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ABSTRACT 

New rigorous bounds on the discontinuities of off-shell nucleon 

form factors are systematically derived and used in two applications. 

First, upper limits of between 0 and 0.3 are set on Z2, the proton’s 

wave renormalization constant, under different assumptions about R, 

the ratio of longitudinal to transverse virtual photoabsorption cross 

sections, in the Bjorken limit, and about possible subtraction 

constants in the sideways dispersion relations for nucleon form 

factors. The bounds on Zil -1 represent an improvement by factors 

of 8 and 32 over previous results and permit a conclusion without 

neglect of a subtraction constant. 1+ If the Jr = z contributions to 

deep inelastic scattering do not scale, Z2 =0 in any case. Secondly 

it is suggested that the Drell-Yan-West relation is the extremum of an 

inequality imposed by unitarity and analyticity. This is the case if 

the off -shell Dirac form factor F(s) Q2), near s =m2, is a smooth but 

nontrivial function of s, as Q2- CO, whether or not the Jr = $’ 

contributions scale. 
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I. INTRODUCTION 

More than ten years ago Bincer’ proved that the form factors representing 

the coupling of an off-shell nucleon, of mass W, to a spacelike photon and a 

physical nucleon are analytic in the cut W plane. That is, they satisfy sideways 

dispersion relations. 

Recently Cooper and Pagels derived rigorous bounds on the discontinuities 

of these off-shell form factors in terms of the nucleon spectral functions and 

the structure functions Wl and vW2, measured in inclusive electron-nucleon 

reactions . Subject to certain technical assumptionsl-essentially about the 

number of subtractions required in Bincer ‘s dispersion relations--upper bounds 

may be set on Z2, the proton’s wave renormalization constant, in terms of the 

on-shell proton electromagnetic form factors at large momentum transfer and 

integrals over the structure functions in the Bjorken limit. Specifically, West3 

has analysed the consequences of the vanishing of R = aL(v , Q2)/uT (v , Q2) in 

the Regge and Bjorken limits (by crL and cT we mean the effective cross sections 

for a spacelike photon of four-momentum q and energy v , polarised longitu- 

dinally and transversely respectively, incident on a nucleon at rest; the Regge 

limit is v -300, with Q2 = -q2 fixed; the Bjorken limit is Q2- oo, with 

w = 2mv/Q2 fixed). West demonstrated that given asymptotically vanishing 

form factors and plausible, but unproven, assumptions about possible sub- 

traction constants in the sideways dispersion relation, the vanishing of R in 

these limits implies Z2 =O. 

This is an interesting result since the SLAC-MIT experiments4 on deep 

inelastic electron scattering indicate that R is indeed small for large v and Q2, 

and the condition Z2 =0 is part of the input to Drell , Levy and Yan’s parton 
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model5 of deep inelastic reactions and is interpreted by them as representing 

an entirely composite nucleon. 

There are three parts to the work reported here. 

First , we improve the bounds given by Cooper and Pagels’ and by West’ 

for the discontinuities of the off-shell form factors. In Section II we show how 

the analysis of the off-shell electromagnetic vertex is simplified considerably 

by working with extensions of the Sachs form factors GE and GM, whose 

imaginary parts may be bounded by crL and oT respectively. We perform 

covariant calculations to obtain bounds better than those given previously. 

Further improvements result from bounding the combination of positive and 

negative cut contributions, almost as efficiently as each individually, in terms 

of the optimal combination of aL and c T’ The resultant inequalities involving 

Z2 are better by factors of 8 and 32 than those given by West’ and by Cooper 

and Pagels. 2 Moreover we derive limits on the subtraction constant previously 

ignored by West and have a new restriction on Z2 which is independent of its 

value. 

Secondly, in Section III, we evaluate numerical bounds on Z2, for the 

proton, subject to different assumptions about the behaviourof R in the scaling 

limit and the possible subtraction constants in the sideways dispersion relations. 

