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ABSTRACT 

We study the relationship between the parton model and the analysis of 

light-cone singularities for highly inelastic leptonic processes. For deep in- 

elastic lepton scattering the parton model is found to be a momentum space 

representation of any model in which free field singularities on the light-cone 

are dominant. Scaling laws and sum rules derived in one approach are shown 

to obtain in the other with equivalent assumptions. For massive muon pair 

production the two approaches are found to differ fundamentally. In the parton 

model the leading singularity is dominated in the high mass limit by the non- 

singular annihilation diagram. The scaling law which is obtained in the parton 

model is not obtained from a light-cone analysis without additional, seemingly 

arbitrary assumptions. Massive muon pair production therefore tests the 

parton model in a region where it is not equivalent to the light-cone approach. 

Several other processes are studied including one particle inclusive e+ e- 

annihilation and photoproduction muon pairs. 



I. Introduction 

The theoretical effort to understand the highly inelastic interactions of 

leptons with hadrons has been extensive in the past few years. Much of this 

work comes in response to the SLAC-MIT inelastic electron scattering exper- 

merits’ and, in particular, to the observation of scale independence at large 

energy and momentum transfer. Our object is to explore the relationship be- 

tween two of the multitude2 of theoretical models in which this process has 

been studied: the parton model and the analysis of light-cone singularities. 

Since originally being applied to highly inelastic electroproduction, both of 

these approaches have been developed extensively and applied to other physical 

processes. Despite the similarity of their predictions for inelastic lepton scat- 

tering, the parton model and light-cone analysis (augmented by additional dynam- 

ical assumptions) lead to strikingly different predictions for several other proc- 

esses. We compare the two approadhes in order to understand how this comes 

about and in hopes of gaining some insight into various problems which arise in 

each model. 

The parton model and the analysis of light-cone singularities approach the 

problem of highly inelastic lepton scattering from different directions. On the one 

hand, the partonmodel, as developed by Feynman3 and Bjorken andpaschos, 4’5 as - 

sumes the existence of point-like constituents or partons in the target nucleon. A 

simple intuitive picture of highly inelastic electron scattering then arises when 

the process is observed in an infinite momentum frame. There, it is argued, 

the partons are scattered elastically and incoherently by the incident electron. 

The large inelastic scattering cross section observed at SLAC derives from the 

assumed point-like nature of the partons: there are no form factors to diminish 

the process at large momentum transfer, while the scaling behavior arises from 
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the kinematic restriction that the partons be scattered elastically by the electro- 

magnetic current. In the parton picture, the explicit shape of the highly inelastic 

scattering cross section measures the as yet unspecified longitudinal momentum 

distribution of the target’s partons in an infinite momentum frame. 

In other applications, it is useful to distinguish between “conservative” parton 

models in which the longitudinal distribution of partons is left unspecified and 

which are applied only where the assumptions of elasticity and incoherence can 

be motivated by appeal to some type of cut-off field theory, and more speculative 

parton applications 5,6 in which specific distributions are assumed or in which 

elasticity and incoherence are not directly supported by recourse to field theory. 

Among “conservative” applications of parton ideas are the extensive calculations 

of Drell, Levy, and Yan’ and those calculations of Landshoff, Polkinghorne, and 

their collaborators which do not involve duality constraints on the parton distribu- 

tions. 8 Except where specifically noted, we adopt the spirit of “conservative” 

models. 

The light-cone analysis, 9 on the other hand, proceeds primarily in coordinate 

space without reference to any decomposition of the target into constituent states 

characteristic of parton models. First the inelastic scattering cross section is 

related to the imaginary part of the forward virtual Compton-scattering amplitude. 

It is then argued that, barring pathologies, the leading contribution to highly in- 

elastic electron scattering arises when the two currents are separated by a nearly 

light -like distance. The current product is then expanded in a series of terms 

with differing singularities on the light-cone and the inelastic scattering cross 

section appropriate to each term is calculated. It is found that the observed scale 

independence obtains only if the dominant light-cone singularities are those appro- 

priate to free field theory, i.e. , calculated as if the local electromagnetic currents 
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were built up out of some non-interacting fields. Once again, the explicit shape 

of the highly inelastic scattering cross section is unspecified: Here it is linked 

to the variation along the light-cone of the leading singularity. As with the parton 

model, we will distinguish between the “conservative” approach outlined above 

and one in which additional assumptions are required (s. , Regge bounds on multi- 

particle matrix elements or specific forms for matrix elements near the light-cone). 

Despite the superficial differences outlined above, we find that there are inti- 

mate connections between the parton and light-cone approaches. It is often noted 

that both analyses achieve scaling predictions for inelastic electron scattering by 

assuming certain free-field behavior: for the scattering amplitude in particular 

regions of momentum space in the one instance, and for current products near the 

light-cone in the other. This complementary relationship between coordinate and 

momentum space is borne out in our analysis. In fact, as, far as inelastic leptonic 

scattering is concerned, the parton model is simply a momentum space realization 

of a light-cone operator product expansion with free-field singularities dominant. 

When reformulated in coordinate space a conservative parton model displays 

dominant free-field singularities on the light-cone and enough smoothness off the 

light-cone to admit the usual arguments for light-cone dominance. 

This connection provides considerable insight into the formal manipulations 

of the light -cone analysis. In particular, we are led to identify the free-field 

singularity on the light-cone with the propagator of an elastically-scattered parton. 

Also, the variation of the leading singularity along the light-cone is linked with the 

parton longitudinal momentum distribution in a straightforward way. These cor- 

respondences will be elaborated upon in the following sections. 

The identification of the parton and light-cone analyses of electroproduction 

is perhaps not unexpected. More surprising, however, is our conclusion that 
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the identification cannot be extended to other important highly inelastic leptonic 

processes. In particular, we study in detail the attempts to apply the two ap- 

proaches to the production of massive muon-antimuon pairs in high-energy hadron- 

hadron collisions (p + p - ,u+ + Jo- + ‘*anything”). This process has been analyzed 

in parton models by Drell and Yan 10 11 and Landshoff and Polkinghorne, and in a light- 

cone analysis augmented with assumptions of Regge behavior by Altarelli, Brandt, 

and Preparata 12 with very different results. We find that the parton model cross 

section for this process is not light -cone dominated in the conventional sense, nor 

does the dominant piece possess the free-field singularities assumed on Ref. 12. 

This dissimilarity arises in as natural a way from the parton model as does the 

similarity for electroproduction. 

