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It is the purpose of this communication to describe how a simple semiclas- 

sical model of high-energy scattering suffices to account for (a) the elastic and 

inelastic nucleon electromagnetic form factors at large momentum transfers, 

and (b) Bjorken’ scaling in deep inelastic electroproduction. It provides also 

a natural framework to study the role of resonances in electroproduction2 and 

is a realization of previous considerations 3-5 on the subject. 

The basic idea of the model 697 is that at high energy, a nucleon describes a 

classical path, parameterizable by its four-momentum, which remains constant 

throughout its motion except for sudden changes caused by large momentum trans- 

fer8 collisions. 

The nucleon is coupled to a field, here taken to be massive, and 

neutral’ and referred to as the meson field. The assumption of constancy of the 

nucleon’s four-momentum implies that only soft mesons should be considered, 

and no pairs allowed. 

The neutral, soft character of the meson field guarantees that subsequent 

emissions and absorptions are uncorrelated. The deflections of the nucleon 

introduce current frequency components that induce meson bremsstrahlung. How- 

ever, there is an overall exponential factor in the scattering amplitude which sur- 

vives in the limit of no real meson emission. That factor measures how difficult 

it is for the nucleon to deflect without “breaking,” 10 i. e. , radiating, and will be 

identified as the depositary of the relevant physical information about the form 

factors. 

In the context of the specific calculation described below, it is essential to 

enforce dominance of the infrared region 11 by a cutoff procedure 12 that is required 

to be consistent with the softness assumption of the meson exchanges. In choosing 

the cutoff, one is guided by the experimental behavior of the form factors. 5 

Two models will be considered: (a) scalar meson field and (b) vector meson 

field. One candeal with the two cases alongthe same lines and the results are similar. 
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I. Scalar Meson Model 

The S matrix elements for the process 

n mesons - m mesons 

in the presence of a classical current distribution when the meson field obeys 

the equation 

(~+~)a = J 

is given by 

S mn= i,<ml :ei s J4n:ln)in e-w’2 

with 

w= $2 

i Pa)” . 

d4kd(k2 - ti2) 1 %W/ 2 

r(k) = 

I 

eikx J (x) d4 x 

(1) 

(2) 

(3) 

/ 
(4) 

Taking now as source current 

J(x) = g [mCEp) -‘a(%- (Ep)-lvxO) 0(-x0) +rn’(Ep,)-‘d(%- (Ep,j-‘~‘xo 8 (x0) ) I (5) 

corresponding to the graph of Fig. 1, and where pP = (Ep,3), P” = (Ept ,?‘) am 

the four-momenta of the incoming and outgoing particles; m, m’ their rest masses 

and g the meson-source coupling constant, one finds 

I d4kd(k2-P2) kp?ii E - I 
2 

kp? ie + wf 

with 

2 
Wf=+ 

ww 
d4k6(k2 -P2) (zri) 

(6) 

(7) 
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In the limit of forward scattering, W -Wf. One can simply subtract Wf 

from Eq. (6) by referring all amplitudes to the forward case or set Wf equal to 

zero by defining 6914. . 

/ 
d4k&k2 -p2) j$$$$ = Qim 

Q-.-p’ 

since both k and p’ are time-like vectors. 

By inserting parametric integral representations for the denominators in 

Eq. (6), one can easily bring W to the form: 

where 

dQ 
Q2 -A2 

A = 2h+l 

q2 = -Q2 = t = (p’ - p)2 

03 

D= 
i 

Nl (~1 dy 

0 

63) 

(9) 

It is here where one has to introduce a cutoff in order to prevent D from 

becoming logarithmically divergent as a result of the lower limit of the integral 

in Eq. (14) being zero, which reflects the effect of the integration over all the 

on-mass shell momentum space of Eq. (6). As /J # 0, there is no infrared di- 

(10) 

(11) 

(12) 

(13) 

(14) 

II vergence, only the ultraviolet one, and to be consistent with the soft meson 
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character of the model, one has to introduce a positive lower limit in the integral 

of Eq. (14): 

D -Wo) = 
I 

Nl Wdy = NoOTo) (15) 
d 
YO 

W can be straightforwardly evaluated after this cutoff to be: 

2 

Iv= -f3No(yo) Qn &+m ( 

If y. S 1, one can replace NO(yO) - EQnyO . and write 

(16) 

G(Q2, mr2) = e -w/2 
Qn (fi+ $=I 

= (Y,) (17) 

At this point, one must invoke experiment to determine yo. It appears 5’3y4 that 

the excitation form factors of the nucleon are universal functions of the ratio 

Q2/mY2 falling as a power of it for Q2 2 mV2 (A > 1). That fact suggests: 

Yo - 
i ) 
22 

-1 

A > 1 rnr2 
(18) 

and 

n = g2/4r2 (19) 

as the fall-off power. 