The SLAC-MIT data4 on vW2 as a function of o show a remarkably early onset 

of scaling, for Q2>l GeV2 and W>2 GeV (W is the missing mass). However R 

is at present not well determined. The best fit in the region ~14 is with 

R =O. 18, but a fit with R =0 is almost as acceptable. Accordingly we evaluate 

upper limits on Z2 subject to the following assumptions : 
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(A) R=O for all w, or 

(B) RzO. 18 for 014 and falls off roughly as w -l/2 thereafter (so that if 

Regge poles offer an explanation of the behavior of v W2 at large v and large w, 

then the Pomeron does not contribute to aL); 

(1) A possible subtraction constant in the magnetic moment dispersion 

relation vanishes as Q2- oo, or 

(2) It tends to any finite limit. 

Our results are: 

(Al) z2 = o, - 

(AZ) Z2 _< 0.13, 

(Bl) Z2 _< 0.13, 

(B2) Z2 5 0.30. 

We find no support for West’s claim3 that Z,50.1 with assumptions roughly 

corresponding to case (B1), since his input is an inequality weaker than ours 

by a factor of 8. 

Finally, Section IV is addressed to the relation obtained by Drell and Yan6 

and by West7 in parton models, by Bloom and Gilman, 498 from an extension 

of observed correlations between resonance electroproduction and scaling 

behaviour , and more recently by Drell and Lee,’ namely that if the threshold 

behaviour of v W2 in the Bjorken limit is vW2 cc (w - l)p, then Fl(Q2), the 

proton’s Dirac form factor, falls as Q -@ -I- 1) as Q2-m. 

From the rigorous bounds of Section III we deduce the following restriction 

on the behaviour of the off-shell nucleon form factor F(s) Q2), which reduces to the 

Dirac form factor at s =m2 : all but the first few derivatives dnF(m2,Q2)/dsn ----- 

must vanish as [log(Q2)lc Q-(p ’ ‘) or faster as Q2- oo. -- 
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The number of derivatives we are unable to restrict depends on the number 

of subtractions required in the sideways dispersion relation and the asymptotic 

behaviour of the nucleon spectral function. For example with p =3 and 

oI(s)+C/s (which results in Z2 =0) our result holds for n 22, provided, of 

course, a twice subtracted dispersion relation is valid. 

The actual Q2 dependence of the form factor depends on how restrictive is 

our application of the Schwarz inequality. We argue that in this application it 

is a stringent restriction. 

The import of our result is that if F(s) Q2) is a- smooth but sufficiently 

varying function of s, near s =m2, for large Q2 , then the Drell-Yan-West 

result is the extremum of an inequality imposed by unitarity and analyticity. 

It is interesting to note that whilst the v W2 data are consistent with p = 3 

there is evidence6 that GM(Q2) is falling faster than Q -4 at large Q2. That is 

consistent with the direction of our inequality. 

Our failure rigorously to bound the strictly on-shell form factor is 

perhaps not surprising when one considers the failure of an operator product 

expansion treatment to predict a sufficiently rapidly falling form factor. 10 

II. DERIVATION OF INEQUALITIES 

Consider the process : nucleon (p) + spacelike photon (q)+off-shell 

nucleon (p’), where the kinematics are those for inelastic electron scattering, 

namely p2 2 =m , q2 =-Q2<0, pf2 =W2 =s and 

2pq =2mv =s - m2 + Q2 = wQ2. (1) 
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Bincer’ has defined off-shell electromagnetic form factors in terms of the 

LSZ reduced matrix element 

rp@, q, s) = i 
/ 

4 d xe ipfx(i d - m)<O 10(xo)[$W, jJO)] I P, s>(pO/mY2 

= [FltW9 Q2) yp + F2W, Q2Wpvqv + F3W,Q2~p]u(p,s) 

+ (W- - W). (2) 

For Q2>0 the form factors are analytic in the cut W plane’ and their 

imaginary parts are given by the absorptive vertex function 

AJp,w) = ; G-i-l c S@’ ;n)(b’ -m)<Oli(0)ln><nljP(O)lp.s)(po/m)1’2~ 
n 

(3) 