This situation enhances the experimental importance of p + p -C/J+ + I-L- + 

“anything” and related processes. At the same time, it provides a convenient 

postponement of an old problem for parton theorists. The problem is the existence 

of real physical partons. It is hard to envision a parton model without at least 

occasionally producing a parton in the final state (see Ref. 13 for a discussion of 

this point and Ref. 14 and 15 for possible ways of avoiding the prediction). Cur- 

rently popular models, such as the quark parton model are thereby trapped with 

the embarrassing prediction of production of quarks or some other unusual pa?- 

titles at SLAC energies. This problem is avoided by viewing the partons, not as 

the quanta of some underlying field theory, but merely as a convenient and in- 

tuitive representation of the underlying light -cone singularity structure, circum- 

venting the whole question of physical partons. If, however, it could be shown 

that the free-field singularities on the light-cone necessarily imply the ex- 

istence of corresponding physical eigenstates, the problem would reappear. 16 

As yet, no one has been able to establish this. 
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The importance of muon pair production is now evident: unlike highly in- 

elastic electron scattering, the parton model scaling law for this process cannot 

be directly attributed to light-cone behavior alone. If it is verified exper- 

imentally, the notion of point-like constitutents in the nucleon will be much more 

compelling. 

The above results are derived in the following sections. Our procedure is 

as follows: For a given process, we first display explicitly the coordinate space 

structure in the perturbation theoretic parton model of Drell, Levy, and Yan 

(DLY). 7 With this intuitive picture in mind, we then rederive the coordinate 

space structure directly from the scaling laws which obtain in a wider class of 

parton models. Finally, we examine this result and compare and contrast it with 

light-cone singularity analyses. In Section II we consider highly inelastic electron 

scattering, in Section III the muon pair production process. Section IV combines 
+ several less extensive analyses, including e + e-- p+anythingandy+p-P + 

+ ~1~ + anything. Appendices A and B treat some peripheral aspects of the electron 

scattering problem. A brief summary of this work may be found in Ref. 17. 
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II. Highly Inelastic Electron Scattering 

A. Kinematics 

To begin, we bri efly review the kinematics and our conventions for highly 

inelastic electron scattering. Assuming single photon exchange as shown in 

Fig. la, all hadronic information is summarized in the usual tensor W 1% 
PV * 

W 
PV 

= 4n2 ~C<PIJ,(0)\r$<nlJv(O)IP)(2@4~4(q+P -Pn) (II. 1) 
n 

where single-particle states are normalized to <P’lP> = d3 (3 -F). Trans- 

lating and performing the sum over states: 

iq*y<P/ Jp(y) Jv (Oh> 

For positive frequency photons, the current product may be converted to a 

commutator: 

Wpv =47r2 s/d4yeiq”<P [[J,(y), Jv (Oi]l P> (II. 3) 

(II* 2) 

For spacelike virtual photons, Eq. (11.1) is the imaginary part of the forward virtual 

Compton-scattering amplitude shown in Fig. lb. 

The well-known structure functions WI and W2 are defined by the invariant 

decomposition of Wpv : 

wpv =- 2& 
( ) 5-w q2 w,(s2,v)+;2 c1 l (y -yq3(9-y 4v)w2d,v~ (II.4) 

where P . q = Mv and q2 E -Q2 I 0. With these definitions, Bjorken’s scaling 
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hypothesis 19 takes the form: 

Limbj ml (4 
2 

9 V) = Fl (X) 
(II. 5) 

Limbj “W2 (q 
2 

, V) = ‘Z(X) 

where the Bjorken limit (Lim .) is v - 
bJ 00, Q2- 00, with x 3 Q2/2Mv fixed. 

Equation (II. 3) has the crossing properties of the physical Compton amplitude: 

which imply 

wpv cl22 -v) = -wpv (s2, v) , 

wi(42, -v) = -wi(q2,v). 

The structure functions Fi(x) are defined for 0 < x 5 1 if W 
PV 

is defined by 

Eq. (II. 2) or for -1 5x 5 lifWpV is defined by Eq. (II. 3). 

B. Coordinate Space Structure in a Perturbative Parton Model 

The assumptions of elasticity and incoherence at the heart of the parton model 

for highly inelastic electron scattering are summarized in a single formula from 

the work of DLY: 

Lim .W 
bJ CLV 

=4n2 Ep 
M jv (O)ln> tn. 6) 

valid in the Bjorken limit for x # 0. 

Elasticity and incoherence allow the replacement of the fully interacting 

Heisenberg current operator, Jp(y) , by the “bare” current operator, jti(y), con- 

structed from free fields. Interactions appear only in the coefficients a 
I I 

2 
n which 

weight the importance of various parton configurations 1 n) . The appearance of 

I ! 
a 2 n rather than off-diagonal terms a *a m n with m # n is also a consequence of 

incoherence. 
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Equation (II. 6) is derived only in an infinite momentum frame of the target. 

This restriction reveals a basic limitation of perturbative parton models and 

their associated physical picture (see Fig. 2) of the incoming hadron developing 

into some constituent state In> with amplitude an, followed by the elastic, in- 

coherent scattering of individual partons by the bare current jp(0). 

Justification of Eq. (II. 6) is a substantial task. DLY accomplish it order-by- 

order in a y 5 perturbation theory of pions and nucleons with a transverse momen- 

turn cutoff. For a more thorough discussion of their work, we refer the reader 

to Ref. 20. 

To display the coordinate space structure of Eq. (II. 6)) we write out explicitly 

the current matrix element for a constituent state In> containing spin-0 partons 

with charges hi and spin-l/2 partons with charges A. 21 : 
I 

+ 

cl 

$ 2i,$ 

j 

ei(pj-p’)‘y 2(p 
@V 

Pt +PjvP; - su Pj . Pf 

ii ii 

Pd is the momentum of the scattered parton. Because the currents jp are devoid 

of strong interactions, the sum over a complete set of final states reduces to the 

phase space integral for the elastically scattered partons. Some elementary 

algebra yields : 

(nlj&Y)j&O)ln>= L3 
i 
c A;&- (2Pi+iS)l*(2Pi+i8)v A+(y,m2) eipiny 

(2~) i 1 

+ XX; % (4Pjiiqu+2i(ql”Bv+Pjv~~~-~v~)A+(y,m2)eiP”y 

j i 
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where A+ is the singular function defined by: 

1 A&(y,‘m2) = - 
w” / 

d4kB (ko)d(k2-m 2 rik-y )e 

and m is the parton mass which for convenience is taken to be the same for all 

partons. Since all partons are assumed to have a positive fraction of the target’s 

infinite momentum and limited transverse momenta, we may replace q by vi P’ 

up to terms of order l/P where 0 < qi 5 1. If 27, 6 M/P, this is not a valid 

substitution. The problem of wee (q x 0) partons is discussed in Appendix B, 

where it is shown that errors incurred by replacing P. cL 1 by qiP’ are limited to 

the region x s m where Eq. (II. 6) is not valid in the first place. Making 

this replacement in Eq. (II.6): 

Lim 1 .W = - bJ PI/ 4rM 
4 iqay 

d ye Pv 

i 

,2),iPi- Y 
77 -I- 

i 
j 

+ 2iqj(Ppav +Pvap) -gpvO) ‘+ (y’$2’e 

iPj* y 

i I 

This equation may be simplified considerably by separating the sum over longi- 

tudinal momentum from the rest of the constituent sum, i.e. : 

