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ABSTRACT 

A formalism for describing the reactions a f b -+ c + d + e is pre- 

sented in detail and the experiments necessary for the reconstruction 

of the transition amplitude described. Experiments involving polarized 

targets are discussed carefully and a partial wave analysis is made 

which is particularly suitable for application at low c. m. energies. It 

is shown that in order to resolve parity ambiguities it is necessary to 

observe the final particle polarizations. 
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1. INTRODUCTION 

In this paper we exhaustively develop a formalism’ to describe reactions 

of the type 

a+b-+c+d+e (1. la) 

which is particularly suitable for partial wave analyses at low energies where 

there is appreciable overlap of resonances in the Dalitz Plot. 

The reaction is described in terms of the Dalitz Plot variables, the spin 

components of the individual particles normal to the 3 particle plane and the 

Euler Angles describing the orientation of this plane with respect to a fixed 

c. m. coordinate sys tern. In the partial wave analysis these Euler angles are 

replaced by an equivalent set of quantum numbers--J the total angular momen- 

tum, M its Z-component in the fixed coordinate system and A the component 

parallel to the normal of the 3-particle plane, This formalism then leads 

easily to a method of recording the angular correlations as a function of 

Dalitz Plot variables in a manner analogous to the description of elastic scat- 

tering in terms of Legendre coefficients. 

We give explicit formulae for the restrictions imposed on these states by 

parity (correcting earlier versions ’ 72’3) and by the presence of two identical 

particles together with the resulting properties of the transition amplitudes. 

Armed with this formalism we then discuss all possible types of polarization 

experiments and point out the existence of a parity ambiguity in the analysis of 

the unpolarized cross section which can only be resolved by measurements of 

final particle polarizations. 

We have not considered the imposition of 3 particle unitarity constraints 

nor have we identified all the kinematic singularities* within the formalism. 

It is also clear that the type of 3-body analysis presented here is particularly 
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useful in the low energy resonance region. A natural question which then 

arises is what formalism is best suited to what energy region. All these ques- 

tions are very important phenomenologically and they are at present under 

investigation. 

The plan of the paper is as follows. In section 2 we describe the method 

of construction of the two and three particle states, the projection of angular 

momentum states, and the consequences of parity and the presence of two 

identical particles for these states. We then calculate the transition amplitudes 

and cross-section formulae for the processes (1. la) together with their partial 

wave decompositions. 

In section 3 we specialize our formulae to the case 

MB -+ MMB (e.g., nN --‘mrN, KN-+nnR, etc.) (1. lb) 

1+ where M is a pseudoscalar meson and B is a 5 baryon and discuss all the 

experiments which can be performed when B is both a stable particle (e. g. , 

proton or neutron) or an unstable particle (e.g. , A, c) whose decay distribu- 

tion gives information on the parent polarization, We give specific formulae 

in the case of scattering from unpolarized targets where the final baryon 

polarization is unobserved and comment on the application of our method to all 

possible polarization experiments, 

In section 4 we discuss the properties of this formulation, its advantages 

and disadvantages and compare it with present methods used in analyzing 

reactions of the type (1. la) and (1. lb). 

The appendix describes the interpretation of the density matrix we use 

for describing the polarization properties of 2 --) 3 reactions. 
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2. 

2.1 

THEORETICAL FORMALISM 

Definitions of Coordinate Systems and Kinematical Quantities 

We consider the production process 2 - 3 shown in Fig. 1. Our metric 

is such that pi2 =Mi2. We define 

s = (kl + k2)2 = (P, + p2 + P,)~ 

‘i= (Pj +PkJ2 

and we have the relation: 

s =s1+s2+s 3 - (Ml2 + M22 + M32). 

We consider the process in the 

cq =Q =o 
i i 

(2. la) 

(2. lb) 

(2. lc) 

and Iz$= k 

w = El + E2 = w1 + cd2 + cd3 = &- (2. Id) 

where E i and wi are the-energies of the particles in the c. m. system. 

The three outgoing momenta define a plane, and the final configuration 

may be specified by the momenta jji (nine variables and four constraints (Eqs. 

(2. lc) and (2. Id)), or by the following procedure. We define a system of axes 

Oxyz fixed in space, and define a “standard orientation’t of the three particle 

final state to be when all momenta are in the xy plane, This set of standard 

momenta we denote by Ti, where we choose (Fig. 2) Y’, +?, = -T3 to be along 

the x axis and ??,A “r;z to be along the z axis. (Such a choice simplifies our 

discussion of systems containing two identical particles. ) The relative 
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orientation of the three particles is now specified by two variables which may 

be chosen to be two energies wl, u2 or equivalently sl, s2. As for a rigid 

body, a general orientation of the three particle final state is specified by the 

rotation5 R(CV ,P,y ) from the standard orientation. The momenta gi are 

obtained from “ii by this rotation R(o) p, y ). If we define a set of moving axes 

OXYZ fixed with respect to the particle momenta, and initially parallel to the 

set Oxyz, it is clear that OZ defines the normal to the production plane of the 

three particles. 6 

2.2 The Incident Two Particle States 

We specify the initial two particle states using the helicities of each 

particle. 