The form factor F3 may be eliminated by virtue of the Ward-Takahashi 

identity, which we write as 

CqJP, q, s) = o! ( ) 
l2.2.$ d UtP, s) + (W--W), 

where a! is the charge in units of e(=l or 0). Equation (4) then requires 

Q2F3(w, Q2) = tw - m)(F+W, Q2) - a). (5) 

(4) 

The projection operators for Fl 2 as given by Bincer are rather complicated. 2 

Considerable simplification results from working with the off-shell analogues 

of the Sachs form factors, projected out by the polarisation vectors E L and E T’ 
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Let 

4t = $@&-& (6) 

and let e T be any unit spacelike vector orthogonal to both p and q. Then 
2 2 

ELq =ETq =ELET =o, EL=-ET 2 2 l/2 =l, eLp =m(l + v /Q ) and eTp = 0. 

We define form factors GE M in analogy with Eq. (4): 
> 

8, T u(P,s) + (w--w) (7) 7 - 

and from Eqs. (2), (5) and (7) obtain 

GE(W,Q2) =fl(W,Q2) - (Q2/(W+ m))F2(W,Q2) 

Q2 m = 
(W + m)2 (W - m)2 + Q2 c 3P&L(P + W)t;r~@>q,s), 

s 
(8) 

GM(WyQ2) = FlW,Q2) + (w + m) F2(W,Q2) 

m ZZ 
c (W-m)2+Q2 s 

The imaginary parts of G ,,,tw,Q2) can now be bounded, covariantly , in 

terms of the nucleon spectral functions P 1 
, 
,(W”) and the inclusive structure 

functions Wl,,(w2,Q2), by a Sch warz inequality for the sum over the inter- 

mediate states in the absorptive vertex function and the sum over spin in the 
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= 

projection operator. From Eq. (3) 

jc I 
2 

S 
g(p,s)&$ + W)cPAP@, q, s) 

I a (2~)’ Trace (fi +rn)i(ti’ +W)+!] (W -m)2(W2pl(y2) + 
r [ 

Wp2(W2))/m 

x 
1 

2 Ed ev WV” (w2, Q2)/(27rf , (9) 

where 

WPV(W2,Q2) =W2(W2,Q2)(l+v2,‘Q2) $ ~4: - Wl(W2,Q2)(g’” +d-bv/Q2). 

(10) 

It will be convenient to work with 

R(W2 ,Q2) = o- L T =wL(W2,Q2)/Wl(w2,Q2), /a (11) 

where 

w,W2,Q2) = (1 + v2/Q2)W2V2,Q2) - WlW2,Q2). (12) 

From Eqs. (8) to (12) we obtain bounds on the imaginary parts of GE M , W,Q2) 

ImGE(W, Q2, 2 2 2 R 
W-m I 

5 L(W,Q2) (w +m) ‘iQ - R+l , (13) 
(w+mj 
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hGMW,Q2) ‘2 
=(W,Q ) 

2 (W + m) 2 + Q2 1 
W-m Q2 

R+l, 

where 

L(W,Q2) =~2W2W2,Q2)W2~lPJ2) +Wp2W%m. (15) 

Next consider any combination of GE and GM 

WKQ2) = [(W +m)a(W,Q2) G,oy.Q2) _ 

f Qb(w,Q2,GM(W,Q2,]/[t~+m~ + Q2]1’2 , 

(14) 

(16) 

where a and b are arbitrary real functions. The orthogonality of eL and E T 

enables us to bound Im G in terms of any combination (gL+ c aT), with c an 

arbitrary positive function of W and Q2. From inequalities (13) and (14) 

Im G(wyQ2) 2 s L(w Q2) 

W-m , ([NW Q2d2 + [b(w, Q”,]“/$$, (17) 

of which the most efficient version is with c =R 1’2 Ib(W, Q2)/a(W, Q2)l , giving 

I Im WKQ 2j1 2 5 L(W,Q’) (R112 / a~W,Q2~l+/b~,Q2~/)2/o. W- m (18) 

Inequalities (13) and (14) are then special cases of this result. 