Guided by Eq. (18)) it is easy to establish a relation between h and yo. An 

argument follows: 

The role of the variable h in Eq. (10) and (12) is reminiscent of angular 

momentum. Writing 

h=m’bo (20) 
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where b. is an “impact parameter,” one obtains from Eq. (11): 

4mbo=k+ 5) + cm2 zFrnt) 

For m’ W m, 4m b. N Q2/m12 while in the limit rnt2 >> m2 (A >> l), one has 
13 

4mb0 A >71 
t 1 

1+&2 s p’LL 

rnt2 w’ - 1 

tm’ 2 77 m2) 

with 

,r=,2pq + m2 
Q2 Q2 ’ 

(21) 

(22) 

(23) 

the Bloom-Gilman variable. 
2 Comparison of Eq. (21) and (18) deems it consistent 

to set 

1 t 
Yo = 4mbo =Ez (24) 

which is the desired relation between y. and A. 

Turning to electroproduction, consider the virtual forward Compton scattering 

diagram of Fig. 2, associated with a current distribution: 

J(x) = gm’ (Ep% )-‘(5 (jT+c) (Ep+q)-lxo)k - 0(x0 -T) -0(-x0-T)] 

(F+a)(E,,,)-‘T -r(Ep) -' (x 

-T(E,)-'(x'+T) e(-x0-T) (25) 

\ 

T is a parameter, related to the “lifetime” of the intermediate state as seen in 

the frame of the figure. Notice that T 3 2m’ (Epq )-lT is the relativistic interval 

between the virtual photon absorption and emission. 
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The corresponding W (denoted from now on as We) is easily computed to be 14. . 

One can see from Eq. (26) that if T = 0, corresponding to light-cone-related 

absorption and emission, then We = 0. However, T = 0 is not consistent with 

the model since pV2 = 1y1’ 2 7 0 and therefore T > 0, i. e. , the electromagnetic 

interactions must be related by time-like intervals. 

The contribution to We coming from the term 1 in the first square bracket 

of Eq. (26) is just 2W, W defined by Eq. (6). The. contribution from the 

exp[ikp’-$] term can easily be cast into the form 

W e7 

with 

we=2jw+w 
e7 1 

(26) 

(27) 

(28) 

and h, A2 defined as in Eq. (11) and (10). 

Therefore 

(29) 
9 3 

One observes that Eq. (29) implies a factorization of g(Qy , rn’yp ,m); and if h >> 1 : 

gtQ2, mf2; 1-1, m) = G(Q2, mf2) f (cl, m, m’) (30) 

where one has tacitly assumed T to depend on 1-1, m, m’ . 

Assuming that the v W2 structure function of electroproduction is built up 

from resonance contributions only, one can write, 3 in the narrow-width 
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approximation: 

vw2(QZ ,v) =Q2 c 
2/2 2 g \Q , mf,p,m Jmr2-mf2 H r 

f 
(31) 

If one has an infinite number of closely spaced terms in the sum of Eq. (31) so 

that a level density p(mV2) can be defined, and recalling Eq. (17), (24)) and (22)) 

one can write in the limit Q2 > rnT2 77 m2 (equivalent to large p’ or 2 2 WI 2 I), 

following the steps of Ref 3: 

vw2 

if 

p(mt2) = - 
;I2 fm2 0-b m, m’) 

(32) 

(33) 

15 Equation (32) manifestly satisfies the Drell-Yan-West relation between 

the behavior of the nucleon elastic form factor and v W2 as ~‘-1. 

In the strict Bjorken limit Q2 - oc), w =a fixed, one has h-co, 

-1 Q2 
4mbo -w(w - 1) from Eq. (22). Therefore, y. = (w -1)/w. All the form 

factors are given by G(Q2, rnf2) = exp [-W/2] = exp (cg2/8 7r) No[ (w - 1)/w]\ and 

as long as Eq. (33) holds, one has: 

vw2 - 5 exp[nr No[ (w -l)/uI] (34) 

which for large w falls like (w - 1) -1 . 

