered 

field. 

A further general remark can be made concerning the 

scattered wavefield. As (2.10) shows, if we have 

(2.13) 

then m 
aB 

is certainly imaginary, so we may call (2.12) the 

evanescence condition for orthogonal lattices and normally 

incident radiation. It is interesting to note that if either 

x > a or h>b, then the waves, except the o = 0 and B = 0 

waves, are necessarily evanescent. As soon as the radiation 

wavelength exceeds both lattice spacings, only one homogeneous 

wave (the forward-travelling 00 wave) is allowed, and all the 

non-forward scattered waves are evanescent plane lattice waves, 
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which travel in the x-y plane. This is the same as saying that 

O" and 90° are the only allowed scattering angles; or, in other 

terms, that very small details of the scatterer give rise only 

to evanescent transmitted waves 
3,lO . 

In concluding this section we must point out that we recognize 

that some of the results presented in it are not new. In partic- 

ular, up to Eqs. (2.9), which embody much of the traditional 

10 
Bragg-Laue picture of scattering, our results are standard ones . 

However, following Eqs. (2.9), we have concentrated on explaining 

a picture of the scattering in which some of the familiar features, 

such as the asymptotic amplitude and the scattering cross section, 

do not appear naturally, in order to focus our attention on 

aspects of the near field, such as evanescent waves, which are 

traditionally overlooked altogether. 
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III. The Critical Angle of Evanescence 

We now apply the results of Section II to show how a critical 

angle may come to exist. By critical angle we refer to an angle 

between the incident wave vector k and the lattice normal 2 x b 

beyond which the non-forward scattered wave is almost entirely 

evanescent. 

For our purpose here it is sufficiently general to let k.b = 0 

and take the lattice to be one dimensional (a.b = O,/al = a,)bl+oo). -- 

Then k.a = -4 k a sin9 cos ok, where 8 is the angle between incident 
bukere 

wave vector and lattice normal, and 8 
r\ k' 

the azimuthal angle of 

the vector k, is either 0 or 7~~ We are thus considering a slight 

simplification of the general case sketched in Figure 2. 

Now the allowed plane lattice modes are defined by the values 

of P 
-a@ 

which are determined by Eqs. (2.9) through the integers 

c1 and /3. We may solve Eqs. (2.9) for LD to find: 

Here, as in Section II, we have used k = 2~r/X and have defined 

P and 4 bY 

and we recall that all modes for which p2 + q2 > 1 are purely 

(3.la) 

(3.lb) 
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evanescent. 

Now we take account of the one-dimensionality we have 

assumed in this section by setting b = uc , thereby obtaining 

(3.2) 

where the sign ambiguity carried by the factor cosgk is given 

explicitly. The resulting expression (3.2) can be cast into 

familiar form by recognizing that 

where 0 t is the angle of the outgoing wave transmitted through 

the lattice. This relation follows from the fact that g is the 

outgoing wave vector, fromg 2 = k2, and from Eqs. (3.1). 

At this point we see it is most natural to rewrite (3.2) in 

the form: 

sin a, 4 sirI& = h 
4 J z (3.3) 

which is the familiar expression 
11 for the transmission maxima of 

a one-dimensional diffraction grating. The occurrence of a 

critical angle is now obvious, since for a given diffractive 

order CI and ratio 'X/a there may well be angles of incidence 6 

for which (3.3) requires an unphysical transmission angle such 

that /sin@,] > 1. That is, that value of 8 for which the con- 

dition 
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(3.4) 

is first satisfied may be called the critical angle for order CL. 

Since (3.4) 
2 

corresponds exactly to the condition p2 + q > 1, it 

signals the appearance of evanescent waves. 

It is more interesting, in the context of Section II, to 

take a less conventional converse view of (3.4). That is, we 

already recognize (3.3) as a well-known statement defining the 

possible transmission angles 0t in thebdh order of diffraction. 

On the other hand, we can turn (3.3) or (3.4) around and deter- 

mine which orders of diffraction are evanescent for given angle 

of incidence 9. Then Eq. (2.11b) gives correctly the complex 

amplitudes of the corresponding transmitted waves, even if they 

are evanescent. 

Perhaps it is unnecessary to point out features of the 

critical angle (3.4) not shared by, for example, the familiar 

critical angle for total internal reflection 
11 . For x< a, 

Eq. (3.4) allows at least one non-evanescent wave (in addition 

to the never-evanescent c1 = 0, B = 0 wave) for every value of 8. 