We shall be concerned with obtaining limits on Z2, which depends only upon 

pl(W2). The second spectral function may be eliminated by the positivity 

requirement I W p2(W2)j I W2P2(W2). It is however more efficient to use this 

relation after considering the contribution of both positive and negative cuts to 
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the dispersion relation in W. Here we use the orthogonality of M + W) and 

<15 - W) to obtain from inequality (17) 

~W,Q21/ 1 + ImG(-W,Q2) 2 
II 

5 L(W,Q2) 
i[ I 

a(w,Q2) 
2 

W-m W-km 

+ b(W,Q2j12,c) +$f + W---W), (19) 

where c is now an arbitrary positive function of W2 and Q2. 

The optimal value for c depends upon the sign of the ‘discriminant’ 

d(W2,Q2) = - ([b(W,Q2)]2 - [b(-W,Q2~]2)/([a~W,~)]2 - [a(-.Q2)]z). 

(20) 

Our general result is 

Iv W,Q2)~ 1 + Im G(-W,Q2) 2 
W-m W+m 

5 M(W2,Q2)N(W2,Q2), (21) 

where 

M(W2,Q2) = lr2W2(W2,Q2)2W2Pl(W2)/m kL(*W,Q2), (22) 

and for d?O we use inequality (17) with c=d 

N(w2,Q2) = ([atW,Q2)]2 + [b(W,Q2)]2/d) 

(23) 
= t[at-W,Q2)]2 + , 

but for d < 0 we use inequality (18), 

N(W2,Q2) = Max {(Rl/zjaW,Q2)1 + lWKQ2)~, W--+-W/ /tR+l). 

(24) 

From Eqs. (8), (16) and (20) we find d =l for G=Fl 2, so that by (23) our bound 
, 

is independent of the value of R and will be used in our discussion of the Drell- 

Yan-West relation in Section IV. However, for G = (W -m) Fl 2 we find d< 0, , 
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giving bounds on Z2 which will be sensitive to the behaviour of R in the Bjorken 

limit. The following specific cases of inequality (21) are required: 

[I 
mGE(W>Q2) 

W-m I 
+ 

MGE(-W,Q2) 2 
W+m II <Mp2,Q2) W-mJ2+Q2 R 

(w-m,2 R+l) 

W4 

[~I~F~(W,Q~)) + II~F,(-w,Q~)~]~ 5 M~~~m~~)~w~~m2)2 (R1’2R$w-mj12 , 

Wb) 

~Fl(w,Q2) 
W-m + 

3 

+ ~I~F,(-w,Q~J(]’ 5 M(W2:~~~~Q~mJ2 (R1'2y;;1,/Q) 
, 

rm F1(-W, Q2) 2 

W+m II 
5 MW2, Q2), 

with Q-2 0 and Wl (mfp), where p is the pion mass. 

Inequalities (25a, b,c) are now used to obtain bounds on Z2, given assump- 

tions about the asymptotic behaviour of R and about the subtraction constants 

required in the sideways dispersion relations. 

We shall assume that Bincer,s form factors F 1,2,3(W,Q2) are bounded in 

both W and Q2 and hence satisfy once subtracted dispersion relations in W for 

Q220. We are then given the subtraction constant for F1 (or, equivalently, 

F3) by the Ward identity, 5 which requires Fl(i CD, Q2) = a! (or, equivalently, 

F3(m,Q2) = 0). In addition a subtraction constant for F2 is required. It will 

be convenient to take this as I(Q2) = (Q2/2m) F2(-m, Q2), since this is pro- 

portional to the residue of GE(W) Q2) at its kinematic pole (see Eq. 8). 
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The dispersion relation for G,(m,&Z) then reads 

GE@,Q2) = a - r(Q2)+ $ + 
hGEt-W.Q2) 

W+m 1 (26) 
and from inequality (25a) we obtain 

a- r(Q2) - GE@, Q2) 

using a further Schwarz inequality for the integration. Thus, writing the integral 

over w = 2mv/Q2, 
c 

z2 ’ 
CJ! - r(Q2) - GE@ ,Q2) 

vW2W2, Q2) 

l-3 I 
dw w(w-1) 

