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ABSTRACT 

Taking account of analyticity, crossing and signature, we derive 

sum rules relating triple Regge vertices to integrals over low missing 

masses in inclusive reactions. Some implications for triple Regge 

couplings are discussed. 
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I. INTRODUCTION 

Recently it has been suggested’ that it might be possible to use analyticity 

to derive sum rules for single particle distributions in inclusive reactions. On 

the basis of model studies sum rules have been proposed relating integrals over 

low missing masses in inclusive spectra at high incoming energies to triple 

Regge vertices. In form and content these finite mass sum rules are similar 

to finite energy sum rules for two-body processes. 

In this paper we discuss the derivation of such sum rules, paying particular 

attention to the correct incorporation of crossing. We emphasize which pairs 

of crossed reactions are related by the sum rules, what sum rules are free of 

wrong signature fixed poles, and how triple Regge signature should be taken into 

account. The sum rules we obtain take the form 

c$(a+b 
3 

-c+anything) + (-l)n+lEa e (c + b -+ a + anything) 
C a I 

1+ (-$+l 
j(t)-1 a! (O)+n 

= Nk titt) Ej+tt) 
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Fi,tt) &tt).gFjtt) i$Lt”) 

ak(0)+n-tl - ai -a! j(t) (1) 

where v =pb*(pa-p,) =i(M2-t-m:), t=(p,-~,)~ and 7 =pb*(pa+pc)=i(sab- 

‘be 
2 2 - ma+m c 1 (see Fig. 1). Other quantities in Eq. (1) are defined as follows: 

7.1 7. 
1 J 

and 7k are Regge signatures, and fi(t) = (ri+e-i?roli(t))/sin aai(t), 

P;,(t) and L&t 1 0 are the reduced residue functions familiar from two-body 

scattering, and gFj(t) is the vertex for the three Reggeons ori( cuj(t) and a,(O). 

In order that Regge exchanges in the t-channel dominate, the range of integration 

in (1) must be such that q >> N, 1 t I. 
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I 

Strictly speaking the sum rules should be evaluated at fixed t and fixed r] , 

However experiments are normally done at discrete laboratory energies, and 

Pa’Pb” $?l+v), so that data does not exist at fixed 7. However, evaluating 

EC e(a+b - c + anything) at one fixed laboratory energy wa = pb. pa/mb and 
C 

Ea$(c+b - a + anything) at another fixed energy wc = pba PC/m, will yield an 

approzimation to the sum rule accurate to orders N/mbua, N/n+,“, , provided 

I Wa-Wc 1 = O(N/mb) << wa, wc. This point will be discussed below. 

II. DERIVATION 

It has been made plausible 2,3 that the inclusive differential cross section 

for the process a+b - c +anything (see Fig. 1) is related to a discontinuity in 

M2 = (pa+pb-P,) 2 of the forward a + b + c + a + b + c scattering amplitude : 

A(Sab, M2,t) - This discontinuity must be evaluated on a sheet where the incoming 

subenergy sab is just above its physical cut, and the outgoing subenergy sz~ just 

below its physical cut, as indicated in Fig. 2. Clearly at fixed t we may equally 

well regard the amplitude A as a function of 7 and I, rather than sub and M2. 

Then 

EC $ (a+b - c -+ anything) = 1 disc (2) 
C h > 

v >&w?At) 

where h sab,mi,ml 
( 

is the usual flux factor. According to the Steinmann-like 

relations , 3 the locations relative to their cuts of variables overlapping the 

missing-mass variable M2 = (~~+~-p,)~ d o not affect the value of the discon- 

tinuity appearing in Eq. (2). We choose the incoming subenergy sbc just below 

its cut and the outgoing subenergy sb- just above its cut. Then A is on a sheet 

such that the inclusive cross section for c+b - a + anything is the discontinuity 
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2 
of A iJI (Pc+Pb-Pa) * In terms of u : 

Eae(c+b - a + anything) = 
a 

(3) 