A two particle helicity state in the c. m. s. is defined in the following 

manner 

13 = 0, W; 0,@, vi > =R(@,e,O) I?=O,W,OO/J~> (2.2a) 

and I’i =O,W;OOpi> = Ikpl> l-kp2 > (2.2b) 

where 3 is the total momentum of the two particle system, 

k is the c. m. momentum of each particle, 

W the total energy of the two particle system, 

8 , $I the polar coordinates of particle 1, 

1-1 1 ,p 2 the helicities of particles 1 and 2 

and we have used the phase conventions of Werle. 4 The normalization is : 

2 
= F ~(w-P&) ~“(9) ~(~0s 8 1 - cos 8) s($’ - @) I7 6 

i=l Clf’“i 
(2.2c) 
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Angular momentum states P’= 0, W; p i; I JM> are constructed in standard 

fashion 

I p’ = 0, W; pi; JM> = NJ 

/ 
K d3R Dzp (R) R IF = 0, W;OOp i> (2.2d) 

where [ 1 l/2 
N = 2J+1 

J 4n 

We obtain the usual parity condition 

,!F’Ip’=O, W; pi; JM> = 7(-l) J -%-!2 IF=O, W; -pl; JM) (2.2e) 

with rl = VlT2, the product of the intrinsic parities of particles 1 and 2 

vl’ V 2 the intrinsic spins of particles 1 and 2. 

2.3 The Final Three-Particle States 

Our standard single particle states are constructed as follows: 

) Ti Ti>= L(Q ITi> (2.3a) 

where L(Ti) is the relevant boost operator in the xy plane, For the general 

orientation 

(2.3b) 

7i specifies the spin degree of freedom for each particle: they are not helicities. 

Here, the 7i specify the Z-component of spin in the rest frame of the particle. 

Now, Eqs. (2.3a) and (2.3b) are usually regarded in the active sense; i.e. , as 

a prescription for generating a complete set of states in the frame Oxyz. 
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However, they may also be regarded in the passive sense; as describing the 

same state in two different reference systems: one in which the particle has 

momentum ci and the other a rest system. Thus equations (2.3a) and (2.3b) 

amount to a definition of the orientation of a set of “rest-frame axesll for each 

particle, relative to the frame Oxyz. With the above conventions, the rest 

frame axes for the final state particles are just the moving axes OXYZ. The 

7i may be called “transversitiesll: spin in the rest frame quantized along the 

normal to the production plane. 

We define three particle states: 

)F=O, W; apy; si’$> =R(a,p,y)nl~~:> 
i 

The single particle states are normalized as follows: 

<Fi’Ti’ ! q ‘Ii> =2ei ““(g-y - qa, ‘T 
i i 

I 

By a standard change of variables: 

d3pi W 3 n- = -d p’ dWd3R dOI da2 
i 2oi 8P” 

1 =-. w d3P dW d3R dsl ds2 32s po 

(2.3c) 

(2.3d) 

(2.3e) 

where 9 = c picL and in the c. m. s. P” = W, and d3R = da! dcos/3 dy. We 
i 

find the three particle states are normalized as follows: 

<Ff, PO’; R’; si’; TV’ 1 s= 0, W; R; si ri> 

= 32s s3(i;l) 8(tv-Po1) a(cU’ - a) G(cos p’ - cos p) 6( y ’ - y) 

; 6(Si’ - 
3 

i=l 
‘i) IT ‘7 17 

i-i ii 
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Angular momentum states may be defined in the usual way: 

(?=O,W;siT; JAM>=? 

/ 
d 3 R D&(Q ,P, y) 1 s=o;w; spy; siri> (2.3g) 

8~ 

and this may be inverted to give 

I~=O,W; crPr; “iTi> = C DJ~(~Pr) I~=o,w; SiTi; JAM> 
JMA 

(2.3h) 

We now consider the effect of the parity operation on these three particle 

states and the modifications necessary when there are two identical particles. 

Parity : 

For our standard single particle states, it is useful to define the operator for 

reflection in the xy-plane: 

-inJ 
Z=e ‘9 (2.3i) 

Clearly, since L(Ti) generates boosts in this plane 

z L (K) = L(T) z 

and consequently 

zlTiTi>= r).e 
-i7rT. 