We now consider the Q2c03 limit of inequality (28) and assume the Bjorken 

limit v W2 (W2, Q2) +F2(a), consistent with the SLAC-MIT data. The form 

factors GE, ,(m,Q 
2 ) fall at least as fast as Q -4 experimentally. Nothing is known 

about the subtraction constant. This gives 

(29a) 
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and similarly from (25 b, c) 

z2 
1-z 

2 

([R(w-l)] 1’2 + 1) 
Ri-1 , 

z2 m 
lr(m)j2 5 

/ 

F#4 I[ 
dw - R/(w - 1)]1’2 + 1) 

1 - z2 cd2 R+l . 
1 

From (29 b, c) follow two weaker inequalities which do not depend upon R, 

101121 
/ 

m F2W 

2 
dw -y--y 

1 

z2 lrb)12 5 / 
m F2W 

1 - z2 dw w(w-1) . 
1 

(29b) 

WC ) 

(29d) 

(29e) 

The inequalities (29 a, b) are those we shall use in Section III. The 

relevant integrals converge if RF2(w) falls as some power of w as w--+a~. 

Inequality (29a) is an improvement by a factor of 8 of a previous result of West 

and inequality (29d) corresponds to a result of Cooper and Pagels improved by 

a factor of 32 (see footnote 11). 

HI. EVALUATION OF NUMERICAL BOUNDS ON THE PROTON’S Z2 

We now use the data on inclusive inelastic electron-proton scattering to 

evaluate bounds on Z2, subject to various assumptions about the behaviour of R 

in the Bjorken limit and about the subtraction constant I’(m), Inequalities 

(29a,b) furnish a sufficient basis for our discussion. It can be shown that the 
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elimination of I(a) between inequalities (29a, c) yields an inequality no more 

stringent than (29b), whatever the values of R. 

A very good fit4 to the vW2 data with Q2>l GeV2 and Wz2.0 GeV is 

vW2(W2,Q2) = 0.557(1 - l/‘~‘)~ + 2.1978 (1 - l/~‘)~ - 2.5954 (1-l,‘~‘)~, 

(30) 

where w’ = w + m2/Q2 is indistinguishable from w in the Bjorken limit. This 

fit encompasses data in the region 0.8 >l/w’>O. 1 and we shall use it in evaluating 

the integrals. A crucial feature of this fit is that F~(w) tends to a constant as 

w -+ OD, corresponding to a diffractive contribution in the scaling limit. A 

necessary condition then for the convergence of the integrals of inequalities 

(29a,b) is that R vanish as w- 00, i.e. , that the Pomeron couple to trans- 

versely but not to longitudinally polarised photons in the scaling limit. In 

fact R is not well determined at present. The best fit is with R = 0.18+0.1 

with no indication of a strong dependence upon v and Q2. However R = 0 is 

almost as acceptable. Accordingly we give bounds on Z2 in the alternative 

situations : 

(A) R = 0 for all w, or 

(B) R%O. 18 in the region at present well investigated, with wS4, and 

falls roughly as w -l/2 thereafter, since only nonleading trajectories with 
1 a! 5 z contribute to u L’ 

It remains to consider the possible subtraction constant 

r(m) = &jm (Q2/m)F2(-m, Q2). A slightly different derivation yields inequality 
Q --Pa) 

(29a) with an alternative subtraction constant I?( ao) = lim 2m8GE(m, Q2)/8W, 
QLCO 

which is the result of West3 improved by a factor of 8. We know of no 
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argument whereby the vanishing of F2(m, Q2) or GE(m) Q2) at large Q2 permits 

one to set either subtraction constant equal to’ zero. Therefore we study the 

alternatives 

(1) I(m) = 0, permitting a bound on Z2 from (29a), or 

(2) r(m) is finite, requiring a bound on Z2 from (29b). 

The numerical results are 

(Al) Z2 = 0, 

(A2) Z2 50.13, 

(Bl) Z2 5 0.13, _ 

(B2) Z2 S 0.30. 