1 

c-l 
dtld(rl -tli) C 

i 0 i 

We may now use the parton model expressions for the scaling functions F1 and 
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F2 which may be read off as the coefficients of P P 
IJ v 

and 
%V 

in the previous 

equation: 

F2(q) = rl C Ian12 (C AH 6(77 - ‘Ii) + C 1; d(T’-‘lj)) 
n i j 

Fl(71) = 
n j 

As a result, we obtain: 

LimbjWpv= gi& ] dn/d’yeiq’y{2[-gtiv~ +apav) *+ (y,m2) ?$I!! e”I1 ” 

0 (II- 7) 

F2(rl) 
A+(YG.~ - e 

‘pf7 ‘Y 

v2 

Finally, we compare Eq. (II. 7) and (II. 2) and conclude that up to terms whose 

Fourier transforms vanish in the scaling limit, the matrix element of the current 

product is given by: 

+ 
( 8P+a P p 1, v p 1 A+(Y) m2) F2< q) e 

0 

(II. 8) 

We have introduced the notation, +, to indicate equality UP to terms whose 

Fourier transforms vanish in the scaling limit. Even in the parton model, a 
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complete expression for the matrix element on the left of Eq. (II. 8) contains other 

terms. For example, Eq. (II. 8) cannot adequately describe virtual Compton 

scattering for q2 > 0 since its Fourier transform vanishes in that region (the 

mass shell d -function in A+ requires 2 M v q = -q2 with 0 5 q 5 1, while the 

spectral condition requires 12 M VI 2 q2 or r] >_ 1). Also, there are presumably 

other terms (e.g. , terms everywhere smooth in coordinate space) whose Fourier 

transform vanishes as the Bjorken limit is approached. Equation (II. 8) does con- 

tain those pieces of the current product matrix element which dominate the Bjorken 

limit. 

Several other remarks should be made at this pomt. First, Eq. (II. 8) has been 

obtained only in the infinite momentum frame of lP> . This restriction is peculiar 

to the perturbative parton model and will be removed in the following section. Sec- 

ond, the transverse momentum in the vector P ip was ignored in the steps preceding 

Eq. (II. 7). Since transverse momenta are bounded in the parton model, this does 

not matter to leading order. And third, the corresponding expression for the cur- 

rent commutator may be obtained in a similar manner: 

47r2 Ep 

M 

1 

IP> ’ +M (-%vO +a&,) A(y,m2) I T2Fl(n) cosPV*y 

0 

1 

+ F2(n)A(y,m2)cos PV*y (l-I- 9) 

0 

where A(y, m2) = i(A+(y , m2) - A-(y, m2)). The changes reflect the locality 

( A(y , m2) = 0 for y2 < 0) and crossing symmetry ( cos P r7 .y=cosPII. t-Y)) of 

the commutator. 
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The last step is to write Eq. (II. 9) in a form in which current conservation 

is manifest. The mathematical details of this step are contained in Appendix A. 

The result is as follows: 

4n2Ep 

M < ‘L 
P J+Y), JvW lp> = ] ’ &[(gpvO -apav)[4m2i / +- 

x (F2( rl) - 2 rl Fit 17)) ~0s Pv pppo -pa) Ppav +Pvap f ( 1 giz paj2 

-%- sinP pq - Y q - Y F2(71) 1 (II. 10) 

d where A’(y) m2) = -- 
dm2 

A(ym2). 

This equation contains the results of the light-cone analyses of Jackiw, 

van Royen and West. 22 We defer, however, a detailed discussion of the light- 

cone behavior of Eq. (II. 10) until we have rederived it from a more general 

standpoint. 

C. More General Parton Models 

In this section Eq. (II. 10) is rederived from the following two assumptions: 

I. MW1 and v W2 scale in the Bjorken limit. 

II. The singularities of the current commutator, if any, are on the 

light-cone rather than somewhere else in coordinate space. 

Assumption I is, of course, the motivation for constructing a parton model 

in the first place. Assumption II is valid in all parton models which are known 

to us. In the previous section we saw it to be true in the perturbative model of 

DLY. In the non-perturbative model of Landshoff, Polkinghorne and their 
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co -workers 8, 11 the singularities are associated with the propagation of a parton 

between current vertices and therefore lie on the light-cone. Many other models 

(and perhaps the real world) may satisfy these assumptions: The analysis of 

this section applies equally well to them. 

Inserting Assumption I into Eq. (II. 4) and rearranging terms: 

2 
LimbjM wpv 

2 
-qpqv ‘Pq +Pv 2x pv ( 7-4 

where W 
PV 

is defined in terms of the commutator (Eq. II. 3) for -1 < x I 1 

combinations of structure functions in parentheses are odd under crossing 

(v - -v ,q2 fixed), which implies: 

1 

~itx,q2) = 
/ 

drl qcnlq2) (6(rl-X) - d(- t7-X)) 

0 

. The 

for any of the combinations of structure functions. Now observe the following 

identities: 

(II. 11) 

/eiq’y0[A(y,m2)cosPVSy]d4y=nil)(d(~-x) -6(-V-x)) 

/ 
eiq’ y apav A(y,m2) cos PV .y d4y = - C I 

sqv ( 
I=‘4 

ir d(rl -X) - &-v-x)) 

/ elqaY A(y,m2) cos PV -yd4y =& in (d(a -x) -6(-q-x)) 

hiqSy aF[A(y,m2)cosPV .y]d4y =& ir(d(T]-x) - &-U-x)) 

(II. 12) 

(II. 13) 

for-1Ix Slandq 20. 
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These are identities only if P rl. q = ~Mv and P ‘= 
17 

m2 where m2 is an arbitrary 

but fixed parameter. It is not possible to find a PV which satisfies both restric- 

tions for arbitrary m2. However, our representation for the current commutator 

need only be valid up to terms whose Fourier transform vanishes in the scaling 

limit, so we may choose PV to satisfy the restriction to leading order in the 

scaling limit. As an example, consider the infinite momentum frame where 

4= 
2Mv -Q2 and choose P = 4P ’ 77 V---- ?I2 P2+m2 , * 

For finite 7, P and P2 = m2 
77 

, so in this case corrections 

to Eq. (II. 13) are controlled by the large parameter I?. The restriction to finite 

rj has been noted before. It is discussed further in Appendix B where several 

explicit representations for PV (not necessarily in an infinite momentum frame) 

are given. 

With these identities, the derivation is easily completed: substitution of 

Eq. (II. 12) and (II. 13) into Eq. (II. 11) yields Eq. (II. 9) of the previous section. 

This derivation avoids two of the difficulties which arose in the previous section. 

First, it is not limited to an infinite momentum frame. Second, it was not nec- 

essary to assume P ’ L VP’ to leading order. 
rl 

These limitations are replaced by 

the s ingle problem of choosing P: to satisfy P 77* q= ~Mv and P2=m2, 
17 

which 

receives attention in Appendix B. 