Regge analyses4 of the (3-3) amplitude A suggest that in the limit rl >> v , t 

it may be approximated asymptotically as 

A- 7 c 
Oritt)+Ol jtt) 

fij(“lt) +~(rll”,t) (4) 
i,j 

[For notational simplicity, we have absorbed signature factors and residues into 

the definition of fij(v , t) .] The powers of 77 in the first term of Eq. (4) are 

determined by the leading helicity poles which are related to the Regge poles 

indicated in Fig. 3. The remainder term x has a different power behavior in 

r] and is not expected5 to contribute to the discontinuities in I/ . The quantity 

fij(v , t) is referred to loosely as the Reggeon-particle scattering amplitude - 

more precisely it is the analytic continuation of the maximum helicity flip 

amplitude in the center-of-mass of the crossed channel b6- c Q! . . 
1 J 

III order to write a dispersion relation for fij(v , t), and therefore derive a , 

sum rule, one must understand its singularity structure. Supposing “A has no 

discontinuity in v , we find for large 7 from Eqs. (2) and (4) that 

EC $(a+b -ccanything) z c 
ai+o! .-1 

7 J disc u > 0 fij(v yt) (5) 
C i,j 

and from Eqs. (3) and (4) that 

Ea $(c+b-a+anything) = c rl 
cri+cY .-1 

J disc f..(V,t) (6) 
a Lj V<OlJ 

Thus fij has a right-hand cut which may be interpreted as the absorptive part of 

the ni+b - ryj+b Reggeon-particle scattering amplitude, and a left-hand cut which 
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corresponds to the absorptive part of Ej +b- zi+b. Both cuts are required 

because if fij is continued to particle poles in positive t one expects to recover 

the usual analyticity properties of two-body scattering amplitudes. 

The question arises whether, at negative values of t, fij(v , t) has any other 

singularities in the complex v plane. Such singularities do not occur in models 

that have been studied such as perturbation theory, 6 the Gribov Reggeon 

calculus, 7 and the dual resonance model. 8 Further there is no reason yet known 

from S-matrix theory why singularities should occur at complex values of v . 

Thus normal threshold singularities of the (3-3) amplitude A in other physical 

region variables such as (~~+pb+p~)~ move off to 00 as v-+ao, and so could not 

appear in fij(V , t). Most simple triangle and box diagram Landau singularities 

in A move off to m as 9 -co ; those that occur at finite values of v lie on the 

real axis, and are included 3 in the definitions of the discontinuities to be associ- 

ated with inclusive cross sections. It therefore seems reasonable to follow 

previous authors in assuming that fij(v , t) has the same analyticity properties 

in I/ as a (2-2) particle scattering amplitude. 

In order to derive useful sum rules it is necessary to know the asymptotic 

behavior of fij in v . This is determined by Reggeons in the bb channel via the 

“triple Regge” formula’ 

aitt)+a jtt) 

fij(~ ) t, 
aitt)+Q jtt) akt") 

rl V 

F 

All the symbols in Eq. (7) were defined in Section I, with the exception of T, the 

triple Regge signature factor. 
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That T is not simply the signature Tk of the Regge trajectory ok can be 

seen by imagining a case where cri(t) and arj(t) are unit-separated trajectories 

of opposite signatures. Proceeding to a double particle pole in the t-channel, 

fij is proportional to an amplitude with cross-channel helicity flipped by ~~+a!. , 
J 

an odd number. It is well-known 10 that in such a case T = - TV. A choice 

Of T COnSiStHIt with this observation iS T = T .T .T 1 J k’ This is indeed the form 

taken by T in Feynman tree graph models with elementary particle exchanges, 

and, more realistically, in the dual resonance model as shown in the appendix. 

We have now motivated the required analyticity properties of the Reggeon- 

particle scattering amplitudes fij(v, t), related (Eqs. (5) and (6)) its cuts to 

inclusive cross sections and know the behavior of fij(v, t) as v - 00 . Therefore 

we can derive a sum rule for each fij(v , t) using the contour shown in Fig. 4. 

Adding these sum rules together with weights qoi+“j-’ the finite mass sum 

rules (1) for inclusive reactions are immediately obtained. Note that (2-2) 

processes such as elastic reactions should be included in the missing mass 

integrals, and will give important contributions. 

As mentioned in Section I, the finite mass sum rules should strictly speaking 

be evaluated using data on inclusive cross sections at fixed values of 77 =pb. (p,+p,). 

As IJ =pb’ (pa-P,) varies this corresponds to varying the incident laboratory energies 

wa and wc over a range O(N/mb). But in the approximation where a t-channel Regge 

description is used this variation in energy makes a fractional change in the cross 

section of O(N/?) << 1. Hence if we insert data at fixed laboratory energies into 

the sum rules (1) they should still be accurate to order N/q. In fact to the same 

accuracy it is not necessary that the laboratory energies ma and wc be exactly 

equal, as long as I Wa-O cI = Ot Nimb). However this does mean that terms down ,- 

by O(N/y) relative to the leading terms in the Regge pole expansions (5), (6) or 
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(7) cannot be evaluated reliably using the sum rules (1). For example, in 

processes where both the Pomeron and ordinary meson trajectories can be 

exchanged in the t-channel, sum rules at fixed laboratory energies will permit 

the determination of Pomeron-Pomeron and Pomeron-Reggeon contributions, 

but not Reggeon-Reggeon contributions. 