As scaling is experimentally observed, and it is very good near w’ 2 3, 

one may use Eq. (33) and see how p(mf2) is related to T in the limit ml2 77 m2: 

W 
P(rn12) = *e eT (35) 
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II. Vector Meson Model 

Vector mesons can be handled in a similar way as the scalar mesons. There 

are some modifications which will be pointed out. 

Equations (1) to (4) are valid with the addition of Lorentz vector indices for 

the meson field and the current, provided the latter is conserved. The products 

Ju, IJWj2 are understood as J’ ati; 7’ (k) yz (k). Equation (5) is changed by intro- 

ducing pP, p; instead of the m,m’ coefficients. Then aPJP = 0 and the current is 

conserved. Equation (6) will now read 17. . 

(36) 

with Wf given by Eq. (7). Wf will be dropped from now on, appealing to the same 

arguments. 

Inserting parametric integral representations for the denominators in Eq. (36), 

one finds: 

with the definitions of Eq. (10) to (14). 

one is left with 

(37) 

Cutting off the D integral as in Eq. (15)) 

2 * 
f@=-& N 2hi-1 In (A + a) 

lm=T 1 
. ,- The terms in the square bracket of Eq. (38) are denoted by F in the first paper 

I’ 
of Reference 6. The form factor will be given by 
. . 

w -- j$ NO(yo) 
G (Q2,&‘2) E e 2 4n 2 F(A) 

= e 

(38) 

(39) 
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The behavior of F(h) as h increases is 

F(W --Qn (4h)-l 
h 77 1 (40) 

Therefore, y. = constant (such that NO(Yo) > 0) guarantees a behavior (Q2/m2)? 

for G(Q2, m2). That is the same choice of cutoff as Fried and Gaisser, 6 and is 

the main difference in the scalar meson calculation. 

Defining 

2 No(7-o) 
Y= & 2 

one finds that the A 77 1 expression for the form factor is 

z (Q2, mt2) = (4h)%- 
h 77 1 

(4m bo)-Y 

/m 
-Y 

-- 
m~T.7m ‘m’ ? 1+&2 i 1 m2 I I 

where use of Eq. (21) and (22) has been made. 

For electroproduction, the m’,m coefficients of the terms appearing in 

Eq. (25) are substituted by p;1, pP. Equation (26) is replaced by: 

(41) 

(42) 

(43) 

(44) 



One now has 

m’>>m 

and, therefore, in the limit h >> 1, m’ >> m and under the same conditions as 

Eq. (31), one can write for all w’: 

1 w’-1 2-Y 
vw2s--- - 

( ) w’-1 w’ 

if 

m’ \2Y 
p(mf2) =A ---m- e ( J 

we7 

m’ 

(45) 

(46) 

(47) 

Once again, the Drell-Yan-West relation is satisfied and in the Bjorken 

limit, v W2 is given by Eq. (46) with w’ - w. 

III. Summary 

One can conclude from this paper that the bremsstrahlung model of nucleon 

high-energy scattering is appropriate to describe the qualitative features of the 

form factors of the nucleon and of inelastic electron-nucleon scattering. 

The model provides a framework in which the interesting kinematical variable 

p’= (1+Q2/ m12) plays an important role. That same variable appears very 

naturally in the parton model. 
3 

On the other hand, and considering Eq. (35) and (47), one has a connection 

between the density of electromagnetically excited states of the nucleon and the 

relativistic interval 7 between absorption and emission in virtual forward Compton 

scattering. r depends on m’, and it is easy to see that a form like PT - 5 (m’/m) 
CY , 
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where a! is some constant, is consistent with narrow-width approximations 16 

if a! = E - 1; E > 0. Such a form allows both an approach to T = 0 (light cone) 

with increasing m’ if CY c 0, and a recession from it if a! > 0. In any case, it 

is interesting to see that in the context of such a simple model, one has elements 

of relation to (a) the parton model, (b) the light-cone behavior, and (c) the res - 

onant structure of the inelastic form factors of the nucleon. 
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Figure Captions 

1. Diagram for the form factor calculation. The deflection is taken to occur 

at the origin of space-time coordinates. 

2. Diagram for forward virtual Compton scattering. 
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