Since W1 and W2 are known only over a limited region of momentum space 

(in particular for Q2 > 0), it is not, in general, possible to invert the Fourier 

transform and (uniquely) display them in coordinate space. However, by means 

of Eq. (II. 13)) the scaling functions are “mapped” onto a particular set of singular 

functions in coordinate space. This particular choice of singular functions was 

made on the basis of Assumption II. Assumption II fixes uniquely the coordinate 

space behavior from which the dominant term arises because scaling cannot be 

obtained from a current matrix element which is smooth everywhere in coordinate 
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This assertion is proved in a forthcoming publication. 23 space. There must be 

singularities and Assumption II places them on the light-cone where a singularity 

of a given order is linked uniquely to scaling with a particular power of v . 9 
This, 

therefore, determines the particular choice of identities in Eq. (II. 13). Given 

Assumptions I and II, the current commutator must be given by 

terms whose Fourier transform vanishes in the scaling limit). 

Having derived Eq.( II. 10) under more general assumptions, 

investigate its light -cone structure. 

Eq. (II. lo) (up to 

we proceed to 

D. Light-Cone Dominance and the Parton hodel 

In the Bjorken limit, the Fourier transform of the parton model current com- 

mutator (cf Eq.(II. 10))is light-cone dominated. Light-cone dominance may be - 

interpreted to mean that the leading term in W 
PV 

must come from the leading 

light-cone singularity in the current product matrix element. On the other hand, 

it may be interpreted to require that W 
PV 

receive contributions primarily from a 

region of coordinate space restricted to y2 5 l/Q2. Whether or not these are 

identical criteria need not concern us here in this process, since both are satisfied 

by the matrix element of Eq.(II. 10). 

Considering the first criterion, note that the singular functions A and A’ may 

be written 24: 

2 2 
fW,m )=z l d(Y2) dYO) - g E(YO) 0 (Y2) 

A’(y,m 
2 1 

) = s f3 tY2) E (Y,) - 

(11.14) 

where the term in brackets goes to l/4 as y2 - 0. When substituted in Eq. (II. 10) 
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and Fourier transformed, the first terms in Eq. (II. 14)give the usual scaling law 

for WHY (see, e.. , Eq. (II. 11)) while the less singular second terms vanish in 

the scaling limit as m2/Q2 or m2/Mv. This satisfies the first criterion for 

light -cone dominance. 

Concerning the second criterion, it is obviously fulfilled for terms in W 
ClV 

arising from A(y , m2). These are dominated by the singularity J(y2) in the 

Bjorken limit so only the light-cone itself contributes. Terms in W 
PV 

proport ional 

to A’(y,m2) are given by integrals over 0(y2) in the Bjorken limit. It is not obvious 

that these integrals receive contributions only from y2 5 l/Q2. That this is so is 

proved in a forthcoming publication. 23 

Since only the leading light-cone singularity contributes in the Bjorken limit, 

Eq.( II. 10)may be rewritten : 

(Y), Jvto) Ii> =+ 1 27r iM 

1 

btY2) dye) J + 

0 

X F1(77) - $ F2(~)) COS Pq . Y + $(Pp Pvo -(P-a) cP&, +Pvap) +&(P’8)2) 
1 J 

1 

x O(Y2) E: (Y,) 

[ 1 
sinP . y 

w$7) -+$-- 77’ 
0 li 

(II. 15) 

This differs from the results of conventional light-cone analyses (cf Ref. 22) - 

only in having P7 everywhere instead of r]P. Up to this point, we have not assumed 

Pq” M rlpu (see previous section). In an infinite momentum frame we could re- 

place Pg ’ by ql? to leading order but we do not want to be limited to an infinite 

momentum frame. In Appendix B, it is shown that regardless of whether P CL z VP’, 77 
Eq. (II. 15) gives the same expression for W PLY 

when either is used. With this, 

we obtain agreement with the results of Ref.. 22. 
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Notice that the integrals in Eq. (II. 15) are divergent at 77 = 0 unless the 

structure functions were to vanish sufficiently rapidly there. Experimentally 

they do not. Problems near v = 0 have occurred before in our analysis, in 

choosing the vector P rl 
and in making the substitution P 

rl 
-VP. In Appendix B 

it is shown that all these problems are related and only affect the x - 0 limit 

of the scaling region. We conclude that Eq. (II. 15), with the integrals 

regulated near q = 0, is valid up to terms which vanish in the scaling limit 

forx# 0. 

This establishes the correspondence between light-cone dominance and free- 

field singularities on the one hand and incoherent and elastic scattering of partons 

on the other. Had we begun with the light-cone analysis (as summarized, for 

example, in Eq. II. 15) and attempted to derive the par-ton model, it would be nec- 

essary at some point to assume that partons exist, i.e., that it makes sense in 

an infinite momentum frame to write IP> = g anIn> . For this reason the 

parton model is not formally equivalent to the light-cone analysis but is instead 

a particular realization of the light-cone analysis in momentum space. 

To complete this discussion, it is necessary to investigate how symmetry 

properties and other constraints in one approach transform to the other. Our 

discussion parallels that of Fritzsch and Gell-Mann. 16 If various properties are 

attributed to the current operators or their matrix elements on the light-cone 

(e.g. , SU(3) X SU(3) symmetry, spin l/2 transformation laws), sum rules and 

other relations emerge among the structure functions for highly inelastic electro- 

production and the corresponding weak processes. 25,16 Likewise, if symmetry 

properties are ascribed to the partons or if assumptions are made about the 

momentum distribution of partons, another set of relations among structure 

functions emerges. The equivalence is straightforward: An algebra of operators 
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on the light-cone corresponds to a symmetry among partons. To see this, assume 

some symmetry among partons; rederive Eq. (II. 15); the symmetry emerges as 

the corresponding algebra of operators. Notice that in neither approach are as- 

sumptions made about the symmetries of physical states. Assumptions about the 

distribution or types of partons constituting a physical particle transform into 

statements about the coordinate space or algebraic structure of the matrix elements 

of operators near the light-cone. Any relation derived in one approach from such 

an assumption may be derived from the other approach with an equivalent (though 

perhaps less intuitively compelling) assumption. Table I summarizes the trans- 

formation from partons to the light-cone and vice versa. 