Schwarz-like 11 sum rules can be written down for other combinations of 

integrals over the inclusive cross sections a+ b - c + anything and 

c +b - a + anything, but then nonsense wrong signature fixed pole residues Rij(t) 

must also be included on the right-hand sides: 

-c+anything) + (-l)n Ea dp c d3,, +b - a + anything) 
a I 

= c rl 
ape! j(t)-l 

i, j 
4itt) mitt) Pg,tt) ~~,tt) 

r -l 

I g;.(t) &$o, 
ak(0)+n+l-ai(aj(t) 

R:)(t) + F (I+(-$ TiTjTk) 

N 

a,(O) + n+l - ai(t j(t) 

(8) 

III. DISCUSSION 

The most interesting applications of the finite mass sum rules (1) are likely 

to be in the estimation of triple Reggeon vertices by integrating over data at 

relatively low values of the missing mass. Data in the triple Regge region 

T>> v m-r( are not likely to be available until there are results from NAL; 

precise evaluations of triple Regge vertices from fits will have to wait until 

then. It would also be interesting to use the sum rules to investigate whether 

the Harari-Freund 12 conjecture can be generalized in the natural way to 
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Reggeon-particle scattering. One would evaluate resonance production contri- 

butions to the inclusive cross section integrals to see whether they built up 

Regge exchanges in the bb channel. A similar analysis could help resolve the 

controversy 13 on the duality properties of Pomeron-particle scattering. 

It has been argued 14 that certain of the fixed pole residues R $) (t) appearing 

in Eq. (8) may vanish at t=O because of crossed channel unitarity. This sug- 

gestion could in principle be checked by using the sum rules (1) to evaluate the 

triple Regge vertices gFj(t), and substituting them into the Schwarz sum rules (8) 

to evaluate the residues R?.)(t). The evaluation of fixed pole residues in the 
1J 

Reggeon-particle amplitude for a range of t is quite interesting physically, since 

the fixed pole residues set the scale of Reggeon-Reggeon cut contributions to two- 

body scattering. Thus measurements of single-particle inclusive cross sections 

in principle determine the magnitude of cuts in two-body scattering. Thus the 

Regge pole description we have assumed could be checked for self-consistency. 
15 

In all the above work the Pomeron has been treated as an ordinary Regge 

trajectory (possibly with zero slope), on the assumption that this is a reasonable 

first approximation to its nature. The sum rules give a lower limit to the 

rate of fall-off of Pomeron-particle scattering amplitudes. Consider the special 

case of the sum rule (1) with particles a and c identical, n=l, and 7 so large 

that non-diffractive processes may be ignored. Then 

N 

s dv v Ea $ - (a+b -L a+ anything) N 
0 a 

(9) 
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where up(t) is the Pomeron trajectory, and the sum is over trajectories k with 

positive signature. The left-hand side of the sum rule (9) has a nonzero positive 

contribution from the elastic process a+b - a+b. Because the inclusive cross 

section is positive this contribution cannot be cancelled, so that the coefficient 

of s 
2crp(t)-1 

on the right-hand side of (9) cannot fall to zero for large N. Hence 

there must be a nonzero coupling gpR for the Pomeron to some positive sig- 

nature J-plane singularity with ok 2 0. This could either be the fo or Pomeron 

trajectory, 17 or some other cut, trajectory or fixed pole with J 2 0. Under 

reasonable assumptions 14 about the residues of wrong signature fixed poles in 

Pomeron-particle scattering, this restriction on multi-Pomeron couplings can 

be strengthened to establish 16 a lower bound on the triple-Pomeron coupling at 

t#o . 

The term sin x(~y~(O)-a!~(t)-~~ j(t) in the denominator of Eq. (7) might appear 

to give an unphysical singularity in t in the full 3-3 amplitude. It has been 

pointed out 18 that the apparent singularity can be cancelled by terms in x( sab, M2, t) 

for cri(t)+crj(t) -ak(0) = 0, -1, -2.. . and suggested that for cri(t)+olj(t)-ak(0) = 

1,2,3... the poles are cancelled by zeroes in the vertices g:(t). This latter 

proposal is clearly required ~by sum rules (1) (continued if necessary to positive 

t) for the cases ai + crj(t) - ok(O) = L > 0 such that (-l)L 
= ‘iTjTk ’ 