We remark that West’ has claimed a limit Z,_<O. 1 results from a fit to the 

deep inelastic data with R = 0.18. This numerical result is difficult to reconcile 

with his input, which is inequality (29a) weakened by a factor of 8. The relevant 

integral diverges unless RF2(w) is assumed to vanish at large w so that no 

conclusion is possible without assumptions qualitatively similar to (Bl), which 

give Z2<0. 54 in his case as against our bound Z250.13. 

Finally in this section, we comment on the stringency of our inequalities. 

In deriving bounds on the discontinuities of the form factors a Schwarz inequality 

was used for the sum over intermediate states. Only those with the same 

quantum numbers as the nucleon contribute, so that our result may be stated 

in terms of the structure function for producing only I= $, J* = i’ final states, 

rather than the full inclusive structure functions. It is evident that the lack of 

experimental information or theoretical models relevant to the final states in 

electroproduction forces us considerably to weaken our inequalities by dealing 

with the inclusive process. For spacelike photons we have no bounds on the 

partial wave projections of the forward virtual Compton amplitudes. If, however, 
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some t dependence is assumed for nonforward virtual Compton scattering in 

the Bjorken limit, greater stringency may be obtained by projecting out the 
1+ Jr= z component with the appropriate d-functions. 12 For example a form 

1+ exp(B t ), with B a constant, would lead to the vanishing of J* = 5 contribu- 

tions in the scaling limit and one could conclude Z2 = 0, irrespective of the 

behaviour of R. On the other hand a t dependence of the form exp(t/Q2) is 

not sufficient to permit this conclusion. 

IV. THE DRELL-YAN-WEST RELATION 

By the Drell-Yan-West relation we mean the prediction 627 that the Dirac 

form factor of the proton vanishes as Q -@+l) as Q2-+ m , if F2(m) cc(w-1)’ 

near w = 1. The data are consistent with this relation with p = 3. 

Originally this result was obtained by Drell and Yan6 from their parton 

model in which the nucleon is supposed to behave as a collection of instantane- 

ously free pointlike constituents when viewed interacting with a highly virtual 

photon in the infinite momentum frame. In this pit ture the structure function 

is given by 

vW2(s,Q2) = x 
xi - < 6) AZ > (31) 

n a=1 

where c (x) is the probability that a parton a, of charge Xa, among a 

collection of n partons, carries a fraction x = l/w of the total longitudinal 

momentum. Drell and Yan showed that the Dirac form factor is given by 

Fl(Q2) = 1 dx c 2 g;(x,Q2) A,, 
n a=1 

(32) 

- 16 - 



where there exists a Schwarz inequality 

I I gi (x, Q2) < f (x). (33) 

They argue that the dominant contribution to (32) occurs when the interacting 

parton carries all but a fraction (m/Q) of the longitudinal momentum, with m 

a characteristic mass. Thus Fl(Q2) is bounded by (m/Q)pfl and it is assumed 

that the inequality reflects the actual Q dependence. 

The same result was obtained by West’! independently, in a parton model. 

Bloom and 493 Gilman have suggested that it may ‘be viewed as an extreme case 

of observed correlations between resonance electroproduction and scaling 

behaviour . More recently Drell and Lee’ have given a covariant model of the 

proton as a bound state in which the result, with p-3, follows using the Bethe- 

Salpeter equation in the ladder approximation, with scalar gluons. 

Our concern here is to extract as much as is possible from the proven 

analyticity properties of the electromagnetic form factors and the rigorous 

unitarity bounds of Section II, without additional model-dependent input. 

We define a suitable off-shell form factor in terms of Bincer’s form 

factor Fl(W ,Q2). Let 

Fl(W,Q2) + (W--+ - W), 

where s =W2. Then F(s ,Q2) is analytic in the cut s plane and reduces to 

Fl(Q2) at s =m2. Its imaginary part is restricted by inequality (25d): 

I ImF(s,Q2) I n(s - W2@,Q2) Plts)/2m 1 l/2 . 