In deriving Eq. (II. 15), some physical understanding of the light-cone singu- 

larities has been obtained. First, the free-field singularity on the light-cone 

arises from the phase space integral for the elastically scattered parton, i.e. , 

from its free propagation into the-final state. Pictorially, we associate A+ (y , m2) 

with the scattered parton in Fig. 2. This association will help us to interpret the 

results of the analysis of muon pair production in the next section. Second, the 

P . y dependence is given by: 

F(P* Y) E 

Noticing that ei(y) = 
e-i Pi. y 

J-- 
is a parton’s “wavefunction,” we may rewrite 

the above equation as : 
2Ei 

F(P. Y) = <PI e+(y) A2 $WIP> (II. 16) 

where A is a charge operator. F(p. y) measures the average correlation of a 

parton at y with one at zero weighted by the squared charge. The association of 

the P. y dependence of the singularity with longitudinal coherence, as discussed 

by Ioffe and others, 9,26 is borne out in the parton model. 
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III. Production of Massive Muon pairs 

in Hadron-Hadron Collisions at High Energies 

A. Kinemat its 

Figure 3 shows the reaction which concerns us in this section. We define 

Q2 = (p, + p-)2 to be the squared mass of the muon pair and S = (P + P’)2. We 

restrict ourselves to the limit S,Q2 d co with Q2/S = T fixed (Q2 < S). Only 

the total cross section for a given mass Q2 will be discussed here. Other exper- 

imentally useful cross sections have been discussed elsewhere. 10,27 When Q2 

and S are much greater than the masses of the muon and the incident particles, 

the cross section is: 

da= 47r cY2 

dQ2 3Q2S 
w(Q2, 9 

where 

w(Q2,s) = -16x2EE’ J d4q &s2 - Q2) 

R 
(III. 1) 

X 

c 
(27~)~ d4 (P+ P’ -q - Pn) <PP’inlJp(0)(n> <nlJ’(O)lPP”“) 

n 

R is the phase space region defined by: 

2 qo< S+Q2 
2&f 

W(Q2, S) may be rewritten as: 

W(Q2,S)=-4EE’(2a)5 
/ 

d4y a: (y,Q2) <PP@JJ,(~) Jcl (O)[PP@> 

(III. 2) 

v-= 3) 
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where A: is the singular function defined earlier with the momentum constrained 

by Eq. (III. 2). As Q2 and S become infinite At reduces to A+. 12 

B. Coordinate Space Structure in a Perturbative Parton Model 

Application of parton model ideas to massive muon pair production rests on 

the observation that parton-antiparton annihilation is a more efficient way of 

producing a massive photon than is an exchange process. Drell and Yan 10 have 

used this observation to obtain a scaling law for this process. Their analysis 

may be summarized as follows. As S becomes large, the center of mass ap- 

proaches an infinite momentum frame. The colliding hadrons may be viewed as 

collections of colliding partons which can produce a massive photon either by 

annihilation (shown in Fig. 4a) or by bremsstrahlung (shown in Fig. 4b). To 

conserve energy and momentum, the bremsstrahlung of Fig. 4b must be accom- 

panied by an exchange of momentum. In order to produce a system of mass 

greater than Q from an incoming particle of mass MN and energy &- , amo- 

2 Q4 mentum transfer of It 1 L MN ~2 = Mi T 2 
N 

is required. In the limit of interest 

t min remains finite and of the orderof 0.5 Ge 3. From high-energy scattering 

experiments, we know that hadronic cross sections are dominated by Pomeron 

exchange which decreases exponentially with momentum transfer. Even for 

fairly small values of T the bremsstrahlung diagram will be reduced by a sub- 

stantial factor. Since the annihilation diagram of Fig. 4a experiences no such 

damping, it will dominate at large S and Q2. We refer the reader to the work of 

Drell and Yan 10 for a more detailed derivation of this result. In their work a 

transverse momentum cutoff replaces the Regge asymptotics as the origin of the 

damping. 

The parton model prediction for W(Q2, S) may be obtained from inspection of 

Fig. 4a. The cross section is proportional to the probability of finding a parton 
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of type b moving to the right, convoluted with the probability of finding an anti- 

parton, E moving to the left, times the total annihilation cross section for point 

particles summed over all types of partons. The annihilating partons ’ momenta 

are constrained to form a photon of mass Q2: 

1 1 

da -= 
dQ2 / / 

dql dq2 c r9b (01)~9j$772) 

0 0 b 

where P Al = (,/m, 0, qlP) and P;,= (d(q2P)2+m2, 0, -~J~P), 
. 

S s 4P2, ignoring transverse momenta which are assumed to be limited. The 

point cross section is o(Q2) = 4*cy2 2 2 hb and the probabilities are found in Section II: 
3Q 

where F2b is the contribution to the highly inelastic structure function from 

partons of type b. Using P + P' 
2 

771 772 
z 17 l? 2 S, we have finally: 

1 1 

him W(Q2,S) = W(T)= - 6(?1772 -7 ) S,Q2+w c b F‘&(ql) 

7 fixed 0 0 

The second structure function is allowed to differ from the first in case the 

incident particles are not identical. 

The coordinate space version of this model may be extracted directly 

from Eq. (III. 4) by substituting the identity (to leading order as S,Q2-00): 

(III. 4) 
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J i P 
( 

+P’ 

d4y A+ty,Q2) e 
Vl v2 1 

.y 

= -3(7y2 - 7) 

Some elementary algebra yields : 

Comparing this with the definition of W in Eq, (III. 3): 

X 

dr12 “h2’y 
-e 
q2 

F2i; (712) 

0 

(III. 5) 

We emphasize that there are terms in the current product other than the 

one displayed in Eq. (III. 5) (for example, the bremsstrahlung diagram of Fig. 4b). 

These terms, when integrated against A+(y ,Q2) (as we have argued for the 

bremsstrahlung diagram), are lower order in the S ,Q2-co limit. Equation (III. 5) 

displays the coordinate space dependence of the DLY parton model. We postpone 

a discussion of its light-cone behavior until we note how specific our result is 

to the model of Drell and Yan. 

C. More General Parton Models 

A result similar to Eq. (III. 5) may be obtained under somewhat more gen- 

eral assumptions. In deriving Eq. (III. 5), it was assumed that the distribution 
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of par-tons in each incident hadron is unaffected by the presence of the other. 

Drell and Yan note that this assumption need not be made, in which case one 

still obtains scaling (d c/dQ2 cc l/Q4 f (7)) but f (7 ) is no longer explicitly given 

in terms of the electroproduction structure functions F2(q). Likewise Landshoff 

and Polkinghorne obtain scaling but not factorization in their non-perturbative 

model. 
11 

Scaling alone is enough to obtain a form similar to Eq. (III. 5). To 

see this, write: 

Lim W(Q2,S) = w(-r) = da! W(a) &a! -7) 

Q2,S -* 

Q2/S fixed 

= & /d4yA+(y,Q2) I daW(a)eipamY 

0 

where Ii?: = 01 S to leading order as S,Q2-,. Then up to terms whose 

integrals against A+(y,Q2) vanish in the limit: 

1 

<ppfin(Jp(y) Jcl(0)lP~7in>k - + da W(cu)ei pa’y 
(fw I 

0 

In this expression, just as in Eq. (III. 5), scaling is linked with high-frequency 

oscillations. Of course, there is no experimental evidence as yet that W(Q’,S) 

scales so Eq. (III. 6) is at best a form shared by models which predict scaling 

(cf Ref. 10, 11, 28) and may or may not describe the data. - 

A correspondence between scaling and high oscillations is not unique. Any 

attempt to extract the matrix element uniquely by inverting the Fourier trans- 

form of Eq. (111.3) fails because of the restriction to positive energy photons. 