These 

zeroes arise because right signature fixed poles were assumed to be absent in 

the triple Regge formula (7). If nonsense wrong-signature fixed pole residues 

were nonsingular, then the finite mass Schwarz sum rules (8) could be used to 

prove the existence of the zeroes at integers L : (-l)L = 
-‘iTjTk ’ 

A recent 

paper by Mueller and Trueman 19 reaches a similar conclusion on the basis of 

Feynman diagram calculations. 
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APPENDIX 

In the dual resonance model, the helicity pole limit can be investigated 

explicitly. ’ We multiply each cyclically inequivalent ordering of the external 

momenta by the appropriate Chan-Paton factor. Then, in the limit, r) e 00 , 

V---J, r] 7> ZJ (fixed t) the asymptotic behavior of the amplitude is determined 

by the sum of eight cyclically inequivalent terms 2o (Fig. 5). 

+ [(-Safi+ Ti(-S#] [( -sgb)? + 7 j(-5sbc)aj 1 Tk(-sa$ 
a! k-Q! i-O! j 

(A -1) 

The residue, rk ij =T(-a!i)T(-aj)T(~l~+c~~-cr~), is the same for all eight terms. 

To the expression above must be added another term which has no discontinuity 

in the missing mass and is of no interest for the present discussion. In the 

limit of interest, we have 

S ES -M-S 
ab sib be = -SEC z -sa-) = -Szb x Sj-- = SC 257)>0 

S abc e-s - 
aba z:v >o 

A complete definition of the expression requires a specification of the phases of 

each of the powers (-~)o. To obtain the inclusive cross section do(a +b -c f anything), 

the prescription is to choose 293 

(01) Re sab = Re sS z 7 Imsab=+ie I.nlszb=-ie 

Notice that the inclusive cross section d (a +b ---) c + anything) could equally well be 

obtained by the alternative prescription 

Imsab=-ie Imss=+ie 
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JJI general, the two prescriptions correspond to taking the discontinuity in sabc’ 

on different Riemann sheets. Of course, the complete determination of the 

sheet requires the specification of other energy variables, such as sbc and sbc, 

relative to their physical cuts; however, according to the Steinman-like relations, 3 

the discontinuity in sabS is independent of the specification of the overlapping variables. 

(Furthermore, the equality of the discontinuity on sheets having either pre- 

scription (a) or (p) is a consequence of time reversal invariance.) Although 

the discontinuity in sabE > 0 is independent of the choice of phase of sbc and s be’ 

the discontinuity in s~-~ will not be. The inclusive cross section da(c + b --+ a f anything) 

will be obtained from either of the following choices 

(Y) Resbc=Resbezq Im sbc = -ie h-n ~5~ = +ie 

(6) Re sbc = Re SET “7/ Im sbc =+ie Im sag = -ie 

On a sheet satisfying prescriptions (a) and (y), the expression given above, 

Eq. (A. l), can be written simply as 

A w 
c 

yFj $i+? 5,~; 1 (A-2) 
ijk 

If however we choose (a) and. (6) we find 

A - c eit;(-V)ak-(Yi-o!j + tj[? 7i~jTk /!k-“li-‘yj 1 (A- 3) 
ijk 

Using the fact that yk = yk ij ji the two expressions are precisely equal. 

No doubt the asymptotic forms (A. 2) and (A. 3) follow from the assumption 

of Regge behavior on all the sheets and are not peculiar to the dual resonance 

model. In the general case, the residue would be yk. = pi,(t) pi:(t) &b(O) gFj(t). 
1J 

The symmetry property -yk =yk ij ji follows quite generally from the requirement 

that the discontinuity for v > 0 is the same no matter whether prescription (a) or 
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(p) is taken. k” The reality condition yk = y ij ij 
is assured by the requirement that 

the discontinuity be real. 

Assuming Regge asymptotic behavior on each of the many sheets, other 

sum rules could be written down; however, it seems that only on the sheets 

discussed above can the discontinuities be actually determined experimentally. 

For example, imagine choosing all subenergies above their cuts as for the 

physical 3-3 amplitude. The discontinuity in s abE would then be quite com- 

plicated, and multibody S-matrix elements would be needed for its evaluation. 
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FIGURE CAPTIONS 

Kinematics for a + b ---) c + anything. 

Discontinuity related to the inclusive cross section. 

Representation in the limit sab>> MC t of term in (3-3) amplitude 

with 2 discontinuity. 

Contour used in deriving sum rules. 

Cyclically inequivalent terms contributing in triple Regge limit. 
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