1 
' lTiTi> (2. W 

where 37i is the appropriate intrinsic parity. Thus we obtain for the 3-particle 

states 

I 
F = ow; o!py; SiTi> = r]' e 

-i7rT - 
1 P- = OW; @y-n; SITE> (2.3k) 

where T = c Ti, and we have written r]l for no.. 
i i r 

As is physically obvious, the parity operation relates one three particle 

configuration to another, without changing the “transversitiestT. For our 
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definition of the angular momentum states (2.3g) we obtain 

dF=o,w; SiTi; JAM> =(-l)*-‘qT IF =O,w; si~i; Jhn/r> (2.31) 

and we see that these states are eigenstates of the parity operator. 

Identical particles : 

In this section particles 1 and 2 are assumed to be identical. If g12 is 

the operator which exchanges particles 1 and 2 we have 

PI2 IO00 siTi > = P12 1 ;;lT1 > al 1 y2T2 >a2 lT3T3 ’ a3 

=;T> 
I I l%iT3>a3 7-7 > 

lla2 22 al (2. a) 

where a = L (;;,IT> (2.3n) 

i.e., our standard single particle basis states. Now the state 2.3m is no 

longer a standard state of the type 1000; SIT i> since the body-fixed axes Z 

and Y are opposite to the z and y axes of the frame Oxyz. A rotation of 7r about 

the x-axis of a standard state does not, however, lead to 2.3n since the rest 

frame axes of each particle are also rotated. Thus we need to consider states 

I & > b with the rest frame axes rotated by 7~ from those of states I- TT> a’ 

I- TT> b = L(G Rx(r)l' > 

These states are related to TT>~ by I 
in7 T-l-7 

1 ?iLT> a =e (-1) IT-?->b 

where (+ is the intrinsic spin of the particle. 

(2.30) 

(2.3P) 

-9- 



Then 

Rx(a) 1000, s2 - T2 s1 - Tl s3 - r3 > 5 Rx(n) 1000, si - 7i > 

I 
-7T n- = -,Tr, -; 
2 2 ‘i- Ti > 

= I 7 2 - ‘2’bl I 
; F 1 - ‘l’b2 3 - T3>b3 I 

(2*3_p) 

Then 
ir(C7.J 

0, siTi>=e 
C(Uj +'j) - 

j ’ (-1) j I”2- 72,bfl- ‘1’b21;;3- ‘3>b3 

ZZ ~Rx(n) 15, sx> (2.3r) 

where 
in(Cri) 

p=e j 
Ct”j + ‘j) 

f-1) j 

, 
This result may then be used in (2.3g ) to give 

P 12 
I 

SiTi; JAM > =[ 
I- 

si - C; J - AM’ 

where 6” = f-1) 
J + ol + u2 + U3 

(2.3s) 

(2.3t) 

(2.3~) 

and o- =o- 1 2 

Note that all angular momentum quantum numbers referred to the normal to 

the reaction plane have changed sign as expected. 

2.4 The Transition amplitude and its Partial Wave Decomposition 

The transition amplitude is 

(2.4a) 
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For simplicity we take 8 = $ = 0, and then the partial wave decomposition 

of the T matrix element can be written 

<orfir; SiTi T(s) 0 0 p j > = c N D 
I I 

Jn J ii tap71 <‘i A Ti ITJ(‘)i ‘lj’ 

where p =pl -p2. For convenience we define 

clj’i 
BJA (S,Si) ‘CSi A ‘i 

(2.4b) 

(2.4~) 

and then we have 

F 
TiP j (S,Si,R) =<arpy; Si’i I’Wl 0 Op?=sNJD$B;iTi (vi) (2.4d) 

Using our results for the parity operation gives the condition 

P j 
BJA 

‘i 
(s ,Si) = T r]’ (-1) A-T (-1) 

J- vl-V2 
-Pj ‘1 

BJA (S,Si) (2.4e) 

This parity constraint was given incorrectly by Branson, Landshoff and 

Taylor4 (now corrected in a recent erratum’) and this incorrect version was 

used by Arnold and Uretsky 3 in an analysis of the reaction 

TN - mN 

They associated the partial wave amplitudes By: and B:iT with the same 

parity initial state. Since the parity of the final angular momentum state is 

al( -l)h-T ) this is clearly incorrect. Moreover, this error completely invali- 

dates their conclusions concerning constraints on the absorption parameters 

qJP of elastic phase-shift analyses from the presently-available unpolarized 

production angular distributions. In this paper, we show that unless final state 

polarization experiments are performed, a complete parity ambiguity must 

exist in the analysis. Thus bounds on the inelasticities for each Jp cannot be 
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obtained from unpolarized angular distributions and the analysis of Ref. (3) 

should be disregarded. 

Jn order to make a partial wave decomposition of the transition amplitude 

(2.4d) we note that BJA ‘jTi (s,si) r e p resents a transition to the final partial wave 

I si TV; JAM> which is an eigenstate of parity with eigenvalue q ‘(-1) A-T . This 
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means we can project out states of opposite parity by writing (2.4d) as 

F 
T./d. 