(III. 6) 
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For electroproduction, assuming the singularities (if any) to be on the light-cone 

(Assumption II) was sufficient, together with scaling, to determine the leading 

term in the current product uniquely. For muon pair production scaling can 

arise from a matrix element smooth everywhere in coordinate space (see Eq. (III. 6)) 

so a restriction analogous to Assumption II is not sufficient to “map” scaling be- 

havior onto the light-cone. 

If scaling is not uniquely connected to high oscillations, it should be possible 

to find other forms for the current product matrix element which scale. One such 

form, singular on the light-cone and not highly oscillatory away from it, is dis- 

cussed in the next section (cf Eq. (III. 7) and (III. 8)). - The problem with this ex- 

ample and others like it is their arbitrariness: There is as yet no convincing 

theoretical reason to choose such a form. If scaling is observed experimentally, 

it is explained simply and unambiguously in the parton model. It could be ac- 

counted for by a matrix element singular on the light-cone and not highly oscillating 

away from it but not without additional assumptions to single out the behavior 

desired. 

Before discussing the light-cone behavior of the par-ton model, it is necessary 

to relate W(U) appearing in Eq. (III. 6) to the various structure functions appearing 

in Eq. (III. 5). As Drell and Yan note, 10 factoring obtains only if one rules out 

parton annihilation accompanied by exchange of wee partons. Wee exchanges are 

called upon to build up high-energy diffractive scattering (Pomeron) in Feynman’s 

original parton work. 3 If, as shown in Fig. 5, wee exchanges take place, the 

parton distribution in one hadron is modified by the presence of the other. This 

effect also prevents factoring in the non-perturbative model of Landshoff and 

Polkinghorne. 11 

Nevertheless wee parton (Pomeron) exchanges should not modify substan- 

tially the original parton distributions of the incident particles. Wee exchanges 
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carry asymptotically small longitudinal momentum (of order l/l/s) and are 

independent of S as S - 00. Because the exchanges are S-independent, the 

scaling law is not affected. Because they carry vanishingly small momentum, 

we expect that W(a) is approximately what it is in the Drell-Yan model, i.e., 

that Eq. (III. 4) is approximately correct. 

D. Light-Cone Dominance and the Barton Model 

The role of the light-cone in massive muon pair production is more complex 

than in electroproduction. We show, on the one hand, that with the parton model 

matrix element of Eq. (III. 6), W(Q2, S) is dominated by the region of y2 5 A 
Q2 

for some dimensionless constant n. On the other hand, we show that terms in 

the matrix element are not ordered in relative importance as Q2,S -co by the 

strength of their singularities alone (as was the case in electroproduction). Rather, 

their importance is determined by the singularity and other dynamical information 

such as the S dependence of the matrix element and the frequency of its oscillations 

away from the light -cone. 

In the parton model itself, we find that the leading light-cone singularity (brems- 

strahlung diagram) is dominated in the S,Q2- oc limit by the non-singular annihi- 

lation diagram, just the opposite of what would be expected on the basis of light-cone 

cons iderat ions alone. 

The primary advantage of the light-cone analysis in electroproduction has been 

to relieve the theorist of having to study the whole two-current matrix element in 

favor of looking only at its leading light-cone singularity. This advantage is lost 

in muon pair production where terms less singular on the light-cone are not a priori 

less important than the leading singularity. In light of this, it is somewhat academic 

what region of coordinate space contributes to W(Q2,S) in the parton model. Never- 

theless, let us show that W(Q2, S) receives important contributions only when 

y2 s n/Q2 when the matrix element is given by Eq. (III. 6). 
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To do this, rewrite the definition of W(Q2,S) in terms of the dimensionless 

variable {’ G fi fl in the rest system of P+ P’: 

1 WQ2,S) = 5 I d4@+((,7) 
1 

/ 
0 

dm W(a)e 
ito fi 

This expression involves no dimensional parameters and remains unchanged as 

Q2S - co. Moreover, since the integral over 4 converges, there must be 

some N such that the region 4’ > N gives as small a contribution to the integral 

as desired. The dominant contribution comes, therefore, from t2 s N or 

y2-< -q. 
Q 

We now turn to the central question: whether terms more singular than 

Eq. (III. 6) necessarily give larger contributions to W(Q2,S) as Q2, S --*co. This 

is not the case in the parton model. Note, first, that Eq. (III. 6) has no light-cone 

singularity at all. 29 The A+ (y , m2) found in electroproduction is not present. 

As was noted, such singularities arise from the free propagation of elastically- 

scattered partons. In the annihilation diagram for muon pair production there is 

no scattered parton, therefore no singularity. Notice, however, that there is an - 

elastically scattered parton and an associated free-field singularity in the brems- 

strahlung diagram of Fig. 4b. We have argued that this mechanism is damped 

relative to parton annihilation as Q2,S -co. The diagram more singular on the 

light-cone is less important at large Q2 and S. 

To understand better how this behavior might arise, consider a specific 

example chosen to simulate the brem.sstrahlung diagram: 

(Pp’inl~~(y)JC”(o)IPP~in) = - J- 4A+(y7 m2) 
a2 

(2n) S ( a2+[(P+Pr). yj2 1 

(III. 7) 
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The power of S is dictated by the dimension of the matrix element 

<PPVinlJ+y) J’ (0) lPPrin> is dimensionless and A+ N ’ 
( length)2 

) . 

Multiplying Eq. (III. 7) by AF(y,Q2) and integrating over all space, we 

recover W(Q2, S): 

1 

W(Q2S) = 
i 

dcrf @)A 
243 

3 

(111.8) 

where f (oz) is the Fourier transform of a2/ , f(o) = : ewcra , 

and 121 = 02S -Q2 /2a!d . ( ) This final integral is bounded as follows: 

By choosing the dimensionless parameter, a, as reasonably large, this contribu- 

tion to W(Q2, S) may be made as small as desired. This term, more singular on 

the light-cone than the parton annihilation contribution, is less important in the 

scaling region by a fixed (for fixed 7) exponential factor. 

Of course, one can write down expressions similar to Eq; (III. 7) which do 

dominate the annihilation diagram (just replace l/S by l/M; in Eq. (III. 7)). The 

point is that the light-cone does not dominate a priori, additional assumptions 

are needed 0 

Altarelli, Brandt and Preparata 12 achieve light-cone dominance by bounding 

terms in their operator product expansion with Regge asy-mptotics. It is, there- 

fore, not possible to build up the large-phase oscillations,so a term analogous 

to parton annihilation is excluded from their analysis. Their conclusions rest 
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heavily on the assumptions that partons do not exist and that Regge asymptotics 

can be applied to the creation of a particle of asymptotically infinite mass. 