The internal reflection critical angle depends only on the index 

of refraction of the dielectric: 

sin0 
1 

int.refl. = f; ' (3.5) 
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and so provides an absolute cut-off of the homogeneous waves. 

For & 8 > eint all transmitted wavesare evanescent. . refl. - 

We should, however, make it clear that there is no conflict 

between (3.4) and (3.5). Eq. (3.5) is derived for radiation 

impinging on a uniform homogeneous dielectric, an object whose 

basic periodicity or structure parameter can be regarded as 

very much smaller than the radiation wavelength. For such an 

object one cannot hold to our particle-by-particle Born-approxi- 

mate view of the radiation-scatterer interaction. One has re- 

fractive, but not diffractive, effects. 

Finally, we might imagine scattering by an object so weakly 

refractive that the Born approximation may be applied, but with 

some large scale periodicities in its index of refraction. Our 

result (3.4) will again apply to the effects of these periodicities, 

and will make the known prediction that periods smaller than a 

wave-length will give rise only to evanescent transmitted waves. 

(See references 5 and 10 for example, for discussions of problems 

in which these effects are important.) 
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IV. Plane Lattice Waves and a Three Dimensional Scatterer. 

We now generalize our scatterer, and thereby take a 

step in the direction of physical realism. In this section we 

treat the case of a non-orthogonal, i.e., simple triclinic, 

three dimensional lattice. In addition we lift the restriction 

that the wave vector k of the incident radiation lie in the z 

direction. We require only that ki be positive, so that the wave 

is travelling toward the z > 0 half space. 

The lattice is assumed to be very large in the x and y 

directions, and N layers deep, so that the total scattering 

potential is (with the origin of coordinates in the center of the 

first layer) 

(4.1) 

where the vector ew is composed of the primitive lattice 

vectors a, b, and c and integers 5 ,q, and d : 

(4.2) 

We orient the coordinate system so that the plane defined by the 

non-orthogonal vectors a and b is the x-y plane. We choose 

a x b to define the positive z direction'. One lattice layer is shown 
in Fig. 2. 

The method of reduction of.the scattered wave into a sum of 

plane lattice waves which was explained in Sec. II may be followed 

here, practically without alteration. The introduction of the 
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more general lattice scattering potential given by (4.1) leads 

to no very se-Jere problems. The only important changes are these 

two : the lattice is now assumed finitely thick in the z-direction, 

giving rise to another lattice sum; and the non-orthogonality of 

2 and b leads to diffraction functions FN of the form 

where 2i = a or b and L = k - -, P instead of the somewhat simpler 

ones given in Sec. II. This straightforwa.rd change in the 

argument of the diffraction functions (which arise from the sums 
the 

over F and 7 ) gives rise to more general restrictions on 
A 

the scattered wave vector g given in Eqns. (2.9) 

which we reproduce here for convenience: 

(4.4a) 

(4.4b) 2a.J = dy3 -t !?-e , 

The scattered wave is, therefore,, expressible just as 

in (2.lla): 

where the plane lattice wave amplitude in this more general case, 
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I 

(a three-dimensional non-orthogonal lattice) has the form: 

(4.6) 

Here we have introduced the abbreviations 

(4.7) A = I g s -& I and 

It is now possible to make an observation about evanescent 

waves in this general situation in which k._a, k.b, and a.b may all 

be non-zero. Note that Eqs. (4.4) are linear inhomogeneous (but 

coupled, if a.b # 0) algebraic equations with real coefficients -- 

which determine P x and P 
Y 

, and that Px and P are themselves 
Y 

therefore necessarily real. However, because a, B, k.a and k.b -- -- 

are unrestricted in magnitude, 
than k. 

either or both of Px and Py may 

be larger Then Pz mu&be imaginary (recall the plane lattice wave 
A 

restrictions in Eqs. (2.5) and (2.6) ). 

Just as in Eq.(2.lla) for the two-dimensional 

monolayer lattice of Sec. II, now Eq. (4.5) makes it clear that 

exponentially damped lattice waves are the consequence. These 

are of course the evanescent waves of our general triclinic lattice. 
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V. Diffracted Evanescent Waves 
12 

In the classical Laue theory of diffraction of X-rays by 

simple space-lattices, one finds the condition for a diffraction 

maximum to be most concisely expressed by the following equation 

(5.1) 

Here go and fi are the unit vectors in the directions of the 

incident and scattered waves respectively, o, B, y are any three 

integers, and a*, b;k, c_;k the primitive translations of the 

reciprocal lattice defined by 

where V is the volume of the unit cell: V = 2 x b . 2 . 