(s, si, R) = c N DJ* (ofi,/) B;iTi l/2 A-T h-7 

JA J PA 
fs ‘i) +1- q’(-1) 

1 J 1 
= F+ 

7-p . 
(s ,si,R) + F- (s, Si’ R) 

1 J 7-P * 1 3 
(2.4f) 

where 

i j 
(S ) Si’ R) = ~ C N DJ* (a8,y) BJn 

c1 j ‘i A-T 

“&l JA J ti 
(‘,‘i) ’ * rl’ (-l) 1 (2.4g) 

and the f refers to parity of the transition. Thus (2.4f) and (2.4g) are our 

partial wave decomposition of the transition amplitude. 

Finally if the final state contains two identical particles then the transition 

to the correctly symmetrized final state must be considered. This then imposes 

the restriction that 

pj-5 

BJA (s, gi) = (-1)20 5 B;j; (s ,si) (2.4h) 

where o is the intrinsic spin of one of the identical particles and 4 is defined 

in (2.3~ ). 
c-.._ 

2.5 Cross-Section and the Contributions of States of Different Parity 

The differential cross-section can now easily be calculated and we obtain 

in the c. m. s. 

d5fl(Tip .) 7r2 = 
dsl ds2 d3R 32s 3’2k 

E 
12 

= p2 FTC1 (S,Si,R)( = 
i j 

CR siTi IT(s)1 0 /A~ >I2 (2.5a) 

32 F+ 
7.j.L. 

(s ,si,R) + F- 
1 3 ‘iP j 

where the equations define /3. 

- 13 - 



If we now substitute our partial wave expansion for F 
TilJj 

(s,si,R) we have 

d5u(y .) P j’i* 
’ =P2 C N N DJ (Q,P~Y)D;~, (~,P,Y )BJn 

P j Ti 
3 dslds2d R JA JJ’d (S,Si)BJtA~(S’Si) t2*5C) 

J’h’ 

and we note that transitions from definite helicity states give no dependence on 

a. This is not true if the initial polarization vectors have non-zero transverse 

components. We also note that the ac , p, y distributions do not depend on T . 

Finally we may integrate (2.5~) over a!, p, and y to give 

d2 c(T~~ .) 
2 rp2 c BJA 

I-1 j ‘i 2 

dsl ds2 = JA 
ts 3 ‘i) 

do-+(‘il” .) 

= dslds2 + 

da-(‘CC1 .) 

dsl s2 

(2.5c-i) 

(2.5e) 

where 

da+(Tip .) 
’ ds 1 ds2 = np2 c/8;p 1 2 [l It?)’ (-$-] 

We thus obtain the well known result that waves of different angular momentum 

and parity do not interfere in the Dalitz Plot. 

If the situation obtains in which the 3 particle final state is the only inelastic 

channel (as approximately realized in low energy TN scattering) the measure- 

ment of these partial wave cross-sections can provide a valuable constraint on 

the inelasticity parameters of elastic phase shift analyses. 
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The expressions for polarizations and polarization tensors may now be 

written down. However, it is more instructive and useful if we specialize 

to the case 

MB -+ MMB (2 - 5g) 

l+ where M is pseudoscalar meson and B a spin 2 baryon . This is dealth with 

in the next section. 

3. THE REACTION MB- MMB 

In this section we specialize all of our previous formulae to the process 

MB * MMB 

where M is a pseudoscalar (O-) meson and B a spin i baryon with positive 

parity JL+ ( ) 2 l 

We take the baryon to be particle 1 in the initial two particle 

state, with helicity cc. The final baryon transversity is labelled 7 and it may 

be taken as any one of the three final state particles. 

3.1 Transition Amplitude and Differential Cross - Set tion - 

The partial wave decomposition of the transition amplitude is now written as 

FT~(S”Si,R) =‘olPY,-Si 7 IT(s) 10 0 ~‘=~~~~Bt;l; (S,Si) (3. la) 

and the differential cross-section from a nucleon of helicity p to a state with 

final baryon transversity T is 

d5u(Tp, = p”l I 
2 

dslds2d3R I FTp ( s+,R) 

2 
~ fT1l. (S,Si,R) (3. lb) 
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where we define 

fT~(S,Si’R) =P FT~ (S,Si,R) (3. lc) 

The unpolarized cross-section is immediately obtained by averaging over 

initial helicities and summing over final transversities 

dF =L 
dsl ds2 d3R 2 c 

/Jr I 

2 
f (s+R) (3. Id) 
T/J 

This may then be expressed in terms of the partial wave amplitudes 

s ,si) and we discuss this in a later section. 