Massive muon pair production distinguishes clearly between the light-cone 

approach and the parton model. The parton model scaling law arises from a 

piece of the two-current matrix element which is non-singular on the light-cone 

and highly oscillatory away from it. As noted earlier, it is possible to find 

some model for the matrix element which both is light-cone dominated and pro- 

duces scaling, but only by making what appear to be arbitrary assumptions about 

the non-singular part of matrix element. If the scaling law is verified, it will 

strongly enhance the attractiveness of the parton model for highly inelastic 

processes. 
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IV. Other Inelastic Leptonic Processes 

A. ef+ e- - P + anything 

Drell, Levy and Yan7 have studied the annihilation of an electron positron 

pair to an arbitrary hadronic state from which a single hadron is detected. The 

squared amplitude is shown in Fig. 6. All hadronic information is contained in 

the tensor @PI, : 

PV I 
d4y ,@‘y $ c <OIJptY)lpn> <P4J, wp> 

n 

(IV. 1) 

with invariant decomposition analogous to Eq. (II. 4). 

(v,q2-+co;x f q2/2Mv fixed; 15 x < co) 

In the Bjorken limit and in their cutoff field theory of pions and nucleons, DLY 

find that the structure functions (-) ml and v w2 scale as functions of x a.nd, 

moreover, that the resulting %‘I and F2 are continuations of the electroproduction 

structure functions FI(x) and F2(x) to the region x > 1: 

si(x) = Fi(x) (IV. 2) 

Repeating the analysis of Section II-B, we obtain (foe simplicity we consider 

the trace %$ ): 

3 c <OlJ,(y)(Pn><Pnlf(O)10) = & q 1 A+.(Y sm2) 

n 

Ccl 
1 

-3 507) + K 
1 

W.3) 
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which should be compared with the trace of Eq. (If. 8): 

4n2zp <P&&y) P(0) II?> = &a [A+(y,m2)/ $?(-3FlW + & F2 (n,)ei%‘y} 

As in electroproduction, it is easy to show that only the leading singularity 

of A+ i.e., 
(- 

i 

4a2 (y2 + i E yo) 
contributes in the Bjorken limit, so that the process 

is light -cone dominated. 

Nevertheless Eq. (IV. 3) cannot be obtained from a light-cone analysis without 

further assumptions. Assuming free-field singularities, it is straightforward to 

find the piece of the current product which contributes to the imaginary part of 

forward Compton scattering for q2 > 0: 

m 

where Fi are the (scaling) structure functions derived from the discontinuity in 

the forward virtual Compton amplitude T 
PV * 

There are four distinct pieces in 

this discontinuity for time-like photons (see Fig. 7) one of which (Fig. 7a) 

is related (by crossing) to the left-hand side of Eq. (IV. 3). Although the object 

on the left of Eq. (IV. 3) is related to one piece of the current product in the above 

equation, and although the Fi(x) contribute to Fi(x), we know of no way of retrieving 

Eq. (IV. 3) from the light-cone analysis without additional assumptions. Ellis3’ has 

derived the parton model scaling laws for this process from a light-cone analysis. 

We refer the reader to his work for a discussion of the additional assumptions nec- 

essary to obtain this result. 
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B. y+P- p+ + p- + anything 

In an earlier paper 27 we showed that the high-energy photoproduction of 

massive muon pairs may be described in terms of parton annihilation much like 

the process P + P -p+ + p- + anything. Separating the parton contribution from 

the large background for Bethe-Heitler pairs (see Fig. 8) necessitates measuring 

a cross section symmetric in the produced muons and differential in their longi- 

tudinal momentum: 

(IV.4) 

where fa = 2 for spin zero partons and fa = 1 for spin l/2 partons. G2b is the 

structure function for partons of type b in the photon. 77, and q2 are the frac- 

tional momenta of the partons in the center of mass, constrained by: 

~~77~ = Q2/S 

cm 
and Q3 

vp12=Q- * 

As in proton-proton production of muon pairs, this cross section is propor- 

tional to the two-particle matrix element of a current product: 

where the muon currents combine to form the tensor BP’. When integrated over 

2 PV all muon momenta for fixed Q 1 becomes proportional to gclv . In forming the 

symmetric cross section differential in Q3 additional components would in general 

enter into P” . If, however, Q2 and S are very large and the transverse momenta 

of the annihilating partons is limited, then to leading order L PI/ is again proportional 
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to gpv. Since the same matrix element enters dcr/dQ2 and 

it is not necessary to transform the cross section of Eq. 

space. Instead we consider dc/dQ2 and write down the relevant matrix element 

by analogy to the process P + P wp+ + p- + anything: 

<pkinl Jp(y) Jp (())IPkin> = -.--i-e 

1 

X 
I 

dq2 iP)7 2.y 
-e 

‘72 
C2b (‘72) 

0 

This process has the same light-cone behavior as hadronic production of muon 

pairs. Photoproduction of muon pairs also provides an experimental arena in 

which to distinguish the parton from the light-cone approach to highly inelastic 

electromagnetic processes. 

C. Other Processes 

We have translated several other parton model analyses into the language 

of the light-cone. Among these are the highly inelastic scattering of neutrinos 

and of polarized electrons from hadronic targets, and one-particle inclusive 

electroproduction (e + P- e + h + anything). In these cases nothing unexpected 

is encountered. Perturbative parton model analyses of these processes may be 

found in Ref. 7 and 31. In the Bjorken limit, the parton model predicts scaling 

laws analogous to electroproduction. In coordinate space, the scaling laws 

translate into free-field singularities and light-cone dominance. The light-cone 

structure derived in this manner is well known from other light-cone analyses. 
16,32,30 

Since there are no surprises or additional insights, the details are not presented 

here. 
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V. Summary 

Massive muon pair production at high energy emerges from our analysis as 

the proper experiment in which to study the notion of “point-like constituents in 

the nucleon. ” The scaling law of Drell and Yan (Eq. (III. 4)) is obtained naturally 

in the parton model but not in the more general analysis of light-cone singularities. 

Experiments to date have been performed at only one value of S 34 so the scaling 

law is as yet untested. In the near future it will be possible to test this prediction. 

If verified, it provides strong support for the parton viewpoint. 

On the other hand, it appears to be impossible to differentiate the parton 

model from the analysis of light-cone singularities in highly inelastic electro- 

product ion and related experiments. Any effect understood in terms of the elastic, 

incoherent scattering of partons is equally well attributed to free-field singularities 

on the light-cone. Neither scaling nor any other aspect of inelastic leptonic scat- 

tering necessitates the existence of “point-like constituents. ” While they need not 

actually exist, we have seen how useful partons are in developing an intuition for 

the analysis of light-cone singularities. We may identify the free-field singularities 

with the free propagation of an elastically-scattered parton and the “longitudinal” 

variation of the singularities along the light-cone with the correlation of the points 

at which the virtual photon is absorbed and re-emitted in forward Compton scattering. 