We also note that Eq. (5.1) is valid under conditions that 

are, in fact, equivalent to the use of the first Born approximation. 

Multiplying (5.1) with a,b and 2 one gets -- 

where a.aY;= 1, a.b+;= a.c 9; = 0, etc. have been used. The -- 

Laue equations (5.3) must be satisfied simultaneously if diffraction 

is to occur. 

We see immediately that Eqs. (2.9) and l&.4) are exactly 
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equivalent to the conditions (5.3a) and (5.3b), while (5.3~) 

corresponds to the condition that the factor 

in Eq. (4.6) have a maximum. 

This agreement between Eq. (5.1), or its component 

equations, (5.3a) - (5.3c), and our relations (4.4) and (4.6) 

is to be expected, of course. All of these equivalent ex- 

pressions merely state momentum conservation for each bom- 

barding particle in its interaction with the regular scatterer. 

To be explicit, when (5.1) is multiplied by 27$/x it may 

be rewritten as the momentum equation: 

where A*, B*, and C* are the basic units of crystal momentum 

transferrable by the scatterer in the directions of the 

reciprocal lattice: 
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However this conventional view of (5.1) (or of (4.4) and 

(4.6)) tends to obscure the possibility that there may be meaning- 

ful situations in which the transmitted momentum is required to 

be compiex . The wave associated with an imaginary kzis not 

unphysical, merely evanescent, and its complex amplitude is given 

bY (4.6) 

We now look in detail at the conditions imposed by the 

scatterer on these Complex-momentum particles. Accordingly, 

we look for the condition under which Pz is imaginary, or 

Pz + P2y > k2; that is, we look for the generalization of 

relation (2.12). Since (p x 2)2 = P; + P2, 
Y 

and since z^ = (5 x l$/A, 

the condition is easily found with the aid of Eqs. (2.9) to be 

(5.4) 

The limiting cases which refer to the simple situation 

of Sec. II are easily recovered. If k.a = k.b = a.b = 0 we -- -- -- 
2 

find relation (2.12) again, multiplied by (2~r ah/x ) . 

Note also that the a = /3 = 0 wave is never evanescent 

since then (5.4) reduces (for arbitrary 
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_a&&) to kz > k2, which is never true. 

To get a better understanding of condition (5.4) let us 

first reduce it to 

(5.5) 

where we have set 

If we consider (-, and Fe as the components of a two-dimensional 

vector, we may rotate the corresponding coordinate system through 

an angle 4 to diagonalize the quadratic form I La - 55 &37-; 

Doing this,we have for (5.5) 

(5.7) r,” + g- > 1 ) 
3% A” 

where 

(5.8a) 

(5.8b) 4 

and 

(5.9) 
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where 8 ab is the angle between 2 and b. 

The general relationship, derived here and expressed by 

Eqs. (5.6) -(5.9), between the lattice spacings and angles and 

the direction and wavelength of the incident wave is an excep- 

tionally complicated one. It is not possible in any simple way 

to determine explicitly which CXB modes are evanescent. Although 

the 00 mode is always a homogeneous (non-evanescent) wave, the 

rest of the homogeneous modes are not even symmetrically grouped 

about 00 in the a@ plane. 

We may clarify some aspects of the situation by a graphical 

analysis. Clearly Eq. (5.7) states that for values of s4 and 

ha outside a certain ellipse all modes are evanescent. Consider 

first normal incidence (i.e., k.a = k.b = 0) and an orthogonal -- -- 

lattice, which implies @ = 0. The relation (5.7) then collapses 

d2 

(5.10) > 1 

and all integer pairs a@ outside the “ellipse” in Fig. 3 define 

purely evanescent modes of radiation. 13 

into 

Next, keeping the incidence normal but allowing the axes 

to be non-orthogonal, we see that the homogeneous region becomes 

the rotated ellipse of Fig. 4. Of course the axes A and B 
A 

of the new ellipse are no longer &- or ~ 
Xa 347 

either. Finally, 

the effect of non-normal incidence is to shift the origin of the 
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ellipse of Fig. 4 to the point (k.b/27-r, k.a/27r) as in Fig. 5. -- -- 

The lengths of the axes of this new ellipse are the same as those 

of the ellipse in Fig. 4. 