3.2 Experiments with Polarized Particles 

In this section we obtain expressions for all measurable quantities; the 

formulae look most transparent in terms of the transition amplitudes 

fTCI (s , si, R) and we omit the arguments (s ,si, R). 

For MB -MMB, there are four possible types of experiments: 

(a) Unpolarized differential cross section. 

(b) Polarization llasymmetryft--i. e. , cross section from polarized target. 

(c) Measurement of final polarization. 

(d) “Depolarization tensor “--measurement of final baryon polarization 

from polarized target. 

It is also convenient in this section to discuss the equivalent experiments: 

(e) In which the final baryon can undergo weak decay to an MB system the 

angular distribution of which can define the density matrix of the 

decaying baryon. 

These four experiments, (a), (b), (c) and (d) constitute a Y’complete set” 

of experiments for reconstruction of the scattering amplitude f 
T/1. (S,Si,R) at 
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I 

a given s , and final state configuration (R, si). The problem of direct recon- 

struction of the elastic T-matrix for the nucleon-nucleon system has been 

extensively discussed:8 here we outline the extension of these ideas to recon- 

struction of the inelastic T-matrix elements for the reaction MB -+ MMB. We 

make extensive use of the density matrix and our interpretation of this is 

described in the Appendix. The polarizations of the initial baryon (taken as 

particle 1 in construction of the initial two-body state) are referred to the 

fixed axes Oxyz, but polarizations of final particles are referred to the moving 

axes OXYZ. 9 With this convention, the formalism becomes as simple as for 

the non-relativistic case: we briefly consider each type of experiment. 

(a) Unpolarized cross section. 

Initial density matrix: p (3.2a) 

The differential cross section may be written 

dc = 
d3Rdslds2 

- 
IO 

= 'J'r f pti) ff = f c ffTp 2 [ 1 T/J I t 
(b) Polarized target. 

The initial density matrix is now 

,(i) = 1. 2 (1 + Fa * Za) 

(3.2b) 

(3.2~) 

(labelling the initial baryon as particle ffa”). The cross section now includes 

an ffasymmetry’l term Xi: 

[ d3Rd& ds2 ] ,(i) ‘IP 
= “Jr f pti) f+ [ 1 

= IO (1 + Fan X) (3.2d) 
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where 

1,x = 5 Tr [f Ga f’] ., (3.2e) 

(cl Final Polarization. 

The initial density matrix is Eq. (3,2a), and a final density matrix 

may be defined 

where 

IO p 
(f) 

Tr ptf) = 1. c 1 
The final baryon polarization is given by 

1 -ji; (0) = + 
0 c Tr [ff’ G~] 

(3.2f) 

P-%9 

where the final baryon is particle c I1 I1 and the superscript (0) for the polariza- 

tion signifies that the initial state was unpolarized. 
w 

(d) Depolarization tensor. 

The initial density matrix is given by Eq. (3.2c), and the final state 

density matrix is 

Ip p(f) = f ,(i) ff (3.2h) 

The final polarization is obtained from 

‘P ‘kc = IO (Pk (‘I + Pi Di k ) 
C a ac 

where 

‘0 Di a c = f Tr[iqBfiokc] k 

(3.2i) 

(3.W 

In these formulae, directions of polarizations for particle “at1 are referred to 

Oxyz: for particle “Cam to OXYZ. With this understanding, the 2x2 crmatrices 

have the standard representation of the Pauli spin matrices. 
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For completeness the results of all these experiments in terms of the 

amplitudes f are listed in Table 1. 
T/J 

In principle, the four complex amplitudes 

may be reconstructed up to an arbitrary overall phase. 

(e) Reactions in which the final baryon undergoes a weak decay to an 

MB system. 

In this case the decay angular distribution of the final decay products 

of the baryon (e. g. , a A) can serve to analyze the polarization of the baryon. 

If we consider the reaction occurring from an incident target proton described 

by the density matrix p (i) then the density matrix of the baryon in the 3-particle 

state is given by 

p(f) = f p( i f+ ) 

q-p?] 
(3.2k) 

or 1 ptf) = f ,ti) f+ and I = Tr [f p@) f’] . 