In electroproduction it is a matter of taste how much reality one ascribes to this 

momentum space realization of canonical light-cone singularities. In muon pair pro- 

duction there is not so much freedom. Experiment will make it clear how seriously 

the idea of “point-like constituents in the nucleon” must be taken. 
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Appendix A 

To obtain a manifestly current-conserving form of Eq. (II. 9) we first separate 

out the longitudinal structure function FL(q) = F2(q) - 2r]FI(t7): 

1 \ + +2 ;(P& +Pva,) -F2(rl)‘Xv~m2)cospV*y (A-1) 

0 

Equation (II. 9) was derived by identifying two quantities under a Fourier transform 

and is therefore valid up to terms whose Fourier transform vanishes in the Bjorken 

limit. The same is true for Eq. (A. 1). We may manipulate Eq. (A. 1) disregarding 

terms which vanish when Fourier-transformed in the scaling limit. This allows us 

to make use of the following equivalences (proved below): 

A(y,m2) cos PVsy A0 1 (A-2) 

(A-3) 

A’(y,m2) sin Pn my 

PT7.Y 1 (A* 4) 

where A’(y, m2) = - - 
dt2 

W,m2). The equality is up to terms which vanish when 

Fourier-transformed in the scaling limit. Using these substitutions in the second 

term of Eq. (A. 1): 
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This is, of course, the manifestly current-conserving form desired. 

It remains to derive Eq. (A. 2) - (A. 4). Since the-equivalence need only obtain 

under the Fourier transform, we will establish that the Fourier transforms of both 

sides of each equation are equal in the Bjorken limit. Beginning with Eq. (A. 2): 

= - 2 $ / da, \eiq’Yo[a(y,m2@eio “*ld4y 

-1 

To leading order in the scaling limit: 

1 

I=-“- d 
I 

da 2*id(2on Mu -Q2+m2c 
2 

2m2 dp 
-m p E ) ( aqM~+rn~ ) 

-1 

Finally : 

I = $& [6(7-j -x) - 6(-q -x>] 

An analogous and easier calculation of the left-hand side of Eq. (A. 2) yields the 

same result. The other identities may be derived from Eq. (A. 2) by partial 

integration of the Fourier transform. 
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Appendix B 

Here we discuss three problems which arose in our analysis of highly in- 

elastic electroproduction: 

1. Finding a four-vector PV to satisfy P,.,.q = 7’jMv and PG = m2 

to leading order. 

2. Replacing $ by q# whether or not PC NN 7Pl-l. 

3. Divergences in the r) integrals of Eq. (II. 15) (for example) 

near r] = 0. 

Problems 1 and 3 are solved by deleting the point x = 0 from the region 

of our analysis and removing q = 0 from the integrals-. Problem 2 is resolved 

by direct calculation. 

First we write down some representations for PV and see what problems 

arise: 

I. In an infinite momentum frame: 

qz 2Mv -Q2 
4p ,o, -2Mv +Q2 

4P 

PV=(J&z? , 0, 0, VP) 

Then p+q=qMu +0 

Pi = m2 

II. In the rest frame of P: 

q= (L 0, 0, Ju2+Q2) 

0, 0, m2 
-e+ygyI 
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III. In the rest frame of P with the parameter m2 = 0: 

P’I = W’L@‘L 0, 0) 

Pn. q = ?Mv 

P; = 0 

Although III satisfies the restrictions exactly, it is of less interest to us since 

the intuitive correspondence to the parton model is lost when m2 (identified with 

the parton mass) is set to zero. Representations I and II break down for small 7 

when the second term in P,-,.q becomes comparable to the first: 7 - m/P for I 

andq -J$ u for II. If the TI integrals converged near q = 0, this discrepancy 

would be inconsequential since it is important only over an infinitesimal region. 

This region of the integrals must be avoided. 

To do this, define the region 9 as the Bjorken limit region minus the point 

x = 0, i.e., Q2,M v-00, 6 < 1x1 -5 1 for fixed c chosen as small as desired. 

Now repeat the steps of Eq. (II. 12) and (II. 13) (consider W;(x) G -3F1(x) + & F2W 

for simplicity): 

1 

w;(x) = 
\ [ 

dq 6(q -x) - d(-q -x) W;(q) 1 E < 1x1 5 1 

E 
Theanalogues of Eq. (II. 13) are: 

pyeiq’yo[n(y,m2)cos PV*y] = riq(d(rl-x) - a(-17 -x)) 

and so on, for 77 > E, 6 < 1x1 5 1. 

Finally : 

4P2EP 
1 

M <PIIJpW, J%d lP> g &a 
I 

3 (Fz(71) -W’l(7))) ~0s PRY (B. 1) 
c I 
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This is accurate up to terms whose Fourier transforms vanish in the region 9’ , 

but by construction it does not contain the leading contribution in the region 1x1~ E. 

The cutoff at E removes the divergences in Eq. (II. 15). It also removes the 

difficulties in choosing PV. Consider, for example, Representation I and choose 

l/2 e=(M/P) . If I is an acceptable representation of Pr7, the Fourier transform 

of Eq. (B. 1) should yield W: (x) with corrections which vanish as P-oo. Let T 

be that Fourier transform: 

2 
‘-JJ = QT (qq - 6 Fl(q)) b (2 F$ ‘q - Q2). - for q0 ’ o 

=Q2/ FW;h)a(2v~~ +--$ (2Mv -Q2) -Q2) 

E 

where we have kept the leading correction to Prl*q. 

T=x 

4PL 

These corrections are largest at x = E but with E = the corrections vanish 

like m/P or faster as P -co. A similar procedure may be used for Representa- 

tion II if E is chosen to be . 

We conclude that all of the representations for the current commutator given 

in Section II are valid in the 2 region: the Bjorken region minus the point x = 0. 

The 77 integrals in Section II must be understood to range from E to 1 for arbitrarily 

small E. 



45 

Lastly we verify that P; may be replaced by 7P’ to leading order in the 

Bjorken limit. Consider the identities of Eq. (II. 13) with P; replaced by qP’: 

and so on. Since E < Q 5 1, the additional term: contributes only 

to lower order as ZJ --too. This allows us freely to replace P;l” by VP’ although 

the four vectors themselves need not be equal. 

It may seem artifical to use Prl in Section II when VP could have been used 

all along. We chose this approach because it preserves the connection with the 

intuitive parton model picture of PV as the four momentum of the parton which is 

elastically scattered. In the conventional light-cone analysis, q appears as the 

Fourier conjugate variable to P-y without any particular physical correspondence. 
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Figure Captions 

1. (a) Kinematics of inelastic elec troproduc tion. 

(b) Discontinuity in forward virtual Compton scattering for spacelike q2. 

2. Parton model diagram for deep inelastic electroproduction (in an infinite 

momentum frame of P). 

3. Kinematics of massive muon pair production in hadron-hadron collisions, 

s = (P + P’)2. 

4. Parton model diagrams for: (a) parton pair annihilation into a massive 

muon pair; (b) parton bremsstrahlung of a massive muon pair. 

5. Parton pair annihilation into a massive muon pair accompanied by the 

exchange of wee partons. 

6. Squared amplitude for positron-electron annihilation into a hadron, P, 

plus any thing. 

7. Discontinuities in forward virtual Compton scattering for timelike q2. 

8. Contributions to y + P - /A+/J- + anything from: (a) parton pair anni- 

hilation; (b) Bethe-Heitler process. 
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