Any experimental study of evanescent lattices waves will be 

made less difficult, of course, if one or more such waves are 

present which decay very slowly with increasing z. Thus it will 

be helpful to know which a@ pair leads to the smallest negative 

value for P 2 
z l 

If the lattice spacing is not too much larger 

than the wavelength of the incident beam, then the evanescence 

ellipse is quite small and contains only a few homogeneous mode 

points within it. The nearest CXB points outside the ellipse (which 

define the most slowly decaying evanescent modes) are easily found 

graphically. For example, in Figs. 4 and 5, we see several points 

which lie much closer than one unit to the ellipse. 
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VI Lattice of Two Types of Scatterers. 

A practical situation will most probably involve a three- 

dimensional lattice composed of more than one type of scattering 

centre. We now consider a more general case of a lattice 

infinite in two directions, finite in the third, and having a 

unit cell consisting of two different scattering sites charac- 

terized by scattering potentials-U0 and Ul, as shown in Fig. 6. 

If d is the lattice diagonal 

(6.1) 

and Lgf is defined as in Eq.(3.2) then the total potential 

for our present case is 

where again the lattice is taken to be N layers deep. The 

origin of coordinates is taken in the first layer of scatterers 

and centered on a Uo. Once again the forward z-direction is 

given by 5 x b. 

Let us rewrite the potential mre compactly as: 

It is now clear that one can proceed exactly as in Sections II 
wave 

and IV, obtaining the scattered,,amplitude 45$(r) in a form 

analogous to that in Eqs. (4.5) and (4.6) 
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(6.4) 

where the notation is unchanged. 

Equation (6.4) points up an experimentally interesting 

situation where it is possible that there be no first order 

scattering at all. Here by scattered waves we mean those that 

are capable of reaching a measuring instrument far from the z = 0 

plane, namely, homogeneous waves. To envisage such a situation, 

consider the case where Ul = - Uo. For the particular outgoing 

homogeneous wave which satisfies L 
- @ = 0, i.e., GD = k, p$(r) 

has zero partial amplitude. Hence there is no scattering in this 

direction, and since we noted before in Sec. 11 that for ?L > a 

or b, there is only one homogeneous wave, - viz the one going out in 

the same direction as the incident wave - there is no scattering 

at all in the usual sense, in this particular case. A second possi- 

bility for a partial amplitude to vanish is that the corresponding 

&c8 be perpendicular to the lattice diagonal d and, of course 

u. = - ul. TII the first case it would be possible to measure 

experimentally the evanescent components of the field without 

interference from scattered homogeneous waves. The possibility 

of actually measuring an evanescent component is dependent upon 

how far that particular component can be propagated without 

too severe attentuation. This question has been discussed in Sec. 5. 
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VII. Summary 
gotenti al 

We have attempted to outline an unusual approach to scattering 
A 

by regular but non-orthogonal lattices. Our center of attention 

has been on the near field of the scatterer, and we have shown 

how the Weyl angular spectral decomposition of a spherical wave 

can be used to sum all of the contributions to the scattered 

field. Asymptotic expansions have been avoided deliberately, 

and the usual scattering amplitude plays no role in our analysis. 

We have derived a two-parameter discrete set of waves, our 

so-called plane lattice waves, in terms of which the scattered 

waves are expressed exactly. The discrete parameterization 

afforded by the plane lattice- waves has been used particularly 

to identify the most important evanescent components of the 

scattered near field. 

The general criterion, for arbitrary lattice spacings and 

incidence angle, governing the appearance of transmitted 

evanescent waves has been derived in Eqs. (5.5) to (5.9). The 

complexity of these relations makes it practically necessary to 

proceed graphically; and several simplified examples are given. 

Questions having to do with more general scatterers such 

as slightly irregular lattices or assemblies of random scattering 

sites have not been investigated here. The appearance of 

evanescent waves due to the collective behavior of scatterers k 
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regular, finitely thick crystals can be inferred but not 

derived from our work. Some of these, and other related 

topics, are under investigation. We hope to report the results 

at a later time. 
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APPENDIX A 

We discuss in the present section the validity of the first 

order Born approximation, in which we have worked so far. This 

approximation is meaningful only if '-VP (23 in Eqs. (2.1) is 

i k.r small compared to the incident wave e - - in the region of 

the potential, i.e., if 

(AlI (< 1 : 
7 GO 

Because our scattered wave is a coherent sum of waves 

scattered from the whole lattice, we may expect a validity crit- 

erion somewhat different from the usual one. 