This plf) then describes the baryon (A) in its rest system with the axes 

parallel to OXYZ. If C is the matrix which describes the decay of this baryon 

leading to another spin i particle (e.g. , A - pn-) then the density matrix of 

this particle can be written as 

pd = 
c p(f) c+ 

Tr p pff)Cf] 
(3.2m) 

If the spin states of the final baryon are defined by 

lsMs> = L(g) IOMs> 

where Fis the momentum vector of the final baryon in the frame OXYZ and 

L(F) is the corresponding boost operator, then the rest frame axes of the 

final baryon coincide with the axes OXYZ, and all observables are referred to 

these axes. 
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I: 

The angular distribution for the decay baryon is 

Id = Tr [C ptf) Cj (3.2n) 

If the decay matrix C is expressed in terms of the usual parameters s and p: 

the amplitudes for the s- and p-wave decays, the angular distribution then 

becomes 
1 

Id = 4n 
VI 

P11 

v ) + 2aRe p12 sin 8 cos $ 

- 2aIm pl(fz) sin 0 sin $ \ (3.20) 

where 8 , $ are the polar angles of the decay nucleon w. r. t. OXYZ 

and 
I 

O!= Re(s*p) 
IsI + I,[ 2 * 

For comparison with the formulae derived for experiments (a) - (d) it is 

convenient to introduce an un-normalized final density matrix for the remainder 

of this section. 

. p = fpW f+ 

The trace of p is now the appropriate differential cross section 

Trp =. I 

Thus 

I Id = & (pll + &,) + (p11 - 42) a ‘OS ’ 

f 2 a Re p12 sin 8 cos $ 

- 2 a Im p12 sin e sin 4 
t 

(3.2P) 
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Two types of experiment can be performed in this case 

0) from an unpolarized target 

(ii) from a polarized target 

We will see that these are equivalent (as they must be) to (a), (b), (c) and (d) 

discussed earlier. 

0) Unpolarized target. 

and we have that 

(ii) Polarized target. 

and 

po = ; f f+ 

,@I = f Ii‘+ E; . ; 
a a \ I 

(3.2r) 

ZZ p” + C-a . pa (3.2s) 

where 

-2 
P = +f;;,f+ (3.2t) 

The values of p” and ,? in terms of the f’s are also included in Table 1 

and we see that their measurement is indeed equivalent to (a), (b), (c) and (d). 

Before proceeding to the derivation of the explicit formulae in the case of 

the unpolarized cross-sections, we would like to make some comments con- 

cerning the formulae we have derived. 
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(i) The partial wave expansion of the f can be inserted into these 
TP 

formulae to give them in terms of the partial wave amplitudes. 
PT 

(ii) The parity of any given partial wave amplitude BJA (s, si) is 

?(-l)JA-T. It is important to note in (a) and (b) that all observables are sums 

over 7, i.e. , 

IoAx = c Re f f* 
7 [ 1 T+ T- 

IA = 
OY 1 
IOAz = c j(fT+I 2 _- fT-i’” \ 7 .’ 

This means that a complete parity ambiguity must exist in solutions derived 

only from experiments (a) and (b). 

(iii) In these experiments the measurement of the final baryon polarization 

is not equivalent to the measurement of the asymmetry from a polarized target, 

as it is in elastic scattering.’ This is due to the fact that a simple relation 

does not exist between fTP (R) and fVTBP (R). Clearly measurements of the final polarization 

allow the resolution of the parity ambiguity noted above. 

(iv) The final baryon polarization is defined with respect to axes in its 

rest frame which are defined with respect to the 3-particle production plane. 

This is not directly measured in rescattering experiments. However, in the 

case in which the final baryon undergoes decay, the decay distribution measures 

this polarization. In fact, the measurement of reaction (1. lc) from polarized 

targets offers the easiest way of determining a depolarization tensor. 
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3.3 Explicit Formulae for the Unpolarized Cross-Section 

From Table 1 we have that 

d50 

dsl ds2 d3R = i T (lT+i” + If,- jzj 

and we can substitute the partial wave expansion (2.4b) to give 

d50 

ds 1 ds2 d3R 
1 XX- 
2 c 

L 

v* PT A-A’” 
c F(JAJ’ A’ L) BJA BJfAf YL (PYY) 
JJ’ 

AA’ 

(3.3b) 

where 

l/2-A NJNJf 
F(J A J’ A’ L) = (-1) -C(J; J’ 

NL 
- ; L o) C(JAJ’ -A 

I 
(3.3c) 

\ 

Finally we can write 

d5cr 

ds 1 ds2 d3R 
= c w; q* (P,y) 

Lm 

where 

WE = c 
7 

c F(JhJ’A’ L) B;;* B”,,;, am A-h’ 
JJ’ , 

(3.3d) 

(3.3e) 

AR’ 

Several features of this differential cross-section deserve comment. 

(1) Formula (3.3d) is analogous to the expansion of the elastic scattering 

differential cross section in terms of Legendre Polynomials. 

(2) If L is odd (even) then A-A’ must be odd (even). 
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(3) The expression for WT contains a sum over T and thus, as we 

stressed earlier, a parity ambiguity necessarily exists. However BP ’ ’ JA 
represents a transition to a state of parity ~‘(-l)*-~ and hence if terms with 

A-A’ odd (even) appear we have waves of opposite (same) parity. Coupled with 

remark (2) this means that waves of opposite (same) parity lead to terms with 

L odd (even). 