(34) 

(35) 
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We now show that all but the first few derivatives dnF(m2, Q2)Idsn are 

bounded by [log Q2]’ Q-(‘+‘), where c is an arbitrary positive number. The 

restriction upon n depends on the unknown asymptotic behaviour in s of the 

nucleon spectral function P,(S) and the off-shell form factor F(s,Q2). Let us 

assume that these are bounded by sa and sb respectively. Then for n>b we 

may write an n times subtracted dispersion relation and use inequality (35), 

‘dnF(m2, Q2) 
m 

ds l/2 I2 
I dsn 2 (s-m2p c W2(s, Q2) p,W/2m 1 I 

(m+l.l) 
(36) 

/ 

m 

s ) 

(m+N 
2 

ds fJl(s)(s-m 2 P+lwE -2n/ m 

0-n +P J2 

ds[W2(s,Q2)/2m] (s-m2)E-P-1, 

where we have used a Schwarz inequality for the integration over s. Taking 

the Q2- m limit, we obtain 

+1-e dnF(m2, Q2) 
m 

l-&m Qp ds P~(s)(s-m 
2 p+l-e-2n 

) 
s 

dw 5&J) 

Q---w dsn 
(m+PL) 

2 1 
w (w-qp+1-E 

(37) 

The integral over the structure function is finite for arbitrarily small positive E. 

The integral over the spectral function is finite for n>(p+2+a)/2. Thus all 

derivatives with n>b and nL(p+2+a)/2 are bounded by [log Q2]cQ-(p+1). To get 

some idea of the number of derivatives we are unable to restrict one must 

consider what are reasonable values for a and b. In Section II we assumed 

b=O corresponding to a constant term arising from the equal time commutator 

and given by the charge. Elementarity of the proton (Z2>O) would correspond 
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to a<-1, but a<0 is a sufficient condition for the existence of the Lehmann 

representation. For concreteness let us assume p=3 and a =-1, which 

corresponds to a composite proton (Z2 = 0) and involves only a dimensionless 

constant in the spectral function. Then our result holds for n22 provided the 

sideways dispersion relation requires no more than two subtractions, which 

is hardly a restrictive assumption. If lim F(s ,Q2) = f(s)g(Q2), near s=m2, 
$ -m 

and f (s) varies at least quadratically in s then g(Q2) is bounded by 

[log Q2]‘Q-@+l) . Loosely stated our result is that the Drell-Yan-West relation 

is the extremum of an inequality imposed by analyticity and unitarity, provided 

the off-shell electromagnetic form factor is a smooth but sufficiently varying 

function of s , near s =m2, as Q2- m . 

Note our inability to exclude logarithms in Q2. In the Drell and Lee bound 

state model’ Fl(Q2) T [log Q2]2QB4 and F2(w)y(w-1)3, consistent with our 

result. 

Finally we discuss whether the bound may be made more stringent by 

1+ considering only JT = 2 contributions to v W2. Even if the t dependence of 

virtual Compton amplitudes were given by exp(Bt), so that the Jr = i’ 

contributions did not scale, no improvement may be achieved. In that case the 

( ) 
1+ 

Bjorken limit of Q2yW2 i; (s,Q2) behaves as (~-l~+l near w=l and the same 

result is obtained from inequality (37) with E --) -1. 

V. CONCLUSIONS 

The inequalities of Section II, which set upper limits on Z2 if R vanishes 

as w -+ m, represent improvements over previous work in three respects : 

numerically, in their sensitivity to the behaviour of R in the Bjorken limit, 

and in permitting a conclusion without neglect of the subtraction constant. 
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The upper limits on Z2 of between 0 and 0.3, evaluated in Section III, indicate 

the latitude in drawing conclusions about the compositeness of the proton from 

the deep inelastic data, given inadequate experimental information about R 

and the uncertainty of the subtraction constant. However this is a very weak 

1+ application of the unitarity inequality, since Z2 = 0 if the J* = z contributions 

to virtual photoabsorption do not scale. Cur result on the Drell-Yan-West 

relation is a more stringent application of unitarity and analyticity. We 

conclude that the proton’s Dirac form factor Fl(Q2) = F(m2, Q2) is bounded by 

[log Q2]CQ-tP+1) * If F(s) Q2) is a smooth but sufficiently varying function of 
2 s, nears =m , asQ2*m. This is true whether or not the Jr = i’ contri- 

butions scale. 
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