For simplicity, let us again assume a two-dimensional ortho- 

gonal lattice with a c b. We will consider normal incidence, 

and, to facilitate calculations, take for the potential U. (r) a 

"rectangular well" of the form 

(A3 tJo Cd = - TJ, (= const), for 

O I otherwise 

Here w of course is the width of the potential well and U. its 

depth. We assume that the individual potentials overlap extensively, 

so that w 9 a. With these assumptions we find 
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The first term within the braces is the contribution from the 

single homogeneous wave c1 = B = 0 (we are assuming h > a> and 

the prime over the summation indicates that this term has been 

removed. A straightforward calculation leads to 

(A4) 

Since for any complex numbers 7, y we have 1 F - yl 52 IFI + I-d, 

we may rewrite (A.4), replacing all sines and cosines by their 

maximum values, as 

(A5) 
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/TcJ <s- 1 

In the first summation both a . e 
-yqw 

and 6' 
-‘d - a”/x” 

A Je=- a"/h" 
are 4 1 for a = +, 2, t 3, . . . . . When ct = 2 1 the first - 

exponential term might exceed unity. In the second sum, for all 

allowed values of a,B, the first two quantities within the square 

brackets are less than unity. Further we have that 

wd I < I 
<pi,-*p9 dL (3” for all c@ # 0. 

Hence we are able to obtain the estimate, 

The quantities within the square bracket are all - 1 

(except when x is very close to a) since X-w and A > a. 

Thus a sufficient condition for the validity of the first Born 

approximation reads 

W) 
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The criterion given in (A8) may be contrasted with the familiar 

criterion (for low energies and weak potentials) for the validity 

of the Born approximation 14: 

(A% ‘IT, wz << I * 

Thus we see that for those evanescent waves for which h >a, 

and for lattices comprised of relatively long range potential 

centers such that w-a, the criterion (A8) is somewhat 

less lenient than the usual one. 

It is amusing to notice that, under the conditions stated, 

the validity criterion (A8) may be phrased as follows: 

"The number of bound states of the potential U. must be much 

smaller than the Fresnel number of the aperture'formed by a 

unit cell of the lattice, viewed from a distance w (i.e., from 

the "edge" of the potential)". 
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APPENDIX B 

As a last remark we indicate the form of the second order 

correction q$? J r to the scattered wave function w- 0) l 

We again consider the infinite, plane, orthogonal lattice of 

Section 2. We easily find 

where I- *e 
is as defined in (2.11), p 

- g'B 
is the same as in 

Section 2 and 

This result is interesting because it gives us information 

on the physical behavior of evanescent waves. Interpreting (Bl) 

with the aid of the usual multiple scattering theory 15 , we see 

that the incident homogeneous wave transformed into evanescent 

waves (a,@ # 0) can be again scattered into, say, a homogeneous 

wave (a', B' = 0) travelling in the positive z-direction. The 

first half of this transformation - from homogeneous to evanescent 

via diffraction - has been shown to play a role in image elimination 

in holography5. We see here that if multiple scattering were 

important, the second half of the transformation would lead to 

image formation. 
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Figure Captions 

Fig. 1 A rectangular two-dimensional lattice of scatterers. 

5 and b are the primitive lattice vectors, and the 

incident wave vector k is shown perpendicular to the 

lattice plane. 

Fig. 2 One layer of a non-rectangular three-dimensional 

lattice. The z-axis has been chosen perpendicular to 

the plane defined by the primitive lattice vectors a 

and b which make angle Gab with each other. The incident 

wave vector k is directed at an angle 8 from the z-axis. 

Fig. 3 The evanescence ellipse in the a-B plane which separates 

the regions of evanescent and homogeneous mode index 

pairs o$. In this example we have chosen the physical 

scattering lattice to be square with /a~ = IhI = 2$2x, 

and the incident wave to be directed normal to the 

lattice. The consequence is that the evanescence 

ellipse is a circle. Only a small number of homogeneous 

modes, corresponding to the index pairs within or on 

the circle, will propagate beyond the scatterer into 

the z > 0 half-space. 

Fig. 4 The evanescence ellipse for the same conditions as in 

Fig. 3, except that Qab = 45' instead of 90°. 
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Fig. 5 The evanescence ellipse for the same conditions as in 

Fig. 4, except that the incident wave is not directed 

normal to the lattice,but such that k is still normal 

to the lattice vector 2 and makes an angle 60° with b. 

The angle 8 (see Fig. 2) is then 45O. 

Fig. 6 Schematic diagram of a two-dimensional lattice with two 

different types of scattering sites. 
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