(4) If Jm, is the maximum angular momentum contributing in the 

reaction, and only one parity is present corresponding to this value, then 

L max =2Jmax -1 (for J half integral). 

(5) Ignoring the sum over T there are still insufficient measureable 
PT 

quantities to allow determination of the BJA . Thus some form of polarization 

data is necessary to determine the amplitudes and as we remarked earlier, 

measurements from polarized targets will still not resolve the parity 

ambiguity. 

3.4 Qualitative Deductions from Present Data 

At this point we can summarize the qualitative deductions made from 

present data 10,11,12,13 using this formalism. As we have stressed, in the 

absence of polarization measurements, a quantitative analysis is not feasible 

and hence a close scrutiny of the predictions of elastic phase shift analyses for 

inelastic cross sections is impossible. However one can make valuable quali- 

tative statements using points (3) and (4) of Section 3. 3. We consider separately 

7r+p and r-p collisions. 

(a) The absence of moments WF with L>61°’ l3 for ECM<l. 70 GeV 

indicates that waves with j >g are not important. Furthermore the small size 

of the L =5 moments demonstrate that large contributions from j = 4 waves of. 

opposite points are unlikely. 
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(b) The large sizes of W: momentsI’ in the region ECM- 1.45 GeV are 

due to the presence of waves of opposite parity. At present no elastic phase 

shift analysis predicts large p-wave inelasticities at these energies. 

I& 

(a) For E(lM 
11,12,13 < 1535, moments Wr with L>_4 are consistent with zero. 

Thus inelasticity in waves with j 2; is not required but the presence of j = i 

waves of both parities is necessary. 

(b) In the region of ECM - 1.7 GeV the presence of the inelastic decays of 

the F15 and D15 resonances is signalled by the L =4 and 5 moments. 12 However 

the values, although significant, are not large and we must conclude that strong 

cancellations are occuring between the two waves in this case. 

(c) For ECM<Z. 0 GeV the moments Wr are consistent with zero for 

LX. We conclude that there is little evidence for strong contributions of 

j=P states to the final states (nrN)‘. (The F37(1920) coupling to the n-p 

channel is suppressed by isospin Clebesch-Gordon coefficients. ) 

4. STJMMAHY AND DISCUSSION 

In this section we summarize the main features of this analysis and discuss 

its advantages and limitations. 

Methods of analyzing inelastic processes (other than two-body reactions) 

are clearly needed to supplement the understanding of elastic scattering. The 

method described in detail in this paper specifies a three-body final state by 

means of two Dalitz plot variables, and three Euler angles which describe the 

orientation of the final state c. m. momentum triangle with respect to a fixed 

set of axes. The s-channel partial wave decomposition is then given in terms 

of three discrete angular momentum variables, J, M, A which replace the 

three continuous angular variables. The quantum numbers J, M and A are 

easily interpreted as being the total angular momentum and its projections onto 
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the space-fixed z-axis and body-fixed Z-axis respectively, in the same manner 
TP 

as for a symmetric top. Our partial wave amplitudes BJaA (s , si) then contain 

all possible information about the reaction and are model-independent para- 
PT 

meters . However, the number of amplitudes BJA (s , si) necessary to describe 

a2 - 3 reaction is large and growing rapidly with energy: for MB - MMB if 

JM is the maximum angular momentum present then there are i (2JM + 1)(2JM+ 3) 

amplitudes compared to (2JM + 1) for elastic scattering. Furthermore these 

partial wave amplitudes are functions of the invariant masses si and thus should 

be determined at every point in the Dalitz plot. Clearly the most one can hope 

for is a measurement of these quantities over small regions of the Dalitz plot, 

which would require a large amount of data in each region. Optimistically one 

would hope to see variations of the partial wave amplitudes as a function of the 

Dalitz plot variables indicating the association of JP state with a particular 

decay channel. (However, to extract couplings to these decay channels requires 
PT 

a detailed model of the variation of the BJA with the Dalitz plot variables. ) 
CLT 

A unique determination of the BJn (up to an overall phase) requires, as we 

have seen explicitly for the parity ambiguity, data on polarization experiments 

as well as the unpolarized differential cross section. 

There are, however, useful features. The introduction of the partial wave 

expansion into the formulae of Table 1 (a lengthy and tedious task) means that 
. 

the moments of the functions DJ(R) can serve as a permanent model independent 

record of the data, containing all the correlations between production angles 

and position in the Dalitz plot. These moments therefore contain much more 

information than, for example, a Dalitz plot distribution averaged over all pro- 

due tion angles. Moreover, these experimental parameters are free from the 

approximations and assumptions of parameters derived in the usual isobar- 

model analysis. 14 
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Qualitatively, the values of the moments integrated over the Dalitz plot 

can be useful guides as to the partial waves present, 10,11,12,13 
e.g. , the obser- 

vation of non-zero moments with odd L in unpolarized cross sections is a clear 

indication of the presence of waves of opposite parity, and the maximum value 

of L can limit the value of the total angular momentum considered in any 

analysis. 

In the reaction zp --nnA, for example, the measurement of the A-decay 

(together with the use of polarized targets) allows the complete set of experi- 

ments to be performed with relative ease, and leave the partial wave amplitudes 

and transition amplitudes to be reconstructed. 

It is also interesting to note that the formalism is applicable to zero mass 

particles and the versatility of photon beams should prove very useful in the 

analysis of photoproduction of two mesons. 

Conventionally reactions of the type (1. lb) have been analyzed using the 

isobar model or its modifications. The reason is clear: in general the number 

of amplitudes necessary to describe the process is very large and the isobar 

model reduces this number dramatically by two main features: 

(1) it limits the partial wave amplitudes allowed 

(2) the variation of the partial wave amplitudes as a function of Dalitz plot 

variables is specified within a very definite model. 

However, it must be stressed that the isobar model contains several approxi- 

mations and ad hoc assumptions 14 
-- and these are weakest in regions of resonance 

overlap. The parameters derived using the BLT formalism are free from such 

arbitrariness and may be critically compared with the predictions of the 

various models. 
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It is worth pointing out that the connection of the BLT three particle states 

to the three particle states constructed by Wick 15 is of course explicit, but 

unfortunately a little involved. This latter method constructs the three particle 

states by first coupling particles 1 and 2 in their c. m. s. and then the (12) 

subsystem to particle 3 in the overall c. m. s. Clearly the restriction to a 

quasi-two-body final state is very simple in this formalism. These states 

are connected to our states by Wigner rotations arising from transforming 

the states from the (12) c. m. s. to the overall c. m. s. (apart from a simple 

rotation relating helicity states to our transversity states: Appendix A of 

Morgan 14 contains further details). 

In conclusion we have developed in detail a formalism which may be used 

to analyze reactions (1. la) and have given explicitly the restrictions implied 

by parity conservation and the presence of two identical particles in the final 

state. A careful discussion of polarization experiments is given and the 

question of a “complete set” of experiments considered. We have shown that 

a parity ambiguity exists and indicated its resolution in terms of measurement 

of final particle polarizations. 
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APPENDIX: Interpretation of the Density Matrix 

In order to describe polarization properties of the particles we use the 

density matrix. For a particle at rest this may be written as: 

P(O) = c I M’>p 
MM’ MIM<M (A. 1) 

where M’ and M are the z-components of spin in the rest frame of the particle. 

If non-zero momentum states are constructed according to some definite pre- 

scription : 

i? M>= H(F) M) 
I (A-2) 

then the density matrix in this basis is 

p(s) =H(F) p(O) H-l(?) = c 1FM7> P~,~<~?M .-. MM’ 
(A. 3) 

where the elements pMM, are clearly unchanged. However, as we have stressed, 

equation (A. 2) may be regarded as defining the relative orientation of the axes 

in the rest frame with respect to the system in which the particle has momentum 

g The elements pMM, refer to quantization along these rest frame axes. 

Therefore, the density matrix for a moving particle described by the states 

(A. 2) may be written exactly as for a particle at rest, providing the spin 

operators and polarizations are interpreted as referring to the rest frame axes. 16 

Thus polarization formulae for relativistic particles have exactly the non- 

relativistic form except that the directions must be referred to rest frame 

directions for each particle. The use of these rest frame axes is useful in 

discussions of polarization experiments, where they provide an easy way to 

avoid the technical problems associated with the polarization of relativistic 

par titles . This formalism is immediately generalized to multiparticle states 

and we use it extensively in discussing reactions of type (1. la) and (1. lb). 
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For a spin $ particle at rest the general spin state is described by a density 

matrix of the form 

p (0) = f (1 + TG) (A.41 

where Fiis the polarization and TR(p) = 1. As discussed above, a similar 

form may be used for the particle in motion providing we interpret the spin 

operators g and polarization Faas referring to the appropriate rest frame 

axes. 
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3. 

4. 
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6. Note that some care is needed when the three final state particles are 

7. 

8. 

9. 
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Table 1 

Expressions for all observable quantities in the reaction MB --, MMB 

Amplitudes f 
TP 

(s, si, R) with r, p = xk 3 are written as 7, P = +, - 

ID 
0 YY I 

- Re f+ f-1 
L 1 

-21m p:2 

Y 
p11 - 42 

IoDzX = Re fH fl [ 1 - Re r f+-f' -- 
! 1 2Re Pf2 

\ 



FIGURE CAPTIONS 

1. Notation for the reaction a + b - c + d + e. 

2. Orientation of momentum vectors in the standard